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The correlation between diabetes and systematic well-being on human life has long established. As a common complication of
diabetes, the prevalence of diabetic nephropathy (DN) has been increasing globally. DN is known to be a major cause of end-
stage kidney disease (ESKD). Till now, the molecular mechanisms for DN have not been fully explored and the effective
therapies are still lacking. Noncoding RNAs are a class of RNAs produced by genome transcription that cannot be translated
into proteins. It has been documented that ncRNAs participate in the pathogenesis of DN by regulating inflammation,
apoptosis, autophagy, cell proliferation, and other pathological processes. In this review, the pathological roles and diagnostic
and therapeutic potential of three types of ncRNAs (microRNA, long noncoding RNA, and circular RNA) in the progression of
DN are summarized and illustrated.

1. Introduction

Diabetes is a common chronic metabolic disease which
has affected about half a billion people in the world. The
expansion of urbanization, unhealthy diets, and sedentary
lifestyles have led to an increase in the incidence of diabe-
tes. The International Diabetes Federation (IDF) estimates
that the number of diabetic patients will increase to 629
million in 2045 [1]. Diabetes is not only a health crisis
but also a global social disaster. The prevalence of diabetes
will become a global health and economic burden, espe-
cially in low- and middle-income countries [2].

Diabetic nephropathy (DN) affects approximately one-
third of DM patients. As the number of patients with diabetes
increases, the prevalence of patients with DN rises sharply
[3]. Currently, DN is listed as the main cause of end-stage
renal disease (ESKD) in the Western world [4]. The major
causes of DN are glucose metabolism disorder, oxidative
stress, and renal hemodynamic changes [5, 6]. However, its
specific molecular mechanism remains unclear, and there is
still a lack of effective therapies. Recently, there is increasing
evidence that altered noncoding RNAs (ncRNAs), especially
microRNAs (miRNAs), are closely related to the occurrence

and progression of DN [7–10]. ncRNAs are involved in bio-
logical processes, gene expression, cell-cycle control, differ-
entiation, and immune responses, which play important
roles in various molecular biological processes in DN [11].
Many studies have found that ncRNAs play a vital role in dia-
betic nephropathy glomerular podocyte injury, renal tubular
epithelial cell injury, glomerular mesangial cell proliferation
and fibrosis, glomerular extracellular matrix accumulation,
microvascular disease, endoplasmic reticulum stress and
inflammation reaction, and other pathophysiological pro-
cesses [12–14]. Considering the role of ncRNAs in inflamma-
tion, cell autophagy and apoptosis, and cell proliferation,
some ncRNAs have also been suggested as diagnostic
markers and therapeutic targets for DN [15, 16]. In this
review, we summarize the pathological roles of three types
of ncRNAs (microRNA, long noncoding RNA, and circular
RNA) in the progression of DN (Figure 1) and illustrate their
diagnostic and therapeutic potential in this disease.

2. Pathophysiology of DN

Kidneys are a pair of lentil-shaped organs, located in the
shallow fossa on both sides of the retroperitoneal spine.
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The nephron is the basic unit of kidney structure and func-
tion. Each nephron includes three parts: glomerulus, renal
capsule, and renal tubule [17]. The development of diabetic
patients to DN is a very complicated process and is caused
by a variety of factors. The major renal structural changes
in DN include mesangial hyperplasia, thickening of the glo-
merular and tubular basement membrane, and glomerular
sclerosis. The clinical manifestation of DN includes persis-
tent proteinuria, increased blood pressure, and edema [18].
The causes of DN involve changes in renal hemodynamics,
hypoxia and excessive activation of the renin-angiotensin-
aldosterone system (RAAS), oxidative stress, inflammation,
mitochondrial dysfunction, podocyte autophagy, and genetic
and epigenetic regulation [19]. The stimulation of the RAAS
system will promote the production of reactive oxygen spe-
cies (ROS), thereby further damaging podocytes and renal
tubular cells and aggravating kidney damage [20]. The acti-
vation of growth factors such as transforming growth fac-
tor-β (TGFB) and inflammatory cytokines leads to the
activation of tumor necrosis factor-α (TNFA) signals and
promotes cell repair and remodeling, thereby further aggra-
vating kidney disease and fibrosis [19]. Animal and cell
experiments have shown that ncRNA is closely related to
the inflammatory response, autophagy, and gene regulation
during the occurrence of diabetic nephropathy [19].
Increased understanding of diabetic nephropathy in the
direction of ncRNA will help us better screen treatment strat-
egies to prevent kidney damage associated with diabetes.

3. Characteristics of ncRNAs

The Encyclopedia of DNA Elements (ENCODE) consortium
shows that only 1-2% of the human genome encodes proteins
and another 98% consists of noncoding sequences which are
biologically active and functional. An important component
of the noncoding sequence is ncRNA [21]. ncRNAs are a
class of RNAs produced by genome transcription but cannot
be translated into proteins [22]. ncRNAs were originally
thought to be a useless transcript. Fortunately, the develop-
ment of high-throughput sequencing technology has led to
the discovery of more ncRNAs. In addition, more and more
evidence showed that ncRNAs play important roles in gene
regulation processes such as DNA replication, DNA tran-
scription, RNA translation, and RNA splicing [23, 24]. There
are many types of ncRNAs, and the main classes of functional
ncRNAs include microRNA (miRNA), long noncoding RNA
(lncRNA), and circular RNA (circRNA), which have cap-
tured the interest of biomedical researchers and have been
studied in depth [25, 26]. The discovery of noncoding RNAs
(ncRNAs) opens up new prospects for DN diagnosis, prog-
nosis, and treatment.

4. miRNA in DN

miRNAs are small, single-stranded RNAs, spanning about
22 nucleotides, which are generated from pre-miRNAs by
RNA polymerase II. Mature miRNAs can inhibit protein
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Figure 1: ncRNAs, includingmiRNAs, lncRNAs, and circRNAs, play important roles in regulating renal inflammation, apoptosis, autophagy,
cell proliferation, and renal fibrosis in DN. The ellipse, the rectangle, and the ring, respectively, represent the miRNA, lncRNA, and circRNA.
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expression via disruption of translation initiation or elon-
gation by interacting with the untranslated region (UTR)
of their target mRNA. miRNAs have also been shown to
activate gene expression under some conditions [27]. The
available evidence indicates that miRNAs are involved in
the pathogenesis of DN [12, 28]. By using microarray
analysis, miRNA expression profiles in human and other
DN animal models have been reported [29, 30]. The latest
evidence suggests that miRNA levels have changed signifi-
cantly in the course of DN. For instance, DN progressors
showed significantly greater levels of miR-21, miR-29a,
miR-29b, and miR-29c in comparison with nonprogressors
[31]. On the other hand, functional studies also indicated
that knockout or upregulation of certain miRNAs was able
to change the progression [32–34].

4.1. Role of miRNAs in Inflammation in DN. Chronic low-
grade inflammation is a hallmark of type 2 diabetic nephrop-
athy and contributes to the pathogenesis and progression of
DN. A study has shown that the accumulation of inflamma-
tory cells and proinflammatory cytokines produced by
inflammatory cells in the kidney is a key player in the patho-
genesis of DN [35]. A study showed that miR-29c was
increased in the patients with DN, and overexpression of
miR-29c in podocytes could result in an increase in inflam-
matory cytokines such as interleukin- (IL-) 1, IL-6, IL-18,
and tumor necrosis factor- (TNF-) α. However, inhibition
of miRNA-29c with its inhibitor reduced the inflammatory
cytokines in podocytes. This indicated that miRNA-29c
may contribute to the development and progression of DN
as a promotive factor [12]. miR-146a is highly expressed in
many cell types and plays an important anti-inflammatory
role in myeloid cells. Lee et al. found that miRNA-146a pro-
duced by podocytes can inhibit inflammation by acting on
their targets Notch-1 and ErbB4 [36]. The level of miR-155
is largely increased in kidney tissues of patients with DN.
Furthermore, the overexpression of miRNA-155 in human
renal glomerular endothelial cells will increase the expression
of TNF-α, TGF-β1, and NF-κB and contribute to
inflammation-mediated glomerular endothelial injury [37].
miRNA-31, an inflammation-related miRNA, significantly
downregulated during the progression of DN, worsens
inflammation by reducing leukocyte rolling velocity and
enhancing leukocyte adhesion to the endothelium, and
thereby aggravates the development of the disease [38].
miRNA-21 is increased in kidney tissue, and it may be also
involved in the regulation of inflammation and renal fibrosis
in a DN mouse model. Overexpression of miR-21 promoted
increases in the levels of proinflammatory markers and
increased the amount of macrophage infiltration into dia-
betic kidneys, whereas knockdown of miR-21 can block the
progression of renal fibrosis and inflammation, because sup-
pression of miR-21 may inhibit the activation of the TGF-β
and NF-κB signaling pathways [33, 39]. A recent study
showed that in a DN rat model, overexpressing miR-218
was sufficient to reduce renal injury through regulating NF-
κB-mediated inflammation. Moreover, they confirmed that
miR-218 targets the messenger RNA (mRNA) encoding
IKK-β [40].

4.2. Role of miRNAs in Apoptosis and Autophagy in DN.Apo-
ptosis and autophagy are two common forms of pro-
grammed cell death and participate in the development of
DN [41, 42]. There are a number of miRNAs involved in con-
trolling programmed cell death during DN. For instance,
miR-15b-5p, an apoptosis-related miRNA decreased in the
patients with DN [43], can mitigate high glucose- (HG-)
induced apoptosis in human kidney-2 (HK-2) cells by way
of decreasing the levels of active caspase-3 and cleaved PARP.
Moreover, enforced expression of miR-15b-5p can restrain
the HG-stimulated inflammatory response [44]. It is reported
that miR-25 can protect against high glucose-induced tubu-
lar epithelial cell damage, which is correlated with attenuated
oxidative stress and apoptosis. Mechanistically, phosphatase
and tensin homolog deleted on chromosome ten (PTEN) is
identified as a target gene for miR-25; in this setting, overex-
pression of miR-25 would protect HK-2 cells against HG-
induced reactive oxygen species (ROS) accumulation and
apoptosis [13]. miR-21 was highly expressed in serum and
kidney tissues of DN patients, and it may be also involved
in the regulation of cell apoptosis and autophagy in DN
[45]. Loss of miR-21 significantly repressed apoptosis and
promoted autophagy, whereas overexpression of miR-21
induced cell apoptosis and curbed cell autophagy because
miR-21 can inhibit forkhead box O1 (FOXO1) expression
in HG-cultured podocytes [46]. In the kidney tissues of DN
rats, the expression of miR-424 was significantly decreased,
and the upregulation of miR-424 could significantly decrease
the apoptosis rate of tissue cells by decreasing the expression
levels of caspase-3 and Bax and increasing the level of the B
cell lymphoma-2 gene (Bcl-2). Eventually, it improved DN
symptoms. Furthermore, they found that Rictor was the
direct target for miR-424, and upregulation of miR-424
inhibited Rictor through Akt signaling in renal tissue of DN
rats [10]. miR-320a triggers apoptosis in podocytes by
directly targeting MafB while overexpression of miR-320a
aggravated renal dysfunction in db/db mice [47]. miR-770-
5p is upregulated in podocytes under HG condition, and it
targeted TP53-regulated inhibitor of apoptosis 1 (TRIAP1)
to regulate cell apoptosis. Inhibition of miR-770-5p could
promote the proliferation of podocytes and inhibited the
apoptosis of podocytes [48]. A recent study identified that
miR-134-5p, which binds to the 3′-untranslated region of
Bcl-2, promoted high glucose-induced podocyte apoptosis
in db/db mice [49]. miR-423-5p, a decreased miRNA in renal
tissues of DN patients, is reported to target nicotinamide ade-
nine dinucleotide phosphate oxidase 4 (Nox4) for inhibiting
ROS production, suppressing cell apoptosis, and reducing
inflammatory activity [50]. Additionally, miR-20b may also
target sirtuin 7 (SIRT7), which is proven to contribute to high
glucose-induced podocyte apoptosis. In this setting, miR-20b
may mediate the occurrence of DN [51].

Autophagy deficiency or insufficiency in renal cells was
found to contribute to the pathogenesis of diabetic nephrop-
athy [52]. miRNA may target autophagy-related genes and
signaling pathways to delay DN processes [53]. Level of
miR-27a is downregulated in HK-2 cells under HG condi-
tion; this study also indicated that arbutin can protect HK-
2 cells against high glucose-induced apoptosis and autophagy
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by upregulating microR-27a [54]. Additionally, a recent
study demonstrated an increase in miR-636 expression level
of renal tissues in diabetic rats during the progression of dia-
betes. The expression of miR-636 can be inhibited by using
caffeic acid with subsequent induction of autophagy which
ameliorated glomerular changes in STZ -induced diabetic
rats [55]. Moreover, Xu et al. found that miR-18a-5p could
regulate autophagy by targeting atactic telangiectasis muta-
tion (ATM) [56]. miR-142-5p is upregulated in the DN
model in vitro and in vivo. PTEN was found to be a down-
stream target of miR-142-5p. Meanwhile, downregulation
of miR-142-5p could enhance autophagy, thereby inhibiting
HG-induced fibrosis [57].

4.3. Role of miRNAs in Cell Proliferation in DN. Cell prolifer-
ation, especially the proliferation of glomerular mesangial
cells (MCs), is the main pathological change of DN [58].
Some DN-associated miRNAs are involved in cell prolifera-
tion. For instance, miR-370, which is highly increased in
the renal DN model, is capable of triggering cell proliferation
by targeting canopy 1 (CNPY1) [28]. On the other hand, level
of miR-192 is reported to be elevated in high glucose-treated
rat MCs, and it regulates MC proliferation and renal fibrosis
[59]. Moreover, a recent study showed that miR-379-5p has a
critical role in renal fibrosis during DN. miR-379-5p was
downregulated by HG treatment in mouse MCs. However,
transfection with miR-379-5p mimics suppressed the prolif-
eration and the accumulation of extracellular matrix compo-
nents [60]. Nevertheless, miR-378 is highly decreased in DN
and regulates the expression of fibrotic genes and the
MAPK1 pathway. Overexpression of miR-378 could inhibit
MC expansion and proliferation, thereby attenuating kidney
cell fibrosis and mesangial hypertrophy [61]. These findings
suggested that miRNAs are involved in the development pro-
cess of DN through modulating cell proliferation.

4.4. Role of miRNAs in Renal Fibrosis of DN. At the histolog-
ical level, irreversible glomerular fibrosis and scar formation
are the most important pathophysiological changes during
the progression of DN to end-stage renal disease. Glomerular
lesions, especially fibrosis of the renal tubules and renal inter-
stitium, also played an important role in the progress of DN.
Further researches also indicate that miRNA was found to
play an important role in the process of renal fibrosis during
DN [62]. A recent study suggested that miR-21 can promote
the development of renal fibrosis by regulating the metabolic
pathways involved in fatty acid and lipid oxidation [63].
McClelland et al. found that the upregulation of miR-21 pos-
itively correlates with the severity of fibrosis and rate of
decline in renal function in DN [64]. It has been confirmed
that targeting of the zinc finger E-box binding homeobox
1/2 (ZEB1/2) by miR-192 has been shown to result in renal
fibrosis by activation of the TGF-β signaling pathway [65],
while Ebadi et al. suggest that enhancing the expression of
miR-192 can improve DN and modulate the risk of renal
function decline by suppressing fibrogenesis. Meanwhile,
they found that the increase in miR-29a/b/c expression in
the DN kidney tissue is able to improve DN probably via tar-
geting the TGF-β/Smad signaling pathway [14]. Moreover, a

recent study showed that miR-26a was downregulated in DN
and it may target connective tissue growth factor (CTGF) to
inhibit TGF-β-induced extracellular matrix protein expres-
sion in podocytes [66]. In addition, upregulation of miR-
135a is detected in serum and renal tissue from patients with
DN, as well from db/db mice. Inhibition of TRPC1 levels to
prevent Ca2+ entry into cells may be a mechanism by which
miR-135a promotes renal fibrosis in diabetic kidney injury
[67]. Overexpression of miR-23a and miR-27a in muscle pre-
vents diabetes-induced muscle cachexia and attenuates renal
fibrosis lesions through muscle-kidney crosstalk. It may pro-
vide a new approach to the treatment of diabetic muscular
atrophic nephropathy [68].

5. lncRNAs in DN

lncRNAs are a class of RNA transcripts, which are greater
than 200 bp in length. lncRNAs are usually 5′-capped,
spliced, and polyadenylated; therefore, they have major fea-
tures with mRNA but usually do not contain open reading
frames with translational capabilities. Compared with
mRNAs, they were characterized by more space-time speci-
ficity and lower interspecies conservation [69]. lncRNAs
can be grouped into sense lncRNA, antisense lncRNA, bidi-
rectional lncRNA, intron lncRNA, intergenic lncRNA, and
enhancer lncRNA by their relative location to protein-
encoding genes in the genome [70]. lncRNAs exert diverse
biological functions by controlling nuclear architecture and
transcription in the nucleus and modulating mRNA stability,
translation, and posttranslational modifications in the cyto-
plasm [69].

lncRNAs are newly identified intracellular noncoding
ribonucleotides that regulate different biological activities in
different organs including the kidney [71]. Yang et al. found
45 upregulated lncRNAs and 813 downregulated lncRNAs in
the DN group compared with DM patients without microal-
buminuria and healthy controls. Meanwhile, they found
levels of lncRNA-ARAP1-AS2 gradually increasing during
the progression of diabetes and DN whereas those of
lncRNA-ARAP1-AS1 gradually decreased [15]. Till now,
the biological role of lncRNAs in DN attracts more atten-
tions. For instance, lncRNA NONHSAG053901 can directly
interact with early growth response protein 1 (Egr-1) to reg-
ulate the TGF-β inflammasome signaling pathway and medi-
ate inflammatory molecular expressions in MCs, and it is
associated with the development of inflammation, fibrosis,
and proliferation of MCs in DN [72]. Gm4419 is a newly
identified proinflammatory lncRNA in kidney tissues. It has
been shown that NF-κB/NLRP3 inflammasome-mediated
inflammation in DN can be attenuated by specific knock-
down of LincR-Gm4419 [73]. Furthermore, a study indicated
that lncRNA MEG3, upregulated in DN, can promote fibro-
sis and inflammatory response via the Egr-1/TLR4 axis
in vitro and in vivo. Meanwhile, MEG3 is identified as an
endogenous sponge for miR-181a by targeting in an Ago2-
dependent manner [74]. LRNA9884, a newly discovered
Smad3-dependent lncRNA, is highly expressed in db/db
mice associated with T2DN development. It may promote
diabetic kidney injury by enhancing MCP-1-dependent
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inflammation, and it may be a novel therapeutic target for
T2DN in the future [75].

Additionally, lncRNAs are also involved in the regulations
of cell death and cell proliferation. In DN, an upregulated
lncRNA, LINC00462, was found to participate in high
glucose-induced apoptosis of renal tubular epithelial cells by
the AKT pathway. In addition, knockdown of LINC00462
inhibited HG-induced cell apoptosis and affected the expres-
sion of apoptosis-related proteins by activating the AKT path-
way [76]. MALAT1 is another important lncRNA involved in
DN. MALAT1 can be induced in the streptozocin-induced
DN mouse model, and it plays a role in high glucose-
associated podocyte damage involving a feedback loop with
beta-catenin [77]. Furthermore, the upregulation of MALAT1
upon glucose exposure led to increased IL-1 and TNF-α levels
indicating that this lncRNA may be involved in inflammatory
processes during DN [78]. Moreover, Li et al. found that
MALAT1 in renal tubular epithelial cells induced by high glu-
cose leads to increased pyroptosis by targeting miR-23c and
consecutive upregulation of ELAVL1 and NLRP3 [79]. Addi-
tionally, PVT1, a well-studied lncRNA, was highly expressed
in primary podocytes in DNpatients. The silencing of lncRNA
PVT1 exerted inhibitory effects on podocyte damage and apo-
ptosis via upregulating FOXA1 [80]. More importantly,
lncRNA SOX2OT was confirmed to mitigate podocyte injury
induced by the high glucose through autophagy induction by
themiR-9/SIRT1 axis. Thus, SOX2OTmay serve as a potential
therapeutic target for DN [81]. It has been reported that
lncRNA H2k2 could promote MC proliferation in DN via
themiR-449a/b/Trim11/Mek signaling pathway [82]. A recent
study found that NEAT1 was induced in murine MCs treated
with high glucose. Overexpression of NEAT1 led to the activa-
tion of the AKT/mTOR signal path, thereby increasing cellular
proliferation and fibrosis [83]. In addition, lncRNA Rpph1
may promote inflammatory response and proliferation of
MCs in DN by interacting with Gal-3 and activating the
Mek/Erk pathway [84].

In renal tissues of DN patients, DN mice, and high
glucose-exposed HK-2 cells, lncRNAX-inactive specific tran-
script (XIST) was found to be highly increasing. Downregu-
lated expression of XIST led to an increase in miR-93-5p
expression, thereby decreasing CDKN1A and suppressing
renal interstitial fibrosis in DN [85]. Overall, although the
potential role of lncRNAs in the pathogenesis of DN has
not been fully understood, emerging evidence shows the
importance of lncRNAs in the progression of DN.

6. circRNAs and DN

circRNAs are a class of newly identified ncRNAs without
either polyadenylated tails in 3′ ends or the cap structure at
5′ ends. So their structure comprises covalently closed loops,
and they can be protected against RNA exonucleases [86].
Besides, accumulating investigations have found that cir-
cRNAs have many miRNA-binding sites which can help
them to act as a miRNA sponge. The combination of cir-
cRNA and miRNA will lead to a reduction in the inhibitory
effect of miRNAs on target genes, thereby enhancing the
expression of these genes [87, 88].

At present, the research of circRNAs involved in diseases
is getting more and more attention. Articles on circular RNA
have grown exponentially, especially in cancer. Previous
studies showed that circRNA, a large class of noncoding
RNAs, functions by binding with miRNAs and terminating
the regulation of their target genes [89]. The role of circular
RNA in cancer has been recently reported, but with the in-
depth study of circular RNA, some scholars have found that
it also plays an important role in the development of DN. A
recent study showed that circLRP6, a newly found ncRNA,
was significantly expressed in MCs treated with HG. It was
found to be a sponge for miRNA-205. HMGB1 is a potential
target of miR-205. So circLRP6 can regulate HG-inducedMC
proliferation, oxidative stress, ECM accumulation, and
inflammation by sponging miR-205, upregulating HMGB1,
and activating the TLR4/NF-κB pathway [90]. In addition,
Hu et al. found that circRNA_15698 significantly upregu-
lated in diabetic mice when performing circRNA microarray
analysis in DN db/db mice. In the further experiments, they
also found that circRNA_15698 can act as a sponge for
miRNA, positively regulating the expression of the trans-
forming growth factor-β1 (TGF-β1), thereby promoting the
synthesis of extracellular matrix- (ECM-) related proteins.
However, knockdown of circRNA_15698 suppressed the
exposure with normal ECM accumulation of MCs [91]. By
RNA sequencing of peripheral blood, Fang et al. identified
that the expression of circANKRD36 was upregulated in
peripheral blood leucocytes and was correlated with chronic
inflammation in T2DM. It implied that circANKRD36 may
be involved in the process of DN [92]. All this evidence indi-
cates that revealing the mystery of circRNA is critical in the
war against DN.

7. ncRNAs as Biomarkers in DN

Early detection of DN is very useful for preventing progres-
sion to renal failure. Several biomarkers of DN progression
have been reported, such as peptides, growth factors, and
cytokines [93]. However, due to the high stability of ncRNAs
in body fluids (urine, plasma, and exosomes) and the devel-
opment of detection techniques [94], they have been recog-
nized as a new sensitive, noninvasive diagnostic biomarker
for DN. Here, we summarize several biomarkers for DN
(Figure 2). In plasma, miR-126 and miR-192 are downregu-
lated in DN patients when compared with healthy controls
[95]. In addition, miR-150-5p, miR-155-5p, miR-30e, miR-
320e, and miR-3196 were detected to be increased in DN,
and miR-150-5p and miR-155-5p were negatively correlated
with the albuminuria excretion rate and positively correlated
with the estimated glomerular filtration rate [16]. Kim et al.
found that miR-1246, miR-642a-3p, let-7c-5p, miR-1255b-
5p, let-7i-3p, miR-5010-5p, miR-150-3p, and miR-4449 were
upregulated in the exosome of DN and they were all signifi-
cantly correlated with the degree of albuminuria [96]. Levels
of let-7i-3p, miR-24-3p, miR-30-5p, and miR-27b-3p were
increasing, and the level of miR-15b-5p was decreasing in
urinary extracellular vesicles of DN [97]. miRNA-27b-3p
and miRNA-1228-3p were identified to be downregulated
in urine, and they were found to be correlated with the
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progression of kidney fibrosis in DN [98]. Additionally,
Meng et al. showed that decreased urinary miR-199-3p could
screen DN patients from DM patients and healthy controls
[99]. However, Beltrami et al. found that miR-126, miR-
155, and miR-29b were upregulated in urine of DN [100].
A recent study showed that lncRNA-ARAP1-AS2 gradually
increased and lncRNA-ARAP1-AS1 gradually decreased in
DN/diabetes mellitus patients without microalbuminuria
(DM)/healthy controls (N). They may serve as new bio-
markers for diabetes and DN [15]. Due to its special ring
structure, circRNA is not easily degraded in the body, and
more and more scholars believe that it will be a new marker
for the diagnosis of DN.

8. Therapeutic Potential of ncRNA in DN

Over the past few decades, ncRNAs have gained attention for
their function involved in regulating signaling pathways of
DN. Considering the potential involvement of different
ncRNAs in the molecular signaling pathways in DN, ncRNAs
are considered to be a new therapeutic target in DN. Further
researches have focused on DN-specific miRNAs such as
miR-21, miR-29a, miR-192, miR-188-5p, miR-200a, and
miR-133b, some of which have shown encouraging therapeu-
tic outcomes in the animal models of DN [14, 33, 101–104].
For instance, reducing miR-200a can ameliorate oxidative
stress in experimental DN, and silencing of miR-21 can
decrease mesangial expansion, interstitial fibrosis, macro-
phage infiltration, podocyte loss, albuminuria, and fibrotic
and inflammatory gene expression [33, 103]. In addition,
specific reduction of renal miR-27a decreases renal fibrosis,
and targeting miR-27a may represent a novel therapeutic
approach for DN [105]. Besides, Wu et al. found that down-
regulation of MALAT1 could improve renal function after

duodenal-jejunal bypass in a diabetic rat model [106]. A
recent research showed that silencing of lncRNA-GAS5 alle-
viated the HG-caused HK-2 cell toxicity [9]. Excitingly, some
recent studies identified that miRNA-rich exosomes secreted
by mesenchymal stem cells (MSCs) can inhibit proinflamma-
tory cytokine expression and fibrosis in the tubulointerstitial
region. At the same time, it also can inhibit epithelial-to-
mesenchymal transition of renal tubular epithelial cells.
Therefore, MSC therapy is considered to be a promising
treatment [107]. In short, the therapeutic potential of ncRNA
has been discovered, but the current findings are only the tip
of the iceberg, and further research is also needed.

9. Conclusion

In this review, the recent progress in the involvement of
ncRNAs in the pathogenesis of DN was summarized.
ncRNA promotes the occurrence and development of DN
through inflammation, cell apoptosis and autophagy, cell
proliferation, and other pathways. miRNA-targeted thera-
pies (including MSC and drug-targeted miRNAs) have
showed encouraging outcomes; however, due to the low
specificity of miRNAs to target genes, off-targeting often
occurs when using miRNA-targeted therapy. Therefore, in-
depth research found that a highly specific lncRNA and cir-
cRNA are imminent. It is expected that a highly specific and
sensitive ncRNA may be discovered in the future and could
be subsequently developed for clinical applications.
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