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Previous estimates of the annual mean surface temperature of Jupiter’s moon, Europa, neglected the effect of 
the eccentricity of Jupiter’s orbit around the Sun, the effect of the emissivity and heat capacity of Europa’s ice, 
the effect of the eclipse of Europa (i.e., the relative time that Europa is within the shadow of Jupiter), the effect 
of Jupiter’s radiation, and the effect of Europa’s internal heating. Other studies concentrated on the diurnal 
cycle but neglected some of the above factors. In addition, to our knowledge, the seasonal cycle of the surface 
temperature of Europa was not estimated. Here we systematically estimate the diurnal, seasonal and annual 
mean surface temperature of Europa, when Europa’s obliquity, emissivity, heat capacity, and eclipse, as well as 
Jupiter’s radiation, internal heating, and eccentricity, are all taken into account. For a typical internal heating 
rate of 0.05 Wm−2, the equator, pole, and the global and mean annual mean surface temperatures are 96 K, 
46 K, and 90 K, respectively. We found that the temperature at the high latitudes is significantly affected by 
the internal heating, especially during the winter solstice, suggesting that measurements of high latitude surface 
temperatures can be used to constrain the internal heating. We also estimate the incoming solar radiation to 
Enceladus, the moon of Saturn.
1. Introduction

Jupiter’s moon, Europa, and Saturn’s moon, Enceladus, are two of 
only a few moons in the solar system that bear the possibility of ex-

traterrestrial life (e.g., Chyba and Phillips, 2001, Pappalardo et al., 
2013). Europa has a deep (∼100 km) ocean that underlies an icy shell, 
more than several kilometers deep (e.g., Cassen et al., 1979, Carr et 
al., 1998, Pappalardo et al., 1998, Kivelson et al., 2000, Hussmann et 
al., 2002, O’Brien et al., 2002, Tobie et al., 2003, Schenk and Pap-

palardo, 2004, Zhu et al., 2017), where chemical interactions at the 
rocky bottom of the ocean may enable the existence of a habitable 
environment (e.g., Chyba and Phillips, 2001, 2002, Greenberg, 2010, 
Mann, 2017). The Voyager and Galileo (and to a lesser extent, the 
Cassini-Huygens and New Horizons) spacecrafts/missions discovered 
many interesting features of Europa including chaos terrains (Schmidt 
et al., 2011, Walker and Schmidt, 2015) and craters (Lucchitta and 
Soderblom, 1982, Moore et al., 1998, Greeley et al., 2000, Silber and 
Johnson, 2017). More recently, based on the Hubble telescope observa-

tions, scientists raised the possibility of water vapor plumes at Europa’s 
south pole (Roth et al., 2014, Sparks et al., 2016). Europa is one of the 
youngest, largest, and brightest moons in the solar system (Pappalardo 
et al., 2009). A basic property of Europa is its surface temperature; sur-

face temperature is needed to calculate the properties of its icy shell 
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and ocean dynamics. Thus, an accurate estimation of Europa’s surface 
temperature is required.

The annual mean surface temperature of Europa was previously es-

timated by Ojakangas and Stevenson (1989). These authors took into 
account the obliquity of Europa with respect to the plane of rotation 
of Jupiter around the Sun. Using a surface albedo of 0.5, they found 
that the annual mean temperature varies from ∼110 K at the equator to 
∼52 K at the poles; the global (and annual) mean surface temperature 
was found to be ∼100 K (see the gray curve in Fig. 2d below). However, 
the following factors were not taken into account when calculating the 
annual mean surface temperature of Europa: the eccentricity of Jupiter’s 
orbit around the Sun, the effect of the emissivity of Europa’s ice, the 
heat capacity of the surface ice, the effect of Europa’s eclipse (i.e., the 
time that Europa is within the shadow of Jupiter), the longwave ra-

diation of Jupiter that is absorbed by Europa, and Europa’s internal 
heating. The eccentricity [see Eqs. (18) and (21) below], emissivity, 
Jupiter’s radiation, and internal heating factors increase the incoming 
radiation to Europa’s surface from above and below, while the eclipse 
factor reduces the absorbed incoming solar radiation. In addition, an 
updated surface Bond albedo of 0.68 ± 0.05 (Grundy et al., 2007) that is 
based on New Horizons measurements should be considered; this by it-
self reduces the absorbed incoming solar radiation by more than 20%. 
Moreover, to our knowledge, the seasonal cycle of the surface tempera-
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Table 1

List of parameters.

Parameter Description Value

𝑆0 Jupiter solar constant 51 Wm−2

𝑒 eccentricity of Jupiter 0.048

𝜀 obliquity of Europa 3◦

𝛼𝑝 bolometric Bond albedo of Europa 0.68 ± 0.05
𝑝 Europa eclipse relative time 0.033

𝜎 Stefan-Boltzmann constant 5.67 × 10−8 Wm−2 K−4

𝜖 emissivity of Europa 0.94

𝜌𝐼 density of ice 917 kgm−3

𝑐𝑝,𝐼 heat capacity of ice 2000 Jkg−1 K−1

𝜅 deep ice heat diffusion constant 1.54 × 10−6 m2 s−1

𝜅𝑠 surface ice heat diffusion constant 7.7 × 10−10 m2 s−1

𝑔 surface gravity of Europa 1.314 ms−2

𝑟𝑗 mean Jupiter-Sun distance 7.785 × 1011 m

𝑟𝑒 mean Europa-Jupiter distance 6.71 × 108 m

𝑎𝑠 radius of Sun 6.96 × 108 m

𝑎𝑗 radius of Jupiter 6.99 × 107 m

𝑎𝑒 radius of Europa 1.561 × 106 m

Ω𝑒 rotational frequency of Europa 2.05 × 10−5 s−1

𝜔 Jupiter’s longitude of the perihelion 14.7285◦

𝐽0 Jupiter’s radiation constant 0.176 Wm−2

ture of Europa has not been previously estimated. The goal of this study 
is to develop a more accurate estimation of the diurnal, seasonal and 
annual mean surface temperature of Europa, taking all the above fac-

tors into account; here, we systematically investigate the role of the 
different parameters on the surface temperature of Europa. In addition, 
the analytic approximation developed here may be used to estimate the 
surface temperature of other moons in the solar system.

The brightness temperature of Europa was measured by Spencer et 
al. (1999) and Rathbun et al. (2010), based on measurements performed 
by the Galileo spacecraft. They measured the diurnal temperature cycle 
at the low latitudes to be between 86 K and 132 K and also provided 
spatial snapshots of surface temperatures up to, roughly, 70◦ latitude. 
Still, the diurnal mean temperature for latitudes poleward of 15◦ and 
the temperatures at the high latitudes were not measured. The polar 
region temperatures are important as in these regions, the internal heat-

ing significantly affects the surface temperatures, and measurements of 
surface temperatures in these regions may help to estimate the inter-

nal heating rate and, consequently, the thickness of the ice (see, e.g., 
Ashkenazy et al., 2018). The dependence of surface temperature on the 
internal heating is studied here.

Below we first discuss the diurnal, seasonal, and annual mean in-

coming solar radiation to Europa (Section 2.1). Some of Jupiter’s long-

wave radiation is absorbed by Europa, and this effect is quantified in 
Section 2.4. We then quantify the effect of Europa’s eclipse, i.e., the rel-

ative time that Europa is within the shadow of Jupiter (Section 2.5). 
Next we calculate the surface temperature of Europa (Section 3.1). A 
summary and discussion close the paper (Section 4). A very rough esti-

mation of the mean thickness of Europa’s icy shell as a function of the 
internal heating rate is detailed in Section 3.2. The parameters that are 
used in this study are listed in Table 1.

2. Theory

2.1. The incoming solar radiation

Below, we present results regarding the diurnal cycle, seasonal cycle, 
and annual mean solar radiation reaching the surface of Europa. Details 
regarding the derivations of the daily mean insolation can be found in 
Section 2.2 and regarding the seasonal and annual mean insolation in 
Section 2.3.

Fig. 1a depicts the diurnal cycle of the incoming solar radiation 
at the equator during the northern hemisphere (NH) vernal (spring) 
equinox and NH summer solstice and at 89◦S during the southern hemi-

sphere (SH) summer solstice. The incoming solar radiation peaks at the 
2

equator during the NH summer solstice and does not exceed the value of 
the solar constant of Europa/Jupiter, 𝑆0 = 51 Wm−2; the maximal diur-

nal solar radiation is ∼𝑆0 when the eccentricity is small [see Eq. (1)], as 
for Europa. The NH summer solstice radiation is higher than the NH ver-

nal equinox radiation as Jupiter (and hence Europa) is closer to the Sun 
at the NH summer solstice such that the eccentricity effect overcomes 
the obliquity effect. In other words, at the present time, the solstices are 
close to the aphelion and perihelion (see Fig. 2b below); this situation 
may be different at different times due to the long (many thousands of 
years) precession cycle of Jupiter. Close to the pole, even during the 
NH summer solstice (blue curve), the radiation is much smaller, as is 
the radiation range.

In Fig. 2a, we plot the annual mean and NH summer solstice in-

coming solar radiation as a function of latitude. Both the numerically 
integrated and the analytically approximated annual mean curves are 
presented, and the two are almost indistinguishable. The numerical in-

tegration was based on the daily mean insolation [Eqs. (6), (7)] using 
Eq. (12) and ⟨𝑊 ⟩ = 1

𝜏
∫ 2𝜋
0 𝑊

𝑑𝑡

𝑑𝜆
𝑑𝜆 with 𝑑𝜆 = 0.01 rad. Note the very 

small level of incoming solar radiation (∼1 Wm−2) that reaches the 
poles, suggesting that the internal heating cannot be ignored at the high 
latitudes. No solar radiation reaches the winter pole during the corre-

sponding winter solstice; thus, we expect the internal heating to have a 
larger influence on polar region surface temperature during this time.

2.2. Derivation of the daily mean insolation

Below we provide the mathematical details regarding the deriva-

tions of the daily mean insolation. The reader that is not interested in 
the mathematical details may skip this section.

The incoming insolation 𝑊 at a certain latitude 𝜙 and a certain time 
of the day on Europa (Hartmann, 1994) is

𝑊 = 𝑆0

(
𝑑

𝑑

)2
cos𝜃𝑠, (1)

where 𝜃𝑠 is the solar zenith angle, 𝑑 is the mean distance of Jupiter 
(Europa) from the Sun, 𝑑 is the distance from the Sun, and 𝑆0 is the 
solar constant of Jupiter. 𝜃𝑠 is the solar zenith angle that depends on 
latitude, season, and time of day and

𝑑

𝑑
= 1 + 𝑒 cos (𝜆−𝜔− 𝜋)

1 − 𝑒2
, (2)

where 𝑒 is the eccentricity of Jupiter, 𝜔 is the precession (longitude of 
the perihelion), and 𝜆 is the longitude of Jupiter with respect to its orbit 
around the Sun. Seasons are expressed through the declination angle 𝛿, 
which is the latitude of the line connecting the center of Europa and the 
Sun during noontime. The hour angle 𝐻 indicates the longitude of the 
subsolar point relative to its position at noon. Then,

cos𝜃𝑠 = sin𝜙 sin 𝛿 + cos𝜙 cos𝛿 cos𝐻. (3)

At sunrise and sunset, the zenith angle is 90◦ such that cos𝜃𝑠 = 0 and

cos𝐻0 = − tan𝜙 tan𝛿. (4)

The declination angle 𝛿 is

sin 𝛿 = sin𝜀 sin𝜆, (5)

where 𝜀 is the obliquity of Europa with respect to the plane of rotation 
of Jupiter around the Sun; the maximal obliquity can be calculated as 
the sum of the axial tilt of Europa, 0.1◦, the inclination angle of Europa, 
0.47◦, and the axial tilt of Jupiter, 3.13◦, yielding an angle of 3.7◦. Yet, 
since the axes of rotation of both Europa and Jupiter exhibit precession, 
the above angles can either add up or subtract. We thus estimated the 
mean present day obliquity as the subsolar latitude at the solstices based 
on the JPL Horizons web-interface (https://ssd .jpl .nasa .gov /horizons .
cgi #top); it is 𝜀 ≈ 3◦. We performed the calculations presented in this 

https://ssd.jpl.nasa.gov/horizons.cgi#top
https://ssd.jpl.nasa.gov/horizons.cgi#top
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Fig. 1. (a) Diurnal cycle of the incoming solar radiation at the equator during the equinox (𝜆 = 0, NH vernal equinox, green) and solstice (𝜆 = 𝜋∕2, NH summer 
solstice, red), and at 89◦S during the solstice (𝜆 = 3𝜋∕2, NH winter solstice, blue). (b) Diurnal cycle of the surface temperature at the equator during the equinox 
(𝜆 = 0, NH vernal equinox, green) and the solstice (𝜆 = 𝜋∕2, NH summer solstice, red). The dotted and dashed horizontal lines indicate the daily mean surface 
temperature calculated using the depth-dependent model [Eq. (29)] (dotted) and the daily mean radiation [Eq. (32)] (dashed). (c) The temperature versus depth 
at the equator at the equinox (𝜆 = 0, NH vernal equinox) at several times during the diurnal cycle. Note the fast decline in temperature oscillations with depth. 
(d) Same as b but for 89◦S, at the solstice (𝜆 = 3𝜋∕2, NH winter solstice). The temperature was obtained by integrating the depth-dependent model [Eq. (29)] at a 
specific latitude.

Fig. 2. (a) Annual mean (blue and red) and NH summer (SH winter) solstice (yellow) incoming solar radiation as a function of latitude. Both the numerically 
integrated (blue) and the analytic (red) approximation [Eqs. (18), (21)] are shown although the two are almost indistinguishable (the maximal difference between 
the two is 0.01 Wm−2). (b) Seasonal variations of the surface temperature versus time (in Jupiter’s years) for the equator (blue) and for the NH pole (red). The 
internal heating rate is 𝑄 = 0.05 Wm−2 and the curves are the solution of Eq. (29). The dashed horizontal lines indicate the annual mean temperature based on the 
annual mean insolation [Eqs. (18), (21)] while the dotted lines indicate the annual mean temperature of the solid lines. 𝑡 = 0 is set at the spring (vernal) equinox 
and the dotted vertical lines indicate the time of the aphelion and perihelion. (c) Surface temperature at the NH summer solstice for different internal heating rates. 
(d) Annual mean surface temperature for different internal heating rates. The gray line indicates the surface temperature as estimated by Ojakangas and Stevenson 
(1989) based on Nimmo et al. (2007).
3
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paper also using 𝜀 = 3.7◦ and obtained almost identical results for the 
low latitudes and global mean values, while at the polar regions, the 
temperature was higher by a few degrees for 𝜀 = 3.7◦; see Table 2. At 
the solstice, sin𝜆 = ±1 such that 𝛿 = ±𝜀, while at the equinox, 𝛿 = 0.

2.3. Derivation of the annual mean insolation

Below we provide the mathematical details regarding the deriva-

tions of the annual mean insolation. The reader that is not interested in 
the mathematical details may skip this section.

2.3.1. Small obliquity

The daily mean insolation (Milankovitch, 1941, Berger, 1978, 
Berger et al., 1993, Hartmann, 1994, Ashkenazy and Gildor, 2008) can 
be found by integrating Eq. (1) from −𝐻0 to 𝐻0 and dividing by 2𝜋 and 
is given by

𝑊 =
𝑆0
𝜋

[1 + 𝑒 cos (𝜆−𝜔− 𝜋)]2

(1 − 𝑒2)2
(𝐻0 sin𝜙 sin 𝛿 + cos𝜙 cos 𝛿 sin𝐻0), (6)

where 𝐻0 is the hour angle at sunrise and sunset [Eq. (4)]; see Table 1. 
Equation (6) is relevant for latitudes |𝜙| < |𝜋∕2 − |𝛿||, while outside this 
latitude range, the insolation during the polar night is zero and during 
the polar day is equal to

𝑊 = 𝑆0
[1 + 𝑒 cos (𝜆−𝜔− 𝜋)]2

(1 − 𝑒2)2
sin𝜙 sin 𝛿. (7)

Below we will use the following mathematical relations:

tan 𝛿 = sin 𝛿√
1 − sin2 𝛿

= sin𝜀 sin𝜆√
1 − sin2 𝜀 sin2 𝜆

. (8)

Since the obliquity is small, one can perform the following approxima-

tions

tan 𝛿 ≈ sin 𝛿 ≈ 𝛿 ≈ 𝜀 sin𝜆 (9)

sin𝐻0 =
√

1 − tan2 𝜙 tan2 𝛿 ≈
√

1 − 𝜀2 tan2 𝜙 sin2 𝜆 (10)

and, based on Eqs. (4) and (9)

𝐻0 = arccos(−𝜀 tan𝜙 sin𝜆). (11)

To calculate the annual mean insolation, one must take into ac-

count the derivative of the time, 𝑡, with respect to the longitude, 𝜆
(Milankovitch, 1941, Hartmann, 1994, Ashkenazy and Gildor, 2008)

𝑑𝑡

𝑑𝜆
= (1 − 𝑒2)3∕2

[1 + 𝑒 cos (𝜆−𝜔− 𝜋)]2
. (12)

Then, the relative time, 𝜏 , of one cycle of Jupiter around the Sun may 
be approximated as

𝜏 =

2𝜋

∫
0

𝑑𝑡

𝑑𝜆
𝑑𝜆≈ 2𝜋(1 − 𝑒2)3∕2, (13)

as the eccentricity is much smaller than one. The relative time, 𝜏 , is the 
ratio of the time passed since the NH summer solstice (𝜆 = 0) to the time 
it takes for Jupiter to complete one cycle around the Sun.

The total insolation during the year is then

2𝜋

∫
0

𝑊
𝑑𝑡

𝑑𝜆
𝑑𝜆 =

𝑆0

𝜋
√
1 − 𝑒2

2𝜋

∫
0

(𝐻0 sin𝜙 sin 𝛿 + cos𝜙 cos 𝛿 sin𝐻0)𝑑𝜆. (14)

We solve each part of the integral separately. The first part is
4

sin𝜙

2𝜋

∫
0

𝐻0 sin 𝛿𝑑𝜆 = 𝜀 sin𝜙

2𝜋

∫
0

arccos(−𝜀 tan𝜙 sin𝜆) sin𝜆𝑑𝜆

≈ 𝜀 sin𝜙

2𝜋

∫
0

(
𝜋

2
+ 𝜀 tan𝜙 sin𝜆

)
sin𝜆𝑑𝜆= 𝜀2 tan𝜙 sin𝜙

2𝜋

∫
0

sin2 𝜆𝑑𝜆

= 𝜋𝜀2 sin𝜙 tan𝜙. (15)

The second part of the integral of Eq. (14) is

cos𝜙

2𝜋

∫
0

cos 𝛿 sin𝐻0𝑑𝜆 = cos𝜙

2𝜋

∫
0

√
1 − sin2 𝜀 sin2 𝜆

√
1 − 𝜀2 tan2 𝜙 sin2 𝜆𝑑𝜆

≈ cos𝜙

2𝜋

∫
0

(
1 − 1

2
sin2 𝜀 sin2 𝜆

)(
1 − 1

2
𝜀2 tan2 𝜙 sin2 𝜆

)
𝑑𝜆

≈ cos𝜙

2𝜋

∫
0

(
1 − 1

2
sin2 𝜆(sin2 𝜀+ 𝜀2 tan2 𝜙)

)
𝑑𝜆

= 1
2
𝜋 cos𝜙(4 − sin2 𝜀− 𝜀2 tan2 𝜙). (16)

Following the above, the total insolation during the year can be ap-

proximated as:

2𝜋

∫
0

𝑊
𝑑𝑡

𝑑𝜆
𝑑𝜆 ≈

𝑆0

2
√
1 − 𝑒2

(4 cos𝜙+ 𝜀2 sin𝜙 tan𝜙− cos𝜙 sin2 𝜀). (17)

Finally, the annual mean insolation outside the polar regions is

⟨𝑊 ⟩ = 1
𝜏

2𝜋

∫
0

𝑊
𝑑𝑡

𝑑𝜆
𝑑𝜆 ≈

𝑆0

4𝜋(1 − 𝑒2)2
(
4cos𝜙+ 𝜀2 sin𝜙 tan𝜙− cos𝜙 sin2 𝜀

)
.

(18)

To find the annual mean insolation in the polar region, we first find 
the total annual insolation at the pole (𝜙 = 𝜋∕2),

2𝜋

∫
0

𝑊
𝑑𝑡

𝑑𝜆
𝑑𝜆 =

𝑆0 sin𝜀√
1 − 𝑒2

𝜋

∫
0

sin𝜆𝑑𝜆=
2𝑆0 sin𝜀√
1 − 𝑒2

. (19)

Then, using Eq. (13), we find the annual mean isolation at the poles:

⟨𝑊 (𝜙 = ±𝜋∕2)⟩ = 𝑆0 sin𝜀
𝜋(1 − 𝑒2)2

. (20)

Then we match the above polar annual mean insolation to the annual 
mean insolation at the edge of the polar region (i.e., |𝜙| = 𝜋

2 − 𝜀) to 
obtain the annual mean insolation at the polar regions

⟨𝑊 ⟩𝑝 ≈ 𝑆0

𝜋(1 − 𝑒2)2

(
sin𝜀+ cos2 𝜙

4 sin𝜀

)
. (21)

2.3.2. Large obliquity – the case of Enceladus

The approximation we developed above is based on the assumption 
that the obliquity, 𝜀, is small. This situation, however, is not the case, 
for example, for Enceladus, the moon of Saturn, whose obliquity with 
respect to the orbit around the Sun is 27◦. Enceladus is also a moon 
with an underlying ocean (Prockter and Pappalardo, 2014), and, like 
Europa, is one of the most probable places in the solar system to find 
extraterrestrial life. Surprisingly, our approximation for the low and 
mid-latitudes [Eq. (18)] holds also for the relatively large obliquity of 
Enceladus, while the solar radiation in the polar regions is better ap-

proximated using

⟨𝑊 ⟩𝑝 ≈ 𝑆0

𝜋(1 − 𝑒2)2

(
sin𝜀+ cos2 𝜙

2𝜋 sin𝜀

)
. (22)

Fig. 3 depicts the numerically integrated and analytically approximated 
annual mean [Eq. (22)] solar radiation for Enceladus; for reference, we 
also include the solar radiation during the solstice.
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Fig. 3. The incoming solar radiation as a function of latitude for Enceladus, the 
moon of Saturn. Both the numerically integrated and the analytic approxima-

tion are shown, and the two are almost indistinguishable except for the region 
around latitudes −𝜋∕2 + 𝜀 and 𝜋∕2 − 𝜀 (63◦S and 63◦N), at the transition to the 
polar regions. The parameter values we used to calculate the incoming solar 
radiation to Enceladus are: 𝑆0 = 15.14 Wm−2 , 𝑒 = 0.055, 𝜀 = 27◦ , and 𝛼𝑝 = 0.8. 
For simplicity, to estimate the incoming solar radiation during the solstice, we 
assume that 𝑒 = 0.

2.4. The effect of Jupiter’s longwave radiation

Jupiter emits longwave radiation that may affect the surface temper-

ature of Europa. Europa is phased-locked to Jupiter such that one side 
of Europa always absorbs the longwave radiation of Jupiter while the 
other side never absorbs this radiation. Below, we show that Jupiter’s 
longwave radiation only slightly affects the surface temperature of Eu-

ropa, mainly at the low latitudes – the effect of this radiation is very 
small at the high latitudes of Europa. For simplicity, we assume that: 
(i) the axes of rotation of Jupiter and Europa are parallel (in reality, the 
difference between the two is about 0.5◦), (ii) the eccentricity of Europa 
around Jupiter is 0 (where in reality is 0.009), (iii) Europa absorbs all 
longwave radiation of Jupiter reaching its surface without any reflec-

tion, (iv) the longwave radiation of Jupiter is distributed evenly during 
Europa’s diurnal cycle (i.e., the Jupiter-facing side of Europa receives 
as much radiation as the side that never faces Jupiter), and (v) ignore 
the spatial and temporal variations in the emission temperature (and 
hence longwave radiation) of Jupiter. Given the assumptions above (es-

pecially assumption iv), the analysis below is not exact. We note that 
the justification for assumption (iv) is our aim to calculate the zonal 
mean temperature.

Consider Fig. 4 below. One can view the total radiation emitted from 
Jupiter as emitted from a point source concentrated at the center of 
Jupiter; this assumption is valid if one assumes that the radiation emit-

ted from Jupiter’s surface is perpendicular to the surface. This “source” 
emits radiation that propagates spherically. The radiation decreases as 
1∕𝑟2 where 𝑟 is the distance from the center of Jupiter. This radiation 
at Europa is 𝐽0 = (4𝜋𝑎2

𝑗
𝜎𝑇 4

𝑗
)∕(4𝜋𝑟2

𝑒
) = 0.176 Wm−2. Here, 𝑎𝑗 is the ra-

dius of Jupiter, 𝜎 is the Stephan-Boltzmann constant, 𝑇𝑗 = 130 K is the 
emission temperature of Jupiter (Marshall and Plumb, 2008), and 𝑟𝑒 is 
the distance between Jupiter and Europa. The maximum of Jupiter’s 
longwave radiation that is absorbed by Europa at a certain latitude 𝜙𝑒
is 𝐽0 cos(𝜙𝑒 + 𝛽), where 𝛽 is indicated in Fig. 4. Then, by calculating 
the average Jovian radiation over all longitudes at a given latitude, the 
mean Jovian radiation over a diurnal cycle is 𝐽0 cos(𝜙𝑒 + 𝛽)∕𝜋 where 𝛽
can be approximated as tan𝛽 = 𝑎𝑒 sin𝜙𝑒

𝑟𝑒−𝑎𝑒 cos𝜙𝑒
≈ 𝑎𝑒

𝑟𝑒
sin𝜙𝑒 ≈ 0 since 𝑟𝑒 ≈ 430𝑎𝑒. 

Thus, the daily mean radiation absorbed by Europa at a certain latitude 
is, to a good approximation,
5

𝑊𝑗 =
𝐽0
𝜋

cos𝜙𝑒. (23)

It follows that this radiation is zero at the poles and maximal at the 
equator where it is comparable (0.056 Wm−2) to the contribution of the 
internal heating 𝑄. Since the daily mean absorbed solar radiation at the 
equator is 𝑊 (1 − 𝛼𝑝)(1 − 𝑝) ≈ 5 Wm−2, the effect of Jupiter’s longwave 
radiation on the surface temperature of Europa is small.

2.5. The effect of Europa’s eclipse

Since the obliquity of both Jupiter and Europa is very small and 
since Europa is close to Jupiter (the distance between Europa and 
Jupiter is only ∼10 times the radius of Jupiter) but much smaller than 
Jupiter (the radius of Europa is about 45 times smaller than that of 
Jupiter), Europa passes in the shadow of Jupiter during each of Europa’s 
days. Since Europa is phased-locked to Jupiter, only the side of Europa 
that faces Jupiter will experience the eclipse – below, when simulating 
the diurnal cycle in temperature, we ignore this fact and assume that 
the eclipse reduces the overall absorbed daily solar radiation by some 
factor. The relative time that Europa is within the shadow of Jupiter 
(eclipse conditions) can be approximated as the ratio between the di-

ameter of Jupiter and the perimeter of Europa’s orbit around Jupiter; it 
is 𝑝 = 2𝑎𝑗∕2𝜋𝑟𝑒 ≈ 0.033, where 𝑎𝑗 is the radius of Jupiter and 𝑟𝑒 is the 
distance of Europa from Jupiter. Here we consider only the umbra ef-

fect and ignore the penumbra effect since (i) Jupiter is relatively very 
far from the Sun and since (ii) Europa is relatively close to Jupiter. See 
Section 2.6 for a more accurate estimation of the eclipse effect.

It is possible to approximate the decrease in surface temperature 
at the end of the eclipse by considering only the internal heating and 
outgoing longwave radiation, using a time-dependent energy balance 
equation. In this case, the decrease in temperature is primarily con-

trolled by the heat capacity of the surface ice and much less by the 
internal heating. The decrease in temperature is then less than 0.3 K.

2.6. More accurate estimation for the effect of the eclipse

Below we provide the details regarding the more accurate estimation 
for the effect of the eclipse. The reader that is not interested in the 
mathematical details may skip this section.

A more accurate estimation is based on Fig. 5. The term 𝑎𝑠,𝑗,𝑒 in-

dicates the radius of the Sun, Jupiter, and Europa, 𝑟𝑝 is the distance 
between the Sun and point 𝑝, 𝑟𝑗 is the distance of Jupiter from the Sun, 
𝑟𝑒 is the distance between Europa and Jupiter, 𝑑 is the segment of the 
perimeter of Europa around Jupiter that is in Jupiter’s shadow, and 2𝛼
is the angle between two rays from the Sun that intercept at point 𝑝. 
Thus,

𝑑

2
= 𝑎𝑠

(
1 −

𝑟𝑗

𝑟𝑝
−
𝑟𝑒

𝑟𝑝

)
(24)

tan𝛼 =
𝑎𝑗

𝑟𝑝 − 𝑟𝑗
(25)

𝑟𝑝 =
𝑟𝑗𝑎𝑠

𝑎𝑠 − 𝑎𝑗
, (26)

which implies that

𝑑 = 2𝑎𝑗 − 2𝑟𝑒(𝑎𝑠 − 𝑎𝑗 )∕𝑟𝑗 . (27)

The relative time that Europa is in the shadow of Jupiter is approxi-

mately

𝑝 =
𝑑 − 𝑎𝑒

2𝜋𝑟𝑒
=
𝑎𝑗 − 𝑟𝑒(𝑎𝑠 − 𝑎𝑗 )∕𝑟𝑗 − 𝑎𝑒∕2

𝜋𝑟𝑒
. (28)

For the parameter values listed in Table 1, 𝑑 ≈ 2𝑎𝑗 and 𝑝 ≈ 𝑎𝑗∕(𝜋𝑟𝑒) =
0.033, as indicated in Section 2.5.
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Fig. 4. A drawing showing the longwave radiation emitted from a point source of Jupiter, reaching Europa. The relative dimensions are not realistic as the distance 
between Jupiter and Europa is 10 times the radius of Jupiter and the radius of Europa is 45 times smaller than the radius of Jupiter. The inset shows a scaled 
configuration of Jupiter (black circle) and Europa (red dot that is indicated by the arrow).

Fig. 5. A drawing depicting the different measures that are used to calculate the time that Europa spends in Jupiter’s shadow. The different measures do not reflect 
the real relative measures.
3. Model

3.1. Calculation of the surface temperature of Europa

We first focus on the diurnal cycle of the surface temperature. Here 
one has to take into account the heat capacity of the surface of Europa 
that leads to absorption of solar radiation only during the day and emis-

sion of longwave radiation during both day and night. For this purpose, 
it is possible to construct a simple diffusion equation for ice tempera-

ture, 𝑇 , that is forced from below by the internal heat of Europa and 
from above by the incoming solar (and Jupiter) radiation and outgoing 
longwave radiation:

𝜕𝑇

𝜕𝑡
= 𝜅𝑠

𝜕2𝑇

𝜕𝑧2
(29)

where 𝜅𝑠 is the surface ice temperature diffusion coefficient. We note 
that the surface ice temperature diffusion constant 𝜅𝑠 is 2–3 orders of 
magnitude smaller than the value of Earth; this follows previous studies 
(Spencer et al., 1999, Rathbun et al., 2010) that estimated the thermal 
inertia of the surface ice of Europa to be tens of times smaller than the 
value of Earth; the thermal inertia is Γ =

√
𝑘𝑠𝜌𝐼 𝑐𝑝,𝐼 where 𝑘𝑠 is the ther-

mal conductivity constant which is related to the ice surface diffusion 
coefficient 𝜅𝑠 through 𝑘𝑠 = 𝜌𝐼 𝑐𝑝,𝐼 𝜅𝑠. The value of 𝜅𝑠 was chosen to fit 
the diurnal variations of surface temperature reported in Rathbun et al. 
(2010). The surface boundary condition is

𝜌𝐼 𝑐𝑝,𝐼 𝜅𝑠
𝜕𝑇𝑠

𝜕𝑧
=𝑊 (1 − 𝛼𝑝)(1 − 𝑝) +𝑊𝑗 − 𝜖𝜎𝑇 4

𝑠
, (30)

where 𝜌𝐼 is the density of the ice, 𝑐𝑝,𝐼 is the heat capacity of the ice, 
𝑇𝑠(𝑡) = 𝑇 (𝑧 = 0, 𝑡) is Europa’s surface temperature, 𝑊 is the diurnal cy-

cle of the insolation [Eq. (1)], 𝑊𝑗 is the daily mean absorbed Jupiter’s 
longwave radiation [Eq. (23)], 𝛼𝑝 is the planetary albedo of Europa, 𝑝
is the relative time that Europa passes through Jupiter’s shadow, and 𝜖
is the emissivity of Europa (Spencer, 1987). The boundary condition at 
the bottom of the surface ice layer is
6

𝜌𝐼 𝑐𝑝,𝐼 𝜅𝑠
𝜕𝑇

𝜕𝑧
= −𝑄, (31)

meaning that the internal heating rate 𝑄 is proportional to the temper-

ature gradient deep enough within the ice.

Under the assumptions that Europa has no atmosphere and that 
there is no heat capacity at Europa’s surface (i.e., 𝑐𝑝,𝐼 = 0), it is possi-

ble to calculate the daily mean surface temperature of Europa based on 
the energy balance between the incoming heat fluxes (i.e., shortwave 
solar radiation, incoming longwave radiation of Jupiter, and internal 
heating) and the outgoing longwave radiation. More specifically,

𝑊 (1 − 𝛼𝑝)(1 − 𝑝) +𝑊𝑗 +𝑄 = 𝜖𝜎𝑇 4
𝑠
, (32)

where 𝑊 is the daily mean insolation [Eqs. (6), (7)], and the other 
parameters are explained above. Consequently, Europa’s surface tem-

perature can be expressed as

𝑇𝑠(𝜙) =
[
𝑊 (1 − 𝛼𝑝)(1 − 𝑝) +𝑊𝑗 +𝑄

𝜖𝜎

] 1
4
. (33)

The annual mean surface temperature, ⟨𝑇𝑠⟩, can be calculated using 
Eqs. (33), (12), (13) and is

⟨𝑇𝑠⟩ = 1
𝜏

2𝜋

∫
0

𝑇𝑠
𝑑𝑡

𝑑𝜆
𝑑𝜆. (34)

All the parameters in Eq. (33) are well constrained except the internal 
heating 𝑄. The internal heating, most probably, has spatial dependence, 
due to, for example, tidal heating within the ice. However, due to a 
lack of knowledge and large uncertainties, we assume that it is spatially 
constant. In addition, Tobie et al. (2003) indicated that the heat flux at 
Europa’s surface is almost constant. [We note that it is easily possible to 
use spatially variable internal heating and surface albedo in Eq. (33).]

A more common way to estimate the surface temperature is using 
the annual mean insolation, i.e.,
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⟨𝑇 4
𝑠
⟩1∕4 = [ ⟨𝑊 ⟩(1 − 𝛼𝑝)(1 − 𝑝) +𝑊𝑗 +𝑄

𝜖𝜎

] 1
4
, (35)

where ⟨𝑊 ⟩ is the annual mean insolation given in Eq. (18). Such an 
approach was taken by Ojakangas and Stevenson (1989). Still, this is 
a non-trivial assumption as ⟨𝑇𝑠⟩ ≠ ⟨𝑇 4

𝑠
⟩1∕4. We discuss the validity of 

Eq. (35) below.

To find the surface temperature, it is necessary to numerically in-

tegrate Eq. (29) with respect to depth and time using the surface and 
bottom boundary conditions [Eqs. (30), (31)]. The surface layer is sub-

jected to diurnally and seasonally varying incoming solar radiation 
where a Jupiter year is equivalent to ≈1220 Europa days. It is thus nec-

essary to use a sufficiently fine temporal and vertical resolution with a 
long enough integration time.

We used 3500 vertical levels with a resolution of 0.87 mm, covering 
a depth of 3.04 m. The effect of the diurnal surface oscillations (due to 
the diurnal variations of solar radiation) decay within the upper 5 cm 
while the seasonal surface variations decay within the upper 1 m. The 
integration time step (in terms of hour angle) is 10−3 rad. The initial 
conditions were uniform temperature (60 K) with depth, and the model 
[Eq. (29)] was integrated for 150 Jupiter years – this integration time 
was long enough to achieve convergence.

We first discuss the diurnal cycle of the surface temperature of Eu-

ropa. The results are summarized in Fig. 1. In Fig. 1b, we present the 
diurnal surface temperature versus time at the equator, at the NH ver-

nal equinox and NH summer solstice. Consistent with the incoming solar 
radiation presented in Fig. 1a, the temperature during the NH summer 
solstice is higher than the NH vernal equinox temperature by a few 
degrees. The temperature peaks a few hours after the maximum in ra-

diation due to the heat capacity of the ice. The difference between the 
minimal and maximal temperatures spans about 40 K, consistent with 
previous studies (Spencer et al., 1999, Rathbun et al., 2010). The ice 
surface temperature diffusion constant, 𝜅𝑠, plays an important role in 
the range of variations – a smaller constant would permit larger varia-

tions while a larger value that is similar to Earth’s ice diffusion constant 
would yield much smaller variations. The relatively fast warming fol-

lowed by slower cooling is also apparent and similar to that of Spencer 
et al. (1999) and Rathbun et al. (2010). [Yet, we note that these stud-

ies did not use a temperature diffusion equation to estimate the surface, 
temperature, and did not include in their calculations all the factors 
considered here; they only concentrated on the diurnal cycle of the sur-

face temperature and did not calculate the seasonal cycle and annual 
mean temperature.] The daily mean values are also plotted in Fig. 1b 
where the dotted horizontal lines indicate the mean of the solid (nu-

merically calculated) curves while the dashed horizontal lines depict 
the daily mean temperature calculated based on the daily mean incom-

ing solar radiation [Eqs. (6), (33)]. The difference between these two 
daily mean temperature estimations is about 3 K, small compared to 
the diurnal variations in temperature.

The temperature profile within the surface layer of the ice is pre-

sented in Fig. 1c. The temperature fluctuations decay very fast with 
depth, and the different temporal temperature profiles converge to a 
single profile at a depth of about 5 cm. This is due to the small surface 
ice temperature diffusion constant, 𝜅𝑠, where higher values of 𝜅𝑠 would 
allow deeper convergence together with smaller diurnal fluctuations. 
The temperature gradient below the fluctuation level is influenced by 
both the seasonal cycle and the endogenic heating.

We repeated the surface temperature estimation at the SH summer 
solstice close to the pole (89◦S) in Fig. 1d. Here the temperature vari-

ations are much smaller than the equatorial ones presented in Fig. 1b, 
consistent with the much smaller incoming solar radiation presented in 
Fig. 1a. The difference between the daily mean temperature calculated 
based on the numerically calculated temperature (dotted line) and the 
daily mean radiation energy-balance-based temperature (dashed line) 
is about 1.5 K.

We now switch to the seasonal cycle of the surface temperature. In 
Fig. 2b, we plot the equatorial (blue) and polar (red) daily mean surface 
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temperature as a function of time. These curves are based on the numer-

ically calculated daily mean temperatures (dotted line in Fig. 1b,d). At 
the equator, the difference between the maximal and minimal tempera-

tures is about 4 K, much lower than the maximum-minimum difference 
at the pole (∼30 K). This is expected due to the relatively large vari-

ations in the incoming solar radiation at the high latitudes across the 
year. The minimum and maximal equatorial temperatures occur at the 
aphelion and perihelion, close to the equinox, and consistent with 1b, as 
at the present day, Jupiter is farther from (or closer to) the Sun during 
the NH vernal (NH autumnal) equinox, and this eccentricity effect over-

comes the effect of obliquity, which is relatively small. Following the 
above, the equatorial solstice temperature is close to the annual mean 
equatorial temperature; see also Fig. 2c,d. At the poles, as expected, the 
temperature peaks close to the summer solstice and is minimal at the 
vernal equinox. There is a change in the rate of cooling starting at the 
autumnal equinox, when sunlight does not reach the winter pole.

The NH summer solstice temperature as a function of latitude for 
several internal heating rates 𝑄 is plotted in Fig. 2c. It is clear that the 
internal heating rate more drastically affects the surface temperature at 
the poles, and especially at the winter pole where the incoming solar 
radiation is minimal; the difference between the temperature of the dif-

ferent heating rates exceeds 2 K. Naturally, as the internal heating is the 
only source of radiation at the winter pole, the temperature difference 
due to the internal heating is larger than that of the summer pole. The 
solstice temperatures at the winter/summer poles vary by ∼3 K∕∼1 K

for a internal heat difference of 0.05 Wm−2. We note that even in the ab-

sence of internal heating (𝑄 = 0) and the absence of solar radiation, the 
solstice winter polar temperature is much greater than zero, due to the 
heat capacity of the ice. Yet, if the heat capacity of the ice is neglected 
(as in Ojakangas and Stevenson, 1989), the temperature should drop to 
zero at the winter pole region; still, in this case, the annual mean po-

lar temperature is not zero as the polar regions absorb solar radiation 
during the summer.

The numerically calculated annual mean temperature for several 
internal heating rates 𝑄 is plotted in Fig. 2d. The equator to pole tem-

perature difference is about 50 K, depending on the internal heat rate. 
As expected, the poles are more drastically affected by the internal heat-

ing rate, about 2 K for a difference in internal heating of 0.05 Wm−2.

The internal heating in Europa is not well constrained. In addition, 
it may vary spatially due to tidal heating within the ice, in both the 
meridional and longitudinal directions (e.g., Ojakangas and Stevenson, 
1989, Tobie et al., 2003, Nimmo et al., 2007). There are several sources 
that contribute to this heating: rocky mantle (metallic core and silicate 
mantle) radiogenic heating (6–8 mWm−2, Barr and Showman, 2009), 
tidal heating of Europa’s core (e.g., 30–230 mWm−2, Chen et al., 2014), 
and tidal heating of the icy shell (Tobie et al., 2003). The tidal heating 
of Europa’s ocean is negligible (Chen et al., 2014). In addition, when 
the ice is sufficiently shallow (typically, shallower than 10 km), it has 
only one conductive layer without a bottom convective layer, and the 
tidal heating of the icy shell is relatively small (Nimmo et al., 2007, 
Barr and Showman, 2009). Here we assume that the icy shell is only 
conductive such that the internal heating originates in Europa’s rocky 
mantle. Yet, it is easy to calculate the surface temperature at least when 
the latitudinal dependence of the tidal heating is specified.

In Fig. 6 (solid lines), we plot the global mean (weighted by the co-

sine of the latitude), minimum (NH polar), and maximum (equatorial) 
annual mean surface temperatures as a function of the internal heat-

ing, 𝑄. The mean and maximal (equator) surface temperatures are not 
drastically affected by the internal heating as the main heating source 
is the incoming solar radiation; the mean and maximal surface temper-

atures increase by ∼1 K for an increase of internal heating from 0 to 
0.2 Wm−2. However, the polar temperature is more drastically affected 
by the internal heating as the solar radiation is very weak in these lo-

cations. As shown in Fig. 2c, this increase is much larger at the poles 
during the (winter) solstice. Fig. 6 also depicts the temperatures that 
are based on the annual mean radiation [Eqs. (18), (21), (35)] (dashed 
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Fig. 6. (a) The annual mean global mean (blue) and maximum (equator, yellow) of Europa’s surface temperature (in K) as a function of the internal heating rate, 𝑄
(in Wm−2). The solid lines indicate temperatures that are based on the numerical solution of Eq. (29), while the dashed lines indicate those that are based on the 
annual mean radiation and energy balance equation [Eqs. (18), (21), (35)]. (b) Same as (a) for the minimum (NH polar) surface temperature.
lines). These annual mean temperature estimations that are based on an 
energy balance consideration are higher by a few degrees than the nu-

merically calculated temperatures, probably since the heat capacity of 
the ice moderates the seasonal variations in temperatures and since the 
outgoing radiation is proportional to 𝑇 4

𝑠
, giving more weight to higher 

temperatures.

The sensitivity of the annual mean surface temperature with regards 
to the different parameters is summarized in Table 2. The equator, NH 
pole, global mean, and low latitude (15◦S–15◦N) annual mean tempera-

tures are given for control values and for specific parameter values that 
are different from the control values. The parameters include the eccen-

tricity, 𝑒, obliquity, 𝜀, emissivity, 𝜖, surface albedo, 𝛼𝑝, relative time of 
Europa’s eclipse, 𝑝 (as estimated in Section 2.5), surface ice heat diffu-

sion, 𝜅𝑠, longwave radiation from Jupiter 𝐽0, and internal heating, 𝑄.

As shown in Figs. 2 and 6, the internal heating more drastically af-

fects the polar regions, as there the incoming solar radiation heating is 
relatively small compared to the low latitudes. The effect of the eccen-

tricity is small. This also follows from Eqs. (18), (21) from which one 
can see that the annual mean incoming solar radiation is approximately 
proportional to 1 + 2𝑒2 since 𝑒 ≪ 1. Thus, the eccentricity increases the 
annual mean incoming solar radiation, but since for Europa, 𝑒 ≈ 0.05, 
this increase does not exceed 0.5%. The obliquity, 𝜀, has a significant 
effect on the high latitudes and thus must be taken into account. We 
also study the case of maximum obliquity (𝜀 = 3.7◦) in comparison to 
present day obliquity of the control case (𝜀 = 3◦), and it is apparent 
that only the polar region is affected by this parameter, by about 3◦K. 
When ignoring the effect of ice emissivity, i.e., taking 𝜖 = 1, the surface 
temperature decreases by more than 1 K. The effect of Europa’s eclipse 
on surface temperatures reduces the incoming solar radiation by up to 
3.3%, and the associated drop in surface temperature does not exceed 
1 K.

The effect of the surface ice heat diffusion, 𝜅𝑠, on the annual mean 
temperatures is large as a much larger value of 𝜅𝑠 yielded surface tem-

peratures that are higher by ∼ 3 K compared to the control temperature 
values. Moreover, the diurnal cycle and, at the high latitudes, also the 
seasonal cycle in the surface temperatures are drastically affected by 
this parameter, exhibiting much smaller variations. More specifically, 
at the equator, the range of the diurnal variation reduces to about 7 K 
(compared to 40 K for the control case) while the range of seasonal 
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variations remains 4 K. At the 89◦, the diurnal cycle variation is less 
than 0.2 K (compared to 2 K for the control case) and the seasonal cycle 
variation is 12 K (compare to 30 K for the control case); see Figs. 1, 2.

We also examine the effect of the longwave radiation of Jupiter that 
is absorbed by Europa by setting 𝐽0 = 0. It is clear that the contribution 
of Jupiter’s longwave radiation on Europa’s surface temperature is small 
as the drop in temperature compared to the control case is less than 
0.3 K. Thus, this effect can be neglected. Table 2 also includes cases of 
no (𝑄 = 0) and increased internal heating (𝑄 = 0.2 Wm−2). Consistent 
with the results presented above, the internal heating mainly affects the 
high latitudes.

In Table 3, we present the annual mean surface temperatures under 
the assumption of an energy balance between the incoming solar ra-

diation, internal heating, incoming longwave radiation of Jupiter, and 
emitted longwave radiation of Europa [Eq. (35)]. The setup of this table 
is similar to Table 2. Generally speaking, the surface temperatures that 
are based on the energy balance assumption are warmer than the nu-

merically calculated ones by several degrees, especially at the poles. It 
is interesting to compare the case of the increased heat diffusion in ice 
coefficient (increased 𝜅𝑠 in Table 2) to the control case of the energy 
balance calculation (Table 3), as very high 𝜅𝑠 leads to much smaller 
diurnal and seasonal variations, which leads to a temporally constant 
temperature that is equivalent to the temperature calculated based on 
energy balance assumptions. Indeed the surface temperature estima-

tions of these two cases are very similar. Thus, when the heat diffusion 
in ice coefficient (or the thermal inertia) becomes larger, the energy-

balance-based temperature estimation becomes better.

Given the above, we conclude that an accurate albedo map is es-

sential in estimating the low and mid-latitude surface temperatures of 
Europa while the obliquity and internal heating rate are essential in ac-

curately determining the temperature at the high latitudes. The surface 
ice heat diffusion has a profound effect on the range of the variability 
of the diurnal and seasonal cycles of the surface temperatures. To a first 
approximation, the effects of the eccentricity, Europa’s eclipse, and the 
effect of longwave radiation of Jupiter may be neglected. It is plausible 
that the polar regions’ temperatures will be estimated/measured in the 
future, similar to the measurement of the low and mid-latitude temper-

atures that followed the Galileo spacecraft’s measurements (Spencer et 
al., 1999, Rathbun et al., 2010). If this occurs, for example during fu-
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Table 2

Sensitivity of surface temperature (K) of Europa to the different parameters 
when using the numerical model [Eq. (29)]. Control run parameters: eccen-

tricity (𝑒 = 0.048), obliquity (𝜀 = 3◦), emissivity (𝜖 = 0.94), albedo (𝛼𝑝 = 0.68), 
Europa eclipse relative time (𝑝 = 0.033), surface ice heat diffusion constant 
(𝜅𝑠 = 7.7 × 10−10 m2 s−1), Jupiter’s longwave radiation constant of Europa (𝐽0 =
0.176 Wm−2), and internal heating (𝑄 = 0.05 Wm−2).

Parameter Equator Pole Global mean 15◦S–15◦N mean

control 96.1 46.1 90.1 95.9

𝑒 = 0 95.8 45.9 89.9 95.6

𝜀 = 0 96.2 31.2 90.1 95.9

𝜀 = 3.7◦ 96.1 47.9 90.1 95.9

𝜖 = 1 94.6 45.4 89.4 95.1

𝛼𝑝 = 0.5 105.8 49.7 94.8 100.9

𝑝 = 0 96.8 46.4 90.5 96.2

𝜅𝑠 = 7.7 × 10−8 m2 s−1 99.3 49.0 91.4 97.5

𝐽0 = 0 95.8 46.1 90.0 95.7

𝑄 = 0 95.8 42.8 89.9 95.7

𝑄 = 0.2 Wm−2 97.0 52.8 90.7 96.3

Table 3

Sensitivity of surface temperature (K) of Europa to the different parameters 
using the energy balance assumption [Eq. (35)]. Control run parameters are as 
in Table 2.

Parameter Equator Pole Global mean 15◦S–15◦N mean

control 98.9 49.3 92.2 98.6

𝑒 = 0 98.8 49.2 92.1 98.5

𝜀 = 0 98.9 31.1 92.2 98.6

𝜀 = 3.7◦ 99.1 51.5 92.4 98.8

𝜖 = 1 97.4 48.5 90.8 97.1

𝛼𝑝 = 0.5 110.4 54.3 102.9 110.1

𝑝 = 0 99.7 49.6 92.9 99.4

𝐽0 = 0 98.9 49.3 92.2 98.6

𝑄 = 0 98.6 47.2 91.9 98.3

𝑄 = 0.2 Wm−2 99.6 54.3 93.1 99.3

ture missions (like Europa Clipper of NASA) that will examine the water 
plumes over the south pole of Europa (Roth et al., 2014, Sparks et al., 
2016), it will be possible to roughly estimate the internal heating rate 
based on the surface temperature, especially over the winter pole.

It is possible to provide a very rough estimate of Europa’s ice thick-

ness based on the above; see Section 3.2. This estimate may be a refer-

ence thickness for studying the effect of both the vertical and horizontal 
ice flows due to both tidal heating within the ice and ice flow due to 
pressure gradients that are associated with variations in ice thickness 
(see, e.g., Ashkenazy et al., 2018).

3.2. Ice thickness

Below we provide the details regarding the rough estimation of the 
ice thickness of Europa. The reader that is not interested in the details 
of the ice thickness may skip this section.

It is possible to obtain a lower limit estimate for Europa’s ice thick-

ness based on the energy balance between the incoming solar radiation, 
the outgoing longwave radiation, and the internal heating. This rough 
estimate may be a reference thickness for studying the effect of both ver-

tical and horizontal ice flow due to both tidal heating within the ice and 
the ice flow due to pressure gradients that are associated with variations 
in ice thickness. Here we assume that (i) the internal heating, 𝑄, is uni-

form in space and time, (ii) the icy shell is conductive but not convective 
such that the temperature within the ice varies linearly with depth, and 
(iii) the tidal heating within the ice is negligible. These assumptions are 
probably valid for relatively shallow ice (shallower than 10 km) when 
there is only one conductive layer (Tobie et al., 2003); when there are 
two layers, an upper conductive layer and a lower convective layer, 
the temperature is approximately uniform within the convective layer 
(where the temperature is close to the melting temperature), and tidal 
heating is not negligible within this layer.
9

Under the above assumptions, it is possible to calculate the mean 
thickness of the icy shell as follows:

ℎ = 𝜌𝐼 𝑐𝑝,𝐼 𝜅
𝑇𝑓 − 𝑇𝑠

𝑄
, (36)

where 𝜌𝐼 is the ice density, 𝑐𝑝,𝐼 is the heat capacity of the ice, 𝜅 is 
the deep ice temperature diffusion constant, 𝑇𝑓 is the freezing (or melt-

ing) temperature of the ice, and ℎ is the ice thickness. 𝑇𝑠 (annual mean 
energy-balance-based) and ℎ depend on latitude and the freezing tem-

perature, and 𝑇𝑓 , depends on the thickness of the ice (through the 
pressure at the bottom of the ice) and on the salinity of the water as 
follows (Gill, 1982, Losch, 2008):

𝑇𝑓 = 273.16 + 0.0901 − 0.0575 ×𝑆 − 7.61 × 10−8 × 𝑃𝑏, (37)

where 𝑆 is the salinity of the ocean water, 𝑃𝑏 is the pressure (in Pa) at 
the bottom of the ice (i.e., 𝑃𝑏 = 𝑔𝜌𝐼ℎ), and 𝑇𝑓 is given in K. Thus, 𝑇𝑓
depends linearly on ice thickness.

The dependence of the thickness of the ice on latitude is not trivial as 
ice may flow due to gradients in ice thickness (see, for example, Tziper-

man et al., 2012, Ashkenazy et al., 2018). To bypass this complexity, we 
only estimate the mean ice thickness by performing a spatial mean on 
Eq. (36). In addition, since 𝑇𝑓 depends on ℎ, the global mean thickness 
of the ice can be estimated iteratively as follows:

⟨ℎ⟩𝑗+1 = 𝜌𝐼 𝑐𝑝,𝐼 𝜅
⟨𝑇𝑓 ⟩𝑗 − ⟨𝑇𝑠⟩

𝑄
, (38)

where 𝑗 is a counter that indicates the number of the iteration. We start 
the process from a typical mean freezing temperature (e.g., 𝑇𝑓 ≈ 270 K), 
find the mean thickness, and then use it to estimate the new mean freez-

ing temperature. Convergence is achieved after a few iterations.

The global mean ice thickness and freezing temperature as a func-

tion of internal heating are shown in Fig. 7. First, as predicted by 
Eq. (38), the mean ice thickness, ⟨ℎ⟩, inversely depends on the inter-

nal heating, 𝑄. Second, the thickness hardly depends on the salinity of 
the water. Third, the mean freezing temperature converges to a constant 
value for realistic internal heating values (i.e., 𝑄 > 40 mWm−2). Fourth, 
an increase of salinity by 100 ppt decreases the freezing temperature by 
5.75 K; this is a direct consequence of Eq. (37).

A mean ice thickness of ⟨ℎ⟩ = 10 km was obtained for an internal 
heating of 𝑄 ≈ 0.05 Wm−2. Below this value, the estimated mean ice 
thickness should be regarded as a lower limit, as an almost uniform 
temperature bottom convective layer may be formed, violating our as-

sumption of a linear increase of temperature within the ice with depth. 
For a mean ice thickness shallower than ∼10 km, we expect one con-

ductive layer, and the estimated mean ice thickness is more accurate.

It is possible to calculate the ice thickness and the freezing temper-

ature as a function of latitude under the assumption that the ice does 
not flow and is stagnant. In this case, there is a simple energy bal-

ance between the internal heating, the incoming solar radiation and the 
outgoing longwave radiation at each latitude. Fig. 7c depicts the ice 
thickness as a function of latitude for different internal heating rates, 
using Eq. (36). As expected, the ice thickness increases poleward and 
the equator to pole gradient becomes smaller as the internal heating in-

creases. The gradient in thickness is on the order of a few kilometers. 
The freezing temperature as a function of latitude is shown in Fig. 7c. 
As expected, the freezing temperature is higher for shallower ice, and 
the thickness increases toward the poles. The typical equator to pole 
freezing temperature gradient is about 0.2◦C and is larger for thicker 
ice and a smaller internal heating rate.

4. Discussion and conclusions

The Galileo mission triggered many studies regarding the moon Eu-

ropa (see, Pappalardo et al., 2009). One of the observations made by 
the Galileo spacecraft (Photopolarimeter-Radiometer) was used to mea-

sure Europa’s surface temperature (Spencer et al., 1999, Rathbun et al., 
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Fig. 7. (a) Global mean ice thickness as a function of the internal heating rate, 
𝑄, when the underlying ocean is fresh (blue) and salty (100 and 200 ppt, green 
and red). The ice thickness is hardly affected by the salinity of the ocean water. 
The salinity unit is “parts per thousand” (ppt), or grams of salt per kilogram of 
seawater. (b) Global mean freezing temperature of seawater as a function of the 
internal heating rate, 𝑄, for fresh (blue) and salty (100 and 200 ppt, green and 
red) water. (c) Ice thickness (in km), ℎ, and freezing temperature (in ◦C), 𝑇𝑓 , as 
a function of latitude for internal heating of 𝑄 = 0.05, 0.1 Wm−2 . As mentioned 
in the text, this is a very rough estimate of the ice thickness as our underlying 
assumption is that the ice is stagnant and that the tidal heating is negligible.

2010). Spencer et al. (1999) concentrated on low latitude temperatures, 
which were also relatively high, and consequently suggested either a 
low local albedo (0.5 compared with 0.68 ± 0.14 of Grundy et al., 2007) 
or a very high local endogenic heating (of 1 Wm−2). The mean surface 
temperature measurement of Spencer et al. (1999) was limited to lat-

itudes equatorward of ∼±70◦, and these approximately correspond to 
an internal heating of ∼0.05 Wm−2. The temperature measurements of 
Spencer et al. (1999) and Rathbun et al. (2010) are diurnal tempera-

tures – these helped us to tune the range of diurnal variations through 
the heat diffusion in ice coefficient. We performed the sensitivity tests 
of the heat diffusion in ice parameter since this parameter is not well 
constrained in the upper part of the ice and since these tests helped 
us to understand the role of the surface heat capacity of the ice. The 
other parameters are fairly constrained except the internal heating. We 
further approximated the seasonal and annual mean temperature for a 
range of internal heating.

We used two ways to estimate the surface temperature of Europa. 
The first method is by using a diffusion equation for the top (several me-

ters) layer of the ice. This diffusion equation is subject to top and bottom 
boundary conditions. The second method is based on an energy balance 
between the incoming and outgoing radiation. The first method is more 
accurate as it is able to simulate, fairly reasonably, the diurnal cycle 
while the second method may be suitable to estimate the annual mean 
temperature. We have also examined an alternative way, similar to the 
approach used in previous studies (Spencer et al., 1999, Rathbun et al., 
2010), where we use a one layer simple ordinary differential equation 
to estimate the surface temperature of Europa; i.e., we solved the fol-

lowing differential equation: 𝜌𝐼 𝑐𝑝,𝐼 𝑑
𝜕𝑇𝑠

𝜕𝑡
=𝑊 (1 −𝛼𝑝)(1 −𝑝) +𝑊𝑗 −𝜖𝜎𝑇𝑠(𝑡)4

where 𝑇𝑠 is the surface temperature and the scale depth is 𝑑 =
√
2𝜅𝑠∕Ω𝑒. 
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However, this approach yielded much colder polar temperatures in 
comparison to the more fundamental diffusion equation model. We thus 
refrained from presenting the results of the single layer model.

Future measurements of Europa’s surface temperature may include 
the polar regions. Exact polar temperatures may help to better esti-

mate the rate of the internal heating as these regions are only partly 
affected by the solar radiation, and the contribution of the internal heat-

ing in these regions is large, especially during the winter solstice. Polar 
temperatures have hardly any diurnal variations, thus simplifying the 
estimation of the diurnal mean temperature. Large uncertainties are as-

sociated with the internal heating and the ice depth of Europa, and an 
exact estimation of the polar region temperatures may significantly re-

duce these uncertainties (Ashkenazy et al., 2018).

In summary, we discussed the diurnal and seasonal variations of the 
incoming solar radiation to Europa and developed a mathematical ap-

proximation for the global mean incoming solar radiation at Europa’s 
surface (Section 2.3). Based on the incoming solar radiation, we esti-

mated the diurnal, seasonal and annual mean surface temperature in 
two ways: 1) based on the numerical integration of a temperature diffu-

sion equation and 2) based on the energy balance between the incoming 
solar radiation, internal heating, Jupiter’s radiation, and outgoing long-

wave radiation. Our estimates take into account the eccentricity of 
Jupiter, as well as Europa’s obliquity, emissivity, eclipse, surface ice 
heat diffusion, Jupiter’s longwave radiation, and internal heating. We 
showed that the temperature varies moderately at the low latitudes and 
much more drastically at the high latitudes and that the high latitudes 
are more drastically affected by the internal heating, especially during 
the winter solstice. The diurnal and seasonal variations are controlled 
by the heat diffusion in ice coefficient. For a typical internal heating rate 
of 0.05 Wm−2 (e.g., Tobie et al., 2003, Nimmo et al., 2007), the equa-

tor, pole, and global mean annual surface temperatures are 96 K, 46 K, 
and 90 K, respectively. These values are not far from the, much simpler, 
energy-balance-based temperatures (99 K, 49 K, and 92 K, respectively) 
such that energy balance based temperatures can be used when study-

ing the ice flow and ocean dynamics of Europa. Based on the internal 
heating rate, we provide a very rough estimate for the mean thickness of 
Europa’s icy shell (Section 3.2). We also estimate the incoming solar ra-

diation to Enceladus, the moon of Saturn (Section 2.3.2). The approach 
we developed here may be applicable to other moons in the solar sys-

tem.
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