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Abstract
Multi-locus effect modeling is a powerful approach for detection of genes influencing a com-

plex disease. Especially for rare variants, we need to analyze multiple variants together to

achieve adequate power for detection. In this paper, we propose several parsimonious

branching model techniques to assess the joint effect of a group of rare variants in a case-

control study. These models implement a data reduction strategy within a likelihood frame-

work and use a weighted score test to assess the statistical significance of the effect of the

group of variants on the disease. The primary advantage of the proposed approach is that it

performs model-averaging over a substantially smaller set of models supported by the data

and thus gains power to detect multi-locus effects. We illustrate these proposed approaches

on simulated and real data and study their performance compared to several existing rare

variant detection approaches. The primary goal of this paper is to assess if there is any gain

in power to detect association by averaging over a number of models instead of selecting

the best model. Extensive simulations and real data application demonstrate the advantage

the proposed approach in presence of causal variants with opposite directional effects

along with a moderate number of null variants in linkage disequilibrium.

Introduction
Genome-wide association studies (GWASs) have successfully identified many common genetic
variants that are associated with a given outcome, but little risk can be explained by these iden-
tified single nucleotide polymorphisms (SNPs). There are several hypotheses for genetic factors
contributing to disease risk [1–4]. One such hypothesis is that rare variants (RVs) measured in
sequencing studies with large effect sizes contribute to the disease risk. However, the low minor
allele frequency (MAF) of a RV makes it difficult to detect individual effects. Thus, rare-variant
models are used to detect the combined effect of a set of RVs, such as the RVs within a candi-
date gene.

The existing approaches for rare variant detection can be broadly classified into three sepa-
rate categories: (1) Collapsing methods based on pooling multiple RVs such as the Sum test
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[5], Cohort Allelic Sums Test (CAST) [6], Combined Multivariate and Collapsing (CMC) [7],
Weighted Sum (W-Sum) test of Madsen and Browning [8], Kernel Based Adaptive Cluster
(KBAC) [9], Replication Based Test (RBT) [10], ARIEL test [11], and EREC test [12]; (2) meth-
ods based on model selection such as Seq-aSum and Seq-aSum-VS approaches [13, 14], Vari-
able Threshold Test (VT) [15], RARECOVER method [16], Selective grouping method [17],
and Step-Up approach [18]; and (3) methods based on treating RV effects as random effects
such as SSU approach [5], C-alpha test [19], and SKAT approach [20]. Basu and Pan [14] stud-
ied the performance of several of these multi-marker tests under a variety of disease models.
The Sum test [5] was most powerful when there were n causal variants with effects in opposite
directions and when there were few or no non-causal RVs; otherwise, it suffered from substan-
tial loss of power. In the presence of opposite association directions and non-causal RVs, the
SSU and SKAT tests performed better than the other tests. The model-selection approaches
performed in the middle of random effect and collapsing methods. According to Basu and Pan
[14], the model selection method, especially Seq-aSum-VS approach, performed very well
when there were both protective and deleterious causal RVs and very few non-causal RVs, but
the performance of Seq-aSum-VS approach was not very impressive in the presence of a mod-
erate or large number of non-causal RVs. These and other findings [14] have led to combining
the strengths of collapsing and random effect methods such as SKAT-O [21], Fisher method
[22] and MiST [23] as discussed in a recent review [24]. Also, it was recently suggested that
using SKAT in the presence of RVs and common variants (CVs) may be less optimal due to
weighting RVs to have much more importance than CVs [25]. To overcome this, an upweight-
ing of the CVs was implemented in SKAT-C [25].

While many improvements have been made in the random effects and collapsing methods
literature, this paper takes a closer look at the methods based on model selection, especially the
Seq-aSum and Seq-aSum-VS approaches. The Seq-aSum-VS approach classifies RVs based on
the direction of association (‘+1’ for positive association, ‘-1’ for negative association and ‘0’ for
no association) and implements a sequential variable selection scheme to select the best model
for association between the SNP-set and the disease. The only difference between the Seq-
aSum approach and the Seq-aSum-VS approach is that the variable selection (‘0’ allocation for
a variant) is not implemented in the former. The Seq-aSum-VS approach starts with putting all
the RVs in the ‘+1’ group and proceeds by moving each RV sequentially to the other two
groups and assigns the allocation (‘+1’, ‘-1’, or ‘0’) with highest likelihood to the RV. The pro-
cess of choosing the best model in Basu and Pan’s [14] method can be compared to a stepwise
regression, where one may not always find the best model due to this selection scheme. This is
especially true if a particular allocation results in a slightly higher likelihood over the other two
allocations. In this case, choosing the allocation with highest likelihood for a SNP might not be
optimal, rather it might be more efficient to allow multiple allocations for a RV and construct a
test that takes into account multiple plausible models for the disease-RV association. Moreover,
the performance of the sequential search is often dependent on the ordering of the variants in
this search mechanism. A model-averaging approach could potentially reduce the dependency
on the ordering of the variants in this sequential search.

Another issue to note here is that model selection approaches use dimension-reduction
strategies to substantially reduce the number of parameters one would require to fit these large
number of RVs. Hence, any model we can construct is never going to be the true model that
generated the data we observe. In other words, the set of models is clearly misspecified, and
model selection is best seen as a way of approximating, rather than identifying, full reality
([26], pp. 20–23). A model-averaging approach, on the other hand, could have an advantage
over this model selection scheme. By averaging over a number of models, a model-averaging
approach reduces the uncertainties associated with selection of models. However, averaging
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over a large number of models, especially the uninformative ones could cause loss in power. In
addition, the approach could be too computationally intensive to be useful.

Model-averaging has been well studied in the prediction literature. One popular method is
Bayesian model-averaging approach (BMA) [27–29] which provides guidelines for selecting a
subset of plausible models, calculates the posterior probability that a predictor has an effect
given disease status, and demonstrates the improved predictive performance of this model-
averaging approach over a model selection approach. However, there is not much literature on
the performance of model-averaging in testing the effect of a predictor. Moreover, due to the
low occurrence of RVs within the case-control set, RVs would have to be considered in aggre-
gate which complicates the implementation of a model-averaging scheme. Here we aim to
compare the performance of a model-averaging approach in detection of RVs versus a model
selection approach, where the models that contribute to the model-averaging approach are
selected in a data-adaptive way.

This work proposes a data-adaptive model-averaging technique that addresses the limita-
tion in the Seq-aSum-VS approach. Specifically, we allow selection of a set of potential models
through our model selection scheme and use a weighted score test to detect association instead
of choosing the best model. The rest of the paper is organized as follows. In the Methods sec-
tion, we describe the several existing approaches and propose several alternative model-averag-
ing schemes. In the Results section, we compare the proposed schemes with model selection
approaches through extensive simulation studies and a real data example. We conclude with a
short summary and discussion outlining a few future research topics.

Materials and Methods
The purpose of this study is to develop methods to improve the power of detection of associa-
tion between a trait and a group of RVs, for example, RVs in a sliding window or in a func-
tional unit such as a gene. Although we have only considered binary traits here, our method
and some of the other methods can be easily extended to other types of traits.

Assume there are n unrelated individuals, where Yi = 0 for n0 controls and Yi = 1 for n1
cases and n0+n1 = n. The k RVs are denoted by Xij, j = 1, . . ., k for i = 1, 2, . . ., n. The variables
Xij can take values such as 0, 1 and 2 corresponding to the number of minor alleles present. We
do not take into account adjusting for covariates, such as environmental factors, though all of
the methods are based on logistic regression and can accommodate covariates.

2.1 Existing Approaches
A logistic main effect model to test for association between a binary trait Yi and k RVs is writ-
ten as

Logit Pr ðYi ¼ 1Þ ¼ b0 þ
Xk

j¼1

Xijbj; i ¼ 1; :::; n: ð1Þ

To test for association between the trait and these k RVs, the null hypothesis of no association
is formulated as

H0 : β ¼ ðb1; :::; bkÞ0 ¼ 0:

One could perform a score test for the null hypothesis H0, but estimating the effect of an indi-
vidual RV may not be feasible and the approach loses power in the presence of many null RVs.
Hence, different techniques such as collapsing methods, random effect models, and model
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selection methods mentioned in the introduction have been proposed to handle these high-
dimensional RVs.

Basu et. al. [13] and Basu and Pan [14] have proposed the Seq-aSum and Seq-aSum-VS
approaches to incorporate model selection in constructing a test for association. These
approaches attempt to sort the SNPs/RVs into one of three groups (null, causal, or protective).
The general model for these approaches is based on the model suggested by Hoffman [18],

Logit Pr ðYi ¼ 1Þ ¼ b0 þ bc

Xk

j¼1

Xijgj; i ¼ 1; :::; n; j ¼ 1; :::; k; ð2Þ

with γj = wj sj, where wj is a weight assigned to RV j, sj = 1 or −1 indicating whether the effect of
RV j is positive or negative, and sj = 0 indicating the exclusion of RV j from the model (i.e. the
SNP is unlikely to be associated with the trait). There is literature on how to choose appropriate
wj for a specific problem and, if needed, it is not difficult to incorporate such weights into the
methods we describe in this section. Here we assume wj = 1 for all j = 1, 2, . . ., k in any subse-
quent analysis.

The null hypothesis to test if there is an association between the trait and the RVs boils
down toH0 : βc = 0. Seq-aSum and Seq-aSum-VS use the data to adaptively determine the opti-
mal allocation. The Seq-aSum-VS test essentially proceeds through the following sequence of
events.

1. Start with sj = 1 for all j.

2. for j in 1 : k

a. Find out the maximized likelihood (maximized over βc) corresponding to sj = −1, 0, 1.

b. Set sj to be the value that corresponds to the largest maximized likelihood among the
three possible allocations (-1, 0, or 1).

The method selects a model from among 2k + 1 candidate models. Due to the sequential
nature of the estimation, it is not guaranteed that the best model (model with the highest likeli-
hood) will be chosen. Nevertheless, it avoids searching over 3k possible models and thus gains
power in many situations, especially for a large number of RVs.

The Seq-aSum-VS approach chooses the best model among 2k + 1 models and thus allows
for only one allocation (sj = 0, 1, -1) for each RV j, j = 1, 2, . . ., k. For a large number of neutral
RVs, choosing the best model might not be an efficient way to detect association. A neutral RV
j does not necessarily give highest likelihood at sj = 0. For a given dataset, it could have a non-
significant increase in the likelihood at allocation sj = 1 or sj = −1. Choosing the allocation that
provides highest likelihood for such a SNP could affect the optimal assignment of the following
RVs. It might be more efficient to allow multiple allocations for a RV instead of choosing the
one with the highest likelihood and construct a test that takes into account multiple plausible
models for the disease-RV association.

One such scenario where the model-averaging approach has advantage over the model-
selection approach is where only the last RV is causal. Here, a sequential model selection algo-
rithm could fail to find the best allocation due to the null RV diluting the effect of the lone
causal RV [14]. For demonstration, we consider a scenario where out of 4 independent RVs in
a set, only the last RV is causal. Fig 1 shows the paths taken for model selection (top) and
model-averaging (bottom) for one such realization. By construction, model selection selects
only one path. Model-averaging, however, computes how likely a given path is at each node
and explores all likely paths. Section 2.2 explains one way to construct a measure to choose
“likely” paths. In Fig 1, the model-averaging algorithm finds a better path (the bottom path)
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than the one selected by model selection. By averaging the four likely paths, we reduce the
dependency on ordering and thus, gain power to detect association of the RVs with disease. In
the next two subsections, we propose two path-finding algorithms to identify potential models
to capture association between k RVs and the binary disease.

2.2 Model Branching through thresholding
This proposed approach provides a way to select multiple possible allocations (‘+1’,‘-1’ or ‘0’)
for a RV. This method proceeds the same way as the Seq-aSum-VS approach. It starts with put-
ting all the RVs in ‘+1’ group and proceeds by moving each RV sequentially to the other two
groups (‘0’ or ‘-1’ group). The Seq-aSum-VS approach classifies the RV to the allocation with
the highest likelihood, but the proposed approach here allows for multiple plausible allocations
of a RV by selecting allocations that give high scores rather than just the highest score. If any
two allocation scores are close, we explore both paths. The tree model proposed here proceeds
through constructing a tree in the following way:

1. Set sj = 1 for j = 1, . . ., k.

Fig 1. A demonstration of benefit of model-averaging (bottom) compared to model selection (top). The
simulation setup is described in Section 3.3. F denotes the start of each algorithm where all RVs are allocated
to being ‘positive’ group (sj = 1 for all j). The numbers above the directional arrows on the model-averaging
figure are ratios indicating how likely a given allocation at the current step should be selected. The paths with
the highest ratio and any “close” ratios are explored. pl is the path weight given by multiplying ratios along a
path and scaling them so that the sum of path weights equals 1. Scl is the score statistic for each path (See
Section 2.2 for details).

doi:10.1371/journal.pone.0139355.g001
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2. Choose a cutoff, κ, between 0 and 1 that determines if a score statistic is close to the highest
score statistic.

3. Starting with s1, calculate the three score statistics corresponding to setting s1 = 1, 0 and −1.
Denote them as Sc1, Sc0, and Sc−1, respectively. The score statistic Scl is given by

Scl ¼
Pn

i¼1ðYi � �Y Þðgi;l � �g lÞ
� �2

�Y ð1� �Y ÞPn
i¼1 g

2
i;l

;

where gi;l ¼
Pk

j¼1 Xijsl with sl = 0, 1, or −1 and sl0 ¼ 1 for all l0 6¼ l

4. Calculate the score ratio

Rl ¼
Scl

Sc1 þ Sc0 þ Sc�1

ð3Þ

for l = 1, 0, and −1.

5. Allow allocations satisfying Rl �maxl{Rl} × κ, similar to “Occam’s window” technique pro-
posed by Madigan and Raftery [30]

6. For each allowed allocation of s1,
for j = 2 : k

7. Repeat Steps 3-5 to find possible values for sj, j = 2, . . ., k.

8. Finally, obtain a tree, each branch of which represents a possible allocation for of (s1, . . ., sk).

9. For convenience, the weight of each branch pl is calculated by taking the product of score
ratios of successive branching steps.

Let there be finallym total branches, with overall weights p1, p2, . . ., pm respectively. We
propose a weighted score test using the above data adaptive model-averaging approach to test
for the null hypothesis H0 in Section 2.4. We refer to this approach as Branching under Ratios
(BUR) approach.

2.3 Selection of models using a weighted likelihood function
We also propose a model-averaging approach through a weighted likelihood function. In order
to allow for multiple plausible allocations for a RV, we assume

sj ¼

1 with probability ðw:p:Þ q1

0 w:p: q2

�1 w:p: 1� q1 � q2

8>>><
>>>:

where j = 1, 2, . . ., k. The tree model proposed in this article proceeds through constructing a
tree in the following way

1. Set sj = 1 for j = 1, . . ., k.

2. Choose a cutoff κ for between 0 and 1 for the branch probabilities.

3. Starting with s1, consider the likelihood of Y by averaging over the different possibilities of sj

f ðYjq1; q2; b0; βcÞ ¼ q1Lðb0; bc;1Þ þ q2Lðb0; bc;0Þ þ ð1� q1 � q2ÞLðb0; bc;�1Þ; ð4Þ
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where for h = 1, 0, −1: Lðb0; bc;hÞ ¼
QN
i¼1 p

Yi

h ð1� phÞYi and

p1 ¼ expðb0þbc;1

Pk

j¼1
XijÞ

1þexpðb0þbc;1

Pk

j¼1
XijÞ

, p0 ¼ expðb0þbc;0

Pk

j¼2
XijÞ

1þexpðb0þc
Pk

j¼2
XijÞ

, and

p�1 ¼ expðb0�bc;�1Xi1þbc;�1

Pk

j¼2
XijÞ

1þexpðb0�bc;�1Xi1þbc;�1

Pk

j¼2
XijÞ

:

4. Maximize the likelihood in Eq (4) with respect to q1, q2, β0, βc,1, βc,0 and βc, − 1 and obtain

the maximum likelihood estimates q̂1, q̂2, b̂0, b̂c;1, b̂c;0 and b̂c;�1 respectively.

5. Allow allocations satisfying a path probability greater than max{q1, q2, 1 − q1 − q2} × κ.

6. For each allowed allocation of s1,
for j = 2 : k

7. Repeat Steps 3–5 to find possible values for sj, j = 2, . . ., k.

8. Finally, obtain a tree, each branch of which represents a possible allocation of (s1, . . ., sk).

9. Once again, the weight of each branch pl is calculated by taking the product of q̂s in succes-
sive branching steps.

Let there be finallym total branches, with overall weights p1, p2, . . ., pm respectively. We
propose a weighted score test using the above data adaptive model-averaging approach to test
for the null hypothesis H0 in Section 2.4. We will refer to this approach as Likelihood-based
Model Branching (LiMB) method.

2.4 A weighted score test
We propose a weighted score test that computes score test statistics for testingH0 : βc = 0 based
on the model selected in each branch and subsequently averages all the score test statistics with
their corresponding weights p1, . . ., pm to compute the final weighted score test statistic. More
precisely, let the model selected in the l-th branch be given by

Logit Pr ðYi ¼ 1Þ ¼ b0 þ bcg
l
i ; i ¼ 1; :::; n; l ¼ 1; :::;m; ð5Þ

where gli ¼
Pk

j¼1 Xijs
l
j with ðsl1; :::; slkÞ, the allocation vector s selected in the l-th branch. After

some routine algebra, the score test statistic for testingH0 : βc = 0 corresponding to the l-th
branch can be shown as

Scl ¼
Pn

i¼1ðYi � �Y Þðgli � �g lÞ
� �2

�Y ð1� �Y ÞPn
i¼1 ðgliÞ2

The weighted score test denoted by wscore is defined as

wscore ¼
Xm
l¼1

Sclpl

The distribution of this data adaptive score test under the null hypothesis is not known, so
one needs to use a permutation test or other simulation-based approach to derive a p-value for
this weighted score test statistic wscore.
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2.5 Paring the branches
For either pathfinding scheme, branch weights, p1, p2, � � �, pm, are computed. Thus, we can fur-
ther narrow the plausible models by choosing a cutoff, qmax, such that selected branches have
weights greater than or equal to pmax � qmax. After paring our branches, we can recalculate the
wscore for the best branches.

The simulation section described next discusses the advantages and tradeoffs of the wscore
approach for each of the two different pathfinding approaches and their pared versions com-
pared to model selection, collapsing, and random effects methods in terms of their power in a
variety of simulation scenarios and a real data analysis.

Results

3.1 Simulation study
In this section, the performance of the proposed weighted score tests implementing the model-
averaging schemes is compared to the model selection approaches, such as Seq-aSum and Seq-
aSum-VS described in section 2.1. We also compare these approaches to Sum test [5] and
SKAT [20] with a weighted linear kernel. For this purpose, we simulate data as described in
Basu and Pan [14]. In particular, we simulate k RVs each with MAF = 0.005 and each common
variant (CV) with MAF = 0.2. To simulate the datasets, we generate a latent vector Z = (Z1, . . .,
Zk)0 from a multivariate normal distribution with a first-order auto-regressive (AR1) covari-
ance structure. There is a correlation Corr(Zi, Zj) = ρji − jj between any two latent components.
For the purpose of this simulation, we have considered pairwise correlation of ρ = 0 and ρ = 0.9
which implies linkage equilibrium among the variants and strong linkage disequilibrium (LD)
among the variants, respectively. Each component of the latent vector Z is then dichotomized
to yield a haplotype, where the probability of Z being zero is the MAF corresponding to the
RV. Next, we combine two independent haplotypes and obtain genotype data Xi = (Xi1, . . .,
Xik)0. The disease status Yi is then generated from a logistic regression model with or without
interaction. We have considered a sample of 500 cases and 500 controls.

We consider several simulation set-ups. We first simulate 10000 datasets under the null
hypothesis of no association between the variants and the disease. For every set of RVs or mix of
CVs and RVs, we estimate the null distribution of the test statistics based on 10000 replicates and
determine the 95th percentile of the null distribution for each test statistic. We next compare the
power of all the competing methods based on 10,000 simulated datasets for a variety of situations.
When available, the asymptotic power is used by determining the number of times the calculated
test p-value is less than 0.05. Otherwise, the empirical power is determined by the number of
times the test statistic was� the 95th percentile determined from its null distribution.

We consider a variety of scenarios to test the performance of the proposed approaches. For
demonstration, we first consider the situation displayed in Fig 1 where only the last RV is
causal and the others are non-causal. Also, because Basu and Pan [14] concluded model selec-
tion methods were a good compromise for a vast number of situations whereas the random
effects and collapsing methods performance depended heavily on directionality of association,
we consider the following scenarios: (1) four RVs are causal and (2) two RVs are causal while
two RVs are protective. Both no LD and strong LD are used in these situations. Lastly, we con-
sider cases when there is a mix of CVs and RVs to further understand the real data results. For
each model-averaging method in Section 2.2 and Section 2.3, κmust be chosen so that the
number of paths does not become too large. While many κ satisfy this, we present the results
on model-averaging-based tests after fixing κ at 0.90 for LiMB and 0.95 and 0.99 for BUR. We
also select qmax = 0.99 for the pared version of our tests.
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3.2 Simulation 1: Null distribution of the test statistic
Fig 2 shows the null density distribution of the test statistics of the BUR algorithm compared to
Seq-aSum-VS while varying the number of null RVs included in the analysis. The average
number of models averaged over are reported in the upper right corner. The wscore and Seq-
aSum-VS statistics increase as the number of RVs increase and have the form of a mixture of
χ2 distributions. However, due to the data adaptive procedure and the varying number of mod-
els averaged over, we cannot derive the theoretical null distribution. By construction, if the κ
for the BUR algorithm was set to 1, the wscore statistic would be exactly equal to Seq-aSum-VS.
We can see that when the mean number of branches is small in Fig 2, the distributions are
almost equivalent. As the number of RVs increases, the dotted line representing BUR with κ =
0.95, which has the most models averaged over, begins to move to the left of the Seq-aSum-VS
distribution. In other words, Seq-aSum-VS becomes stochastically greater than BUR with κ =
0.95. The BUR with κ = 0.99 remains very close to the Seq-aSum-VS statistic for all cases dis-
played because the average number of models averaged over remains low.

3.3 Comparing power among different approaches
Next we compare the power of different approaches for rare variant detection under different
alternative models.

Simulation 2: Effect of order dependency. Here, we demonstrate how model-averaging
can address order dependency as in Fig 1. To do this, we set only the last RV to be causal with
an odds ratio (OR) of 6. We then independently simulate 3, 7, 11, 15 and 19 null RVs in front
of the causal RV. For each simulation setup we have generated 10000 replicates and have
reported in Table 1 the empirical power of model selection methods (Seq-aSum, Seq-aSum-
VS) and the direct model-averaging extension to Seq-aSum-VS, BUR, to demonstrate the
reduction of order dependency by averaging over many models. The power is reported at a
level of significance of 0.05. According to Table 1, as the number of null RVs before the one
causal RV increases, the BUR (κ = 0.95) approach with pared branches becomes increasingly
more powerful than Seq-aSum-VS. By exploring many paths and then excluding less likely
paths, we reduce the dependency on the ordering of RVs and thus gain power to detect associa-
tion here.

Simulation 3: Power Comparison in presence of no LD. Here, we consider the situation
where there is no LD between any two RVs, mimicking the situation where mutations are all
completely random and independent of each other. Here we compare the power of our model-
averaging approaches with several alternative methods. We first consider the situation where
all 4 causal RVs share a common odds ratio (OR) of 2. We then simulate 0, 4, 8, and 12 null
variants to study the impact of null variants on power. For each simulation setup we have gen-
erated 10000 replicates and reported the asymptotic or empirical power of a collapsing method
(Sum), a random effect method (SKAT), model selection methods (Seq-aSum, Seq-aSum-VS),
and model-averaging methods (BUR and LiMB) in Table 2.

As in Basu and Pan [14], we see that the Sum test performs well above the other methods
when there are very few non-causal variants present. As we increase the number of non-causal
RVs, SKAT obtains advantage over the Sum test. Model selection and model-averaging
approaches obtain similar power to the collapsing approach as the number of non-causal RVs
increases. Seq-aSum performs well when there is no null variant, but loses power compared to
Seq-aSum-VS as in presence of null variants. The BUR (κ = 0.99) approach performs similarly
to Seq-aSum-VS since only one or two paths are generally explored at κ = 0.99. The pared
wcore for BUR (κ = 0.95) approach performs similar to the BUR (κ = 0.99) approach whereas
BUR (κ = 0.95) loses little power due to averaging over too many null models. The LiMB
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Fig 2. Density plot of model selection and BURmodel-averaging approach test statistics under the null situation where all RVs are non-causal
given a RV-set size of 4 (top), 16 (middle), or 28 (bottom). The x-axis is the value of the test statistic and the y-axis is the density of the distribution. Plotted
in each figure are Seq-aSum-VS, BUR (κ = 0.95), and BUR (κ = 0.99) as solid, dotted, and dashed lines, respectively. The number of branches averaged
over by these model-averaging approaches is in the upper right table of each plot.

doi:10.1371/journal.pone.0139355.g002
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Table 1. (α = 0.05) Demonstration of howmodel-averaging can reduce path dependency. In this disease
model, only the last RV in order is causal with OR = 6. Empirical power listed in the table based on 10000 rep-
licates with a number of non-causal RVs before the causal RV. There is no LD among the RVs.

No. of non-causal RVs 3 7 11 15 19

Seq-aSum 0.897 0.740 0.644 0.561 0.465

Seq-aSum-VS 0.920 0.811 0.703 0.615 0.527

BUR (κ = 0.95)

Average no. branches 2.2 6.3 31.4 222 2130

Average no. pared branches 1.2 1.4 1.8 2.4 3.3

wscore 0.919 0.808 0.692 0.593 0.504

pared wscore 0.914 0.811 0.710 0.631 0.539

BUR (κ = 0.99)

Average no. branches 1.3 1.5 2.1 3.3 5.4

Average no. pared branches 1.2 1.1 1.1 1.2 1.4

wscore 0.920 0.812 0.703 0.617 0.527

pared wscore 0.919 0.812 0.707 0.618 0.536

doi:10.1371/journal.pone.0139355.t001

Table 2. (α = 0.05) Independent RV analysis. Power in table based on 10000 replicates for each situation
with a number of non-causal RVs.

OR = (2,2,2,2) OR = (4, 3, 1/3, 1/4)

No. of non-causal RVs 0 4 8 12 0 4 8 12

Sum 0.710 0.482 0.362 0.289 0.501 0.315 0.237 0.191

SKAT 0.494 0.411 0.366 0.329 0.943 0.901 0.861 0.820

Seq-aSum 0.505 0.376 0.328 0.278 0.922 0.828 0.755 0.664

Seq-aSum-VS 0.500 0.397 0.337 0.285 0.906 0.836 0.768 0.681

LiMB (κ = 0.90)

Average no. branches 1.5 2.2 3.8 6.9 1.1 1.7 2.7 4.5

Average no. pared branches 1.0 1.1 1.1 1.1 1.0 1.0 1.1 1.1

wscore 0.481 0.388 0.325 0.275 0.908 0.823 0.737 0.645

pared wscore 0.475 0.391 0.324 0.272 0.906 0.827 0.736 0.638

BUR (κ = 0.95)

Average no. branches 1.4 3.4 16.4 97.0 1.5 4.2 18.5 121

Average no. pared branches 1.0 1.2 1.5 2.0 1.1 1.3 1.6 2.1

wscore 0.498 0.395 0.329 0.278 0.903 0.835 0.763 0.674

pared wscore 0.500 0.399 0.335 0.288 0.898 0.832 0.761 0.686

BUR (κ = 0.99)

Average no. branches 1.1 1.4 1.9 2.8 1.1 1.4 1.9 2.9

Average no. pared branches 1.0 1.1 1.2 1.4 1.1 1.1 1.2 1.4

wscore 0.500 0.399 0.335 0.286 0.906 0.838 0.766 0.680

pared wscore 0.500 0.399 0.337 0.287 0.905 0.837 0.765 0.680

doi:10.1371/journal.pone.0139355.t002
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approach does not perform well and has uniformly lower power than the other model averag-
ing approaches.

For the next scenario, the 4 causal RVs have various association strengths, OR = (4, 3, 1/3,
1/4). We then simulate 0, 4, 8, and 12 null variants to study the impact of null variants on
power. Again for each simulation setup we have generated 10000 replicates and reported the
asymptotic or empirical power of a collapsing method (Sum), a random effect method (SKAT),
model selection methods (Seq-aSum, Seq-aSum-VS), and model-averaging methods (BUR and
LiMB) in Table 2. As in Basu and Pan [14], SKAT performs best for any given number of non-
causal RVs, while the Sum test suffers dramatic power loss. Model selection is only slightly less
powerful than the random effect methods. Once again, the BUR approach performs similarly
to Seq-aSum-VS when only one or two paths are explored, and the LiMB approach does not
perform well. Overall, model-averaging methods do not show much advantage over model
selection methods when there is no LD among the variants.

Simulation 4: Power Comparison in presence of LD. Table 3 considers the same cases to
Table 2 except strong LD is present amongst the causal RVs and the non-causal RVs. When we
have strong LD and causal RVs in the same direction, we can see that the collapsing and ran-
dom effects methods perform similarly while model selection is lower powered. In this situa-
tion, there also appears to be no clear benefit to averaging over more models. This is because
the non-causal RVs are strongly correlated with RVs that have effects in the same direction
making them also have a marginal OR greater than 1. This means the best model is most likely
one that is equivalent to the Sum test which is the first path that model selection and model-
averaging considers. However, they are penalized by considering less likely models thereafter.

Table 3. (α = 0.05) RV analysis when there is strong LD among the RVs. Power in table based on 10000
replicates for each situation with a number of non-causal RVs.

OR = (2,2,2,2) OR = (4, 3, 1/3, 1/4)

No. of non-causal RVs 0 4 8 12 0 4 8 12

Sum 0.999 0.971 0.904 0.838 0.263 0.287 0.296 0.284

SKAT 0.999 0.975 0.910 0.846 0.565 0.583 0.603 0.608

Seq-aSum 0.984 0.928 0.787 0.672 0.717 0.637 0.569 0.555

Seq-aSum-VS 0.984 0.925 0.799 0.668 0.710 0.641 0.577 0.552

LiMB (κ = 0.90)

Average no. branches 1.2 2.3 4.8 8.7 1.2 2.3 4.1 6.8

Average no. pared branches 1.0 1.0 1.1 1.1 1.0 1.0 1.1 1.1

wscore 0.981 0.919 0.725 0.589 0.722 0.654 0.579 0.542

pared wscore 0.984 0.917 0.728 0.582 0.714 0.642 0.572 0.526

BUR (κ = 0.95)

Average no. branches 3.4 33.9 485 10098 1.5 6.1 58.7 985

Average no. pared branches 1.1 1.2 1.4 1.8 1.0 1.1 1.4 1.9

wscore 0.984 0.916 0.775 0.653 0.709 0.648 0.594 0.578

pared wscore 0.983 0.902 0.720 0.573 0.708 0.643 0.569 0.560

BUR (κ = 0.99)

Average no. branches 1.4 2.6 5.8 16.5 1.1 1.5 2.4 5.2

Average no. pared branches 1.1 1.1 1.2 1.4 1.0 1.1 1.2 1.3

wscore 0.984 0.919 0.788 0.667 0.710 0.642 0.577 0.554

pared wscore 0.984 0.919 0.790 0.669 0.710 0.640 0.579 0.556

doi:10.1371/journal.pone.0139355.t003
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In the next situation, we have strong LD and causal RVs are associated in opposite direc-
tions. As in Basu and Pan [14], model selection has a sizable advantage over collapsing and ran-
dom effect methods when there are few non-causal RVs present. However, as non-causal RVs
are introduced in the model, model selection loses its advantage to SKAT while still maintain-
ing superior advantage over the Sum test. The extension to model-averaging, though, appears
to have superior performance to model selection when a κ of 0.95 is used. Due to strong LD,
the non-causal RVs will have similar effects as the causal ones. Now moving one such variant
with negative directional effect to the ‘-1’ category will be very similar to moving that variant to
the ‘0’ category, since the other correlated RVs will still be in the ‘+1’ category, canceling the
effect of this variant. Hence, an incorrect ‘0’ allocation could be assigned to this variant. Until
all of the variants with negative directional effect are moved to the ‘-1’ category, we might not
see much improvement in the likelihood. In this case, considering multiple allocations such as
‘-1’ and ‘0’ allocations for these variants would have better chance of finding the model that
will significantly increase the likelihood of the data. Thus, BUR with κ = 0.95 presents a signifi-
cant increase in power from Seq-aSum-VS by averaging over many models. We also can note
that paring down to higher weighted models loses power in the case of strong LD. Additionally,
the unpared version of BUR with κ = 0.95 only has slightly less power than SKAT when there
are 8 or 12 non-causal RVs present. This power comparison suggests that these model-averag-
ing methods could be quite useful when the RVs are in strong LD with few causal variants in
opposite direction of association and in the presence of few non-causal variants.

Simulation 5: Mix of CVs and RVs. Here, we consider an analysis with a mixture of inde-
pendent CVs and RVs. As recommended by [25], we have added in SKAT-C which gives uni-
form weight to CVs rather than the Beta(MAF; 1, 25) weight of SKAT which will severely
downweight CVs. When CVs are mixed into a RV analysis, which is a usual scenario if you are
scanning across a gene, the strength of contribution of CVs and RVs greatly influences which
method will perform best. For Table 4, we first simulate 4 RVs with either shared common OR
of 2 or two RVs with OR of 2 and the other two with OR of 1/2. We also simulated 3 moder-
ately associated CVs of either OR = (1.2, 1.2, 1.2) or OR = (1.2, 1.2, 0.8). We then simulate 1, 5,
9, and 13 independent null CVs to study the impact of null variants on power. Because SKAT
underweights these CVs, it suffers huge power loss compared to the other methods and as
expected, SKAT-C performs much better than SKAT. SKAT would only perform well if mostly
RVs contribute to disease risk [25]. SKAT-C is the top method when both CVs and RVs con-
tribute to the risk but Seq-aSum-VS and BUR perform almost as well when there are a small
number of null variants. Sum, as usual, suffers huge power loss in the presence of opposite
directional effects. For the last situation, we make all of the RVs null and simulate 3 associated
CVs with OR = (1.2, 1.2, 1.2). Unlike before, we can see that if only the CVs are associated,
model selection and model-averaging performs well above the competitors, and BUR with κ =
0.95 shows significant improvement over Seq-aSum-VS when there are not many null CVs.
For all of these situations, we see that Seq-aSum-VS and BUR do quite well especially if there is
low number of null variants. This type of situation would be very common while scanning
across a gene because variants in a window are likely to be in high LD and thus have a non-null
effect.

3.4 Sanofi Data
Genomic intervals covering two genes that encode the endocannabinoid metabolic enzymes,
FAAH and MGLL, were sequenced in 289 individuals of European ancestry using the Illumina
GA sequencer [31]. Ancestry was determined using a panel of ancestry informative markers
and individuals with an outlying genetic background were removed from the analysis.
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Sequencing was done using 36 base pair reads. The median coverage was 60X across the indi-
viduals sequenced. The programMAQ was used for alignment and variant calling, resulting in
1410 high quality single nucleotide variants (SNVs; 228 in the FAAH gene and 1182 in the
MGLL gene) which were used for association analysis. The sequenced regions were captured
using long range PCR and represented a total of 188,270 nucleotides. The 289 individuals
included 147 normal controls (Body Mass Index (BMI)< 30) and 142 extremely obese cases
(BMI> 40). Each region was analyzed separately with a sliding window of 1000 bp in length.
The size of this sliding window was chosen to ensure a reasonably small number of SNVs being
analyzed at one time. The number of variants included in any window of either gene varies
from 2-25 but about 90% included 5-15 SNVs. There were both common and rare
(MAF� 0.01) variants in the windows. Table 5 shows the distribution of the RVs and CVs in
the reported windows. When available, we used the asymptotic distribution to calculate p-val-
ues. Otherwise, 1000 permutations were used to calculate p-values at each sliding window. Due
to the poor performance of LiMB in the simulations, we have dropped it from the real data
results. Because we have a mix of RVs and CVs, we have added SKAT-C which upweights CVs
as compared to SKAT [25]. At each window, we recorded the minimum p-value of the compet-
ing methods. An additional 9000 permutations were performed for the most significant win-
dows of each gene. To measure LD, we use the D’ statistic [32]. The mean LD in each of the
sliding windows was moderate with D0 = 0.448 and 0.449 in the FAAH and MGLL genes,
respectively. D0 ranged from 0.012 to 0.9996 for all sliding windows.

Table 4. (α = 0.05) Analysis with a combination of RVs and CVs. Power in table based on 10000 replicates for each situation with a mix of common and
rare variants. The CVs and RVs are all independent of each other.

RVs OR = (2,2,2,2) OR = (2, 2, 1/2, 1/2) OR = (1, 1, 1, 1)

Associated CVs OR = (1.2,1.2,1.2) OR = (1.2, 1.2, 0.8) OR = (1.2,1.2,1.2)

Null CVs 1 5 9 13 1 5 9 13 1 5 9 13

Sum 0.845 0.576 0.428 0.327 0.141 0.098 0.082 0.072 0.430 0.321 0.255 0.207

SKAT 0.496 0.501 0.488 0.490 0.404 0.391 0.390 0.387 0.227 0.169 0.145 0.119

SKAT-C 0.791 0.717 0.674 0.631 0.778 0.684 0.633 0.590 0.494 0.422 0.378 0.327

Seq-aSum 0.729 0.463 0.357 0.292 0.669 0.436 0.341 0.292 0.651 0.446 0.368 0.311

Seq-aSum-VS 0.760 0.523 0.432 0.333 0.672 0.449 0.379 0.304 0.681 0.465 0.412 0.329

LiMB (κ = 0.90)

Average no. branches 1.5 2.3 3.9 8.3 1.7 3.2 6.4 12.6 1.4 1.8 2.7 4.7

Average no. pared branches 1.0 1.1 1.1 1.2 1.1 1.2 1.2 1.2 1.0 1.0 1.0 1.0

wscore 0.233 0.174 0.069 0.049 0.531 0.300 0.167 0.127 0.144 0.129 0.110 0.061

pared wscore 0.230 0.171 0.073 0.053 0.526 0.297 0.174 0.133 0.147 0.130 0.112 0.063

BUR (κ = 0.95)

Average no. branches 8.0 27.8 161 1245 7.2 25.7 137 965 3.6 13.8 78.2 577

Average no. pared branches 2.0 2.5 3.2 4.3 1.9 2.6 3.5 4.9 1.1 1.3 1.7 2.4

wscore 0.766 0.515 0.412 0.316 0.677 0.451 0.371 0.304 0.692 0.466 0.398 0.324

pared wscore 0.761 0.527 0.429 0.329 0.668 0.451 0.374 0.304 0.690 0.481 0.415 0.332

BUR (κ = 0.99)

Average no. branches 1.7 2.3 3.5 5.8 1.8 2.5 3.7 6.0 1.3 1.8 2.7 4.4

Average no. pared branches 1.4 1.6 1.9 2.3 1.6 1.9 2.2 2.7 1.1 1.1 1.3 1.5

wscore 0.761 0.524 0.431 0.333 0.672 0.449 0.377 0.304 0.683 0.466 0.412 0.329

pared wscore 0.760 0.525 0.431 0.334 0.670 0.447 0.376 0.305 0.682 0.469 0.412 0.331

doi:10.1371/journal.pone.0139355.t004
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Figs 3 and 4 plot the −log10(p-values) of each window as it slides across FAAH and MGLL,
respectively. The most significant windows of the 228 in the FAAH gene and the ten most sig-
nificant windows of the 1182 in the MGLL gene are reported in Table 5 with bolded p-values
for the best p-value in each window. We also denote the order of the sliding window and its
starting genomic location.

Like in previous analyses [31], the analysis shows little significant association of the FAAH
gene with obesity in Fig 3. None of the p-values come close to the multiple comparisons level
of significance of 4.06 [31]. We can see that the Sum test and model selection without variable
selection drown out the faint signals shown by the other methods. The BUR approaches per-
form almost identically to Seq-aSum-VS.

The MGLL gene does show some suggestion of consistency of a signal in the rightmost
region in Fig 4. BUR with κ = 0.95 seems to amplify the signal in this area as compared to Seq-
aSum-VS. Also, besides the middle-most region, SKAT appears to lack most of the signal
shown by the other methods. Seq-aSum-VS and BUR seem to capture both the middle and
right-most feature of the MGLL gene whereas the other methods only capture one or the other.
SKAT-C also captures these regions, but with the exception of the few windows shown in
Table 5, Seq-aSum-VS and BUR show more significance. From Table 4, we might hypothesize
that the right-most region has some moderate CV effects which SKAT fails to detect but

Table 5. Top −log10(p-values) with window starting genomic location and the order of the frame for data analysis of both genes. BUR95 represents
the BUR (κ = 0.95) approach and BUR99 represents the BUR (κ = 0.99) approach. The top p-value among these approaches is in bold for each window and
the number of branches averaged over is listed in parentheses.

Total Model selection Model-averaging

Gene Start Pos. Window RV CV Sum SKAT SKAT-C Seq-aSum Seq-aSum-VS BUR95 BUR99

FAAH 46630186 85 3 6 0.647 2.321 1.159 0.872 0.738 0.756 (4) 0.736 (1)

46630533 86 4 10 0.798 2.213 1.144 1.479 1.279 1.466 (2) 1.318 (2)

46630611 87 4 10 0.787 2.218 1.302 1.503 1.372 1.611 (3) 1.326 (2)

46630632 88 4 9 0.590 1.952 1.157 0.688 1.476 1.664 (1) 1.479 (1)

46630673 89 3 9 0.561 1.947 1.260 0.580 0.647 0.705 (3) 0.624 (2)

46630715 90 3 8 0.719 1.947 1.329 0.468 0.393 0.426 (9) 0.393 (1)

46630718 91 3 7 0.788 1.947 1.347 0.500 0.304 0.355 (18) 0.317 (2)

46639163 153 4 3 1.854 0.511 0.505 0.695 0.680 0.691 (1) 0.68 (1)

46646969 199 4 2 1.265 1.709 1.230 0.859 1.880 1.932 (1) 1.88 (1)

46647235 200 3 2 1.175 1.706 1.243 0.851 1.708 1.785 (1) 1.708 (1)

MGLL 128967903 966 8 3 0.583 2.887 1.626 0.730 2.387 2.796 (3) 2.432 (1)

128967981 967 7 4 0.382 2.884 1.639 3.301 3.097 3.097 (2) 3.097 (1)

128968059 968 6 5 0.342 2.785 1.662 1.146 2.620 2.854 (1) 2.62 (1)

129002169 1228 0 5 1.165 0.556 1.107 2.538 3.000 3.046 (2) 3.000 (1)

129002562 1229 1 5 1.205 0.561 1.195 2.658 2.482 2.824 (6) 2.469 (1)

129006765 1251 5 2 1.438 0.104 2.245 3.097 2.959 2.569 (10) 2.959 (1)

129007295 1255 2 2 2.317 0.750 2.721 2.678 2.658 2.569 (4) 2.658 (1)

129012512 1277 3 2 3.195 0.839 2.262 2.699 2.553 2.523 (4) 2.553 (1)

129021383 1324 5 4 2.562 1.261 2.929 2.699 2.398 2.399 (12) 2.524 (2)

129021891 1329 1 3 3.191 1.882 3.196 2.854 2.602 2.569 (2) 2.602 (1)

129021962 1330 1 3 1.245 2.913 3.841 1.903 1.572 1.582 (1) 1.572 (1)

129022269 1331 0 3 1.338 2.914 4.066 2.056 1.791 1.81 (1) 1.791 (1)

129022900 1332 2 2 0.988 2.503 3.497 3.000 2.959 2.959 (3) 2.959 (2)

doi:10.1371/journal.pone.0139355.t005
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Fig 3. A sliding window analysis of FAAH gene for eachmethod from top to bottom: BURwith κ = 0.95 (BUR95), BURwith κ = 0.99 (BUR99), Seq-
aSum-VS, and Seq-aSum, SKAT-C, SKAT, and Sum. A window size of 1000 bp is used. The −log10(p-value) for each window is plotted on the y-axis. The
beginning genomic location of each window is plotted across the x-axis. Each point represents the −log10(p-value) of one window.

doi:10.1371/journal.pone.0139355.g003

Weighted Score Tests for Rare Variant Association

PLOS ONE | DOI:10.1371/journal.pone.0139355 October 5, 2015 16 / 21



Fig 4. A sliding window analysis of MGLL gene for eachmethod from top to bottom: BUR with κ = 0.95 (BUR95), BURwith κ = 0.99 (BUR99), Seq-
aSum-VS, and Seq-aSum, SKAT-C, SKAT, and Sum. A window size of 1000 bp is used. The −log10(p-value) for each window is plotted on the y-axis. The
beginning genomic location of each window is plotted across the x-axis. Each point represents the −log10(p-value) of one window.

doi:10.1371/journal.pone.0139355.g004
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SKAT-C, model selection, and model-averaging do detect. SKAT performs best when RVs con-
tribute most to the risk such as in the windows of FAAH. Meanwhile, SKAT-C performs well
when CVs and RVs are both contributing as they may be the case in the last few windows
shown in Table 5. Model selection and BUR do quite well if CVs contribute to the risk, and
from our simulations, they perform best when CVs contribute to most of the risk as they may
in windows 1228 and 1229.

By looking at the top p-values in Table 5, we can assess the potential gains that model-aver-
aging has over model selection. First of all, because the null distribution of model-averaging is
stochastically smaller than model selection as we decrease κ, we can see that even when only
one path is selected for BUR with κ = 0.95, it usually obtains a lower p-value than model selec-
tion and its close counterpart BUR with κ = 0.99. Also, out of the 16 top windows that BUR
with κ = 0.95 has multiple paths averaged over, 10 of them produce a better p-value than when
only one path is chosen by Seq-aSum-VS.

Discussion
In this paper we have studied the performance of several weighted score tests implementing
model-averaging approaches and compared them to their competitors in detection of rare vari-
ants. It has been well documented [14] that no method is uniformly most powerful. Each
method is very dependent on the underlying unknown true model. We have shown through
simulation that each method has situations where it performs better than its competitors. How-
ever, through our simulations and the real data analysis we found that the Seq-aSum-VS and
BUR approaches maintain reasonable power in almost all situations and never suffer huge
power loss unlike the other methods, particularly when we have both CVs and RVs in the anal-
ysis and the CVs strongly contribute to disease risk. In fact, model selection and BUR were
some of the top methods in all simulations when there were a low number of null variants.
This situation would be very typical while scanning across a causal gene because variants in a
window are likely to be in high LD with the causal variant and thus all have a non-null effect.
We have focused on the comparison of model-averaging with model selection approaches.
While the advantages of model-averaging have been well documented in the prediction litera-
ture [27], we studied the advantage of model-averaging over model selection when our purpose
is for inference. As shown in simulation studies and real data analysis, model-averaging over a
limited number of models showed a power gain over model selection, but the power gain was
not substantial in most simulation setups. One possible explanation could be that the model
selection approach already implements a dimension reduction strategy which requires estima-
tion of only three parameters for each model. Due to the small number of parameters, the
uncertainty in model selection decreases and the advantage of model-averaging over model
selection becomes less significant.

The model-averaging approach was proposed to reduce the dependency of the model selec-
tion approaches such as Seq-aSum and Seq-aSum-VS on the sequential selection of the SNPs.
The performance of a model selection approach would depend on the order at which the SNPs
were selected sequentially. A model-averaging approach, on the other hand, reduces this order
dependency. In addition to this reduction of order dependency, we saw that averaging over
more models can present a gain in power over one model, particularly when variants are in
strong LD and when there is a mix of causal and protective RVs. We also saw in our simula-
tions and possibly the real data analysis that BUR with κ = 0.95 had significant gains over
model selection when CVs strongly contribute to the risk with only a small number of null var-
iants. So while model selection was presented as a good middle approach for any alternative
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disease model in Basu and Pan [14], model-averaging is perhaps more advantageous because it
performs as well or better depending on the truth.

If covariates were to be added, permutation of the outcomes would no longer suffice if the
goal is to test the genetic effect. Instead, one could fit a model with only the covariates and then
use a parametric bootstrap using the estimated covariate effects to simulate the same amount
of datasets that you would use in a permutation [33]. We then proceed in a similar fashion as a
permutation approach where we perform model-averaging on the simulated set and compare
our test statistic to the bootstrapped test statistics.

In general, the BUR approach with 0.95 cutoff performed better than the BUR approach
with 0.99 cutoff, which indicates that there is a clear benefit from averaging over more models
since it accounts for the model uncertainty. When too many models are averaged over with
independent RVs, the BUR approach with 0.95 cutoff is still better but we need to pare down
the branches. On the other hand, one big limitation of model-averaging is the number of mod-
els you average over. It became too computationally intensive once we considered more than
20 variants. Hence, model-averaging has an advantage over model selection when we consider
a small to moderate number of variants. From the simulations, we would recommend using
the BUR approach with κ = 0.95 in order to search a wide array of models. If the variants in the
SNV-set are independent or weakly correlated, we would also recommend paring down to only
the top models in order to reduce the number of models to average over. Use of this recom-
mended application of our proposed model-averaging is illustrated in the real data section. A
sliding window with 5-20 variants could give us optimal performance of the model-averaging
approach. In the future, we intend to compare this model-averaging approach with a model-
averaging approach with distinct parameters for each directional effect in the BUR approach,
while undergoing variable selection. We believe there would be substantial power gain over
this reduced model with same effect size for both directions.
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