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Colorectal cancer (CRC) is the third most common cancer, with a high

mortality rate and a serious impact on people’s life and health. In recent

years, adoptive chimeric antigen receptor T (CAR-T) cells therapy has shown

well efficacy in the treatment of hematological malignancies, but there are still

many problems and challenges in solid tumors such as CRC. For example, the

tumor immunosuppressive microenvironment, the low targeting of CAR-T

cells, the short time of CAR-T cells in vivo, and the limited proliferation

capacity of CAR-T cells, CAR-T cells can not effectively infiltrate into the

tumor and so on. New approaches have been proposed to address these

challenges in CRC, and this review provides a comprehensive overview of the

current state of CAR-T cells therapy in CRC.
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Introduction

CRC occurs worldwide, has a high mortality rate and is the third most common

cancer (1, 2), which seriously affects human life and health. Due to the rarity of early

diagnosis of CRC, existing treatment methods including surgery, chemotherapy and

radiotherapy cannot completely inhibit the progression, metastasis and recurrence of

CRC when cancer cells infiltrate or metastasize to surrounding tissues (3).

CAR-T cells have shown significant efficacy in immunotargeted therapy of

hematologic tumors (4). The United States Food and Drug Administration has

approved CAR-T cells for the treatment of hematologic tumors (5). In recent years,

basic and clinical studies on CAR-T cells therapy for CRC have been published, and some

studies have made encouraging progress (6). However, CAR-T cells face many challenges

in the treatment of CRC, limiting their clinical application (7). This article reviews the

progress of CAR-T cells therapy for CRC.

Extracellular region, hinge region, transmembrane region and intracellular signal

region are the four components of CAR, and each plays an important role (8). The
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.904137/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.904137/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.904137&domain=pdf&date_stamp=2022-09-27
mailto:529016822@qq.com
mailto:chen213chang@163.com
https://doi.org/10.3389/fimmu.2022.904137
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.904137
https://www.frontiersin.org/journals/immunology


Qin et al. 10.3389/fimmu.2022.904137
extracellular domain is usually Fab or single chain variable

fragment (scFv) of monoclonal antibody, which has flexible

splicing function and determines antigen specificity (9). The

hinge domain consists of (Cluster of differentiation4)CD4、

CD8、CD28 or IgG4, which connects the extracellular domain

to the transmembrane domain (10). The transmembrane

domain consists of CD8a, CD4, CD3 z, CD28 or ICOS,

linking the extracellular domain to the intracellular domain

and acting as an anchor of the cell membrane (11, 12).

Intracellular signaling domains transmit stimuli into the cell

(13). First-generation CAR, which consist of scFv and

intracellular CD3z molecular signaling domain (14–16), have

limited antitumor activity due to the lack of co-stimulation and

interleukin signaling (17). The costimulatory domain of the

second generation CAR consists of 4-1BB (CD137) or CD28,

which mimics costimulatory signals during activation (18). The

third generation of CAR has two costimulatory domains, further

enhancing the function of CAR (19). The fourth generation CAR

is based on the second generation CAR and secretes cytokines

such as interleukin2(IL-2) and IL-12 (20, 21). A schematic

diagram of the different generations of CARs is shown in

Figure 1. Recently, researchers designed a combination of

focused ultrasound (FUS) and CAR-T cells expressing heat-

inducible genes (22). FUS activates heat-inducible genes by

controlling local temperature in vivo (22). In animal

experiments, CAR-T cells was injected into tumors in mice,

and a small ultrasonic transducer was placed on the top of the

skin of the tumor area (22). The tumor area was heated through

the ultrasonic transducer in the FUS guided by magnetic

resonance imaging. Only tumors exposed to ultrasound will be

attacked by CAR-T, improving CAR-T targeting (22). This

design is expected to be a promising CAR-T.
Basic experimental of CAR-T cells
therapy for CRC

The genetic modification of peripherally derived T

lymphocytes with CARs has achieved a remarkable effect in

the treatment of hematologic malignancies (23, 24). CAR-T cells

therapy for solid tumors still faces many challenges. Recently,

there are some advances in CAR-T cells therapy for CRC. The

targets of CAR-T cells therapy for CRC include carcino-

embryonic antigen(CEA), Mesothelin (MSLN),Guanylyl

cyclase C (GUCY2C), epithelial cell adhesion molecule

(EpCAM), Human epidermal growth factor receptor-2

(HER2)、Doublecortin-like kinase 1 (DCLK1).

CEA is a glycoprotein formed by cells in the large intestine

and a glycoprotein carcinoembryonic antigen, which has been

considered as a sensitive marker of CRC (25). At present, there
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are many basic studies on CAR-T for CEA (26). CAR-T cells

have excellent anti-tumor ability when dual targeting CEA and

other targets such as CD30 antibody (27).The combination of

CEA-CAR-T cells and recombinant human IL‐12(rhIL-12)

significantly inhibited the growth of tumor xenografts (28).

MSLN is a cells surface glycoprotein, which is physiologically

expressed in peritoneal, pleural and pericardial mesenchymal

cells (29). Overexpression of MSLN can be detected in CRC (30).

MSLN is an important CAR-T cells target in solid tumors (31,

32). In a recent study, the efficacy of MSLN-CAR-T cells on

colon cancer xenografts was investigated. Compared with the

control group, the mice in the MSLN-CAR-T cells group had

more T lymphocytes in the peripheral blood and more granzyme

B infiltrates in the tumor tissue (33). The experimental results

showed that the MSLN-CAR-T cells group had a more

significant anti-tumor effect (33).

GUCY2C is a binding receptor present in the enterocytes

membranes that sustains balance by activating its hormone

ligand guanosine or uridine to produce the second messenger

cGMP (34). When GUCY2C signaling is blocked, it may lead to

the pathogenesis of CRC. However, GUCY2C is expressed in

both human primary and metastatic CRC, and GUCY2C is

considered to be a tumor marker (35). GUCY2C is highly

expressed in 95% of CRC metastasis (36). CAR-T cells

targeting hGUCY2C mediated killing of CRC cells expressing

hGUCY2C, and were nontoxic to intestinal epithelial cells

expressing normal GUCY2C. Such CAR-T cells induce

antigen-dependent T-cells activation and cytokine production,

thereby enhancing antitumor efficacy (37).

EpCAM is one of the main surface tumor-associated

antigens of CRC (38), which can promote the migration,

proliferation and tumor growth of colon cancer cells (39). In

the experimental treatment of CRC with EpCAM-CAR-T cells,

compared with control T cells, EpCAM-CAR-T cells have

greater lethality and specificity against cancer cells which

express EpCAM (40).

HER2 is overexpressed in CRC (41), and is an important

target for CAR-T cells therapy. HER2-CAR-T cells showed

strong and particular cytotoxic capacity against colon cancer

cells. In mouse models, HER2-CAR-T cells-treated mice showed

significant tumor control, significantly improved overall

survival, and suppressed distant metastasis of CRC to liver and

lung (42).

DCLK1 is an enzyme that regulates epithelial mesenchymal

transition (43). Mesenchymal DCLK1 labeling of tumor stem

cells in a genetic mouse model of CRC (44). DCLK1-targeted

CAR-T cells therapy inhibited xenograft tumor growth in mice

without apparent toxicity (45).

Cbl-b is an E3 ubiquitin ligase that mediates ubiquitination,

and removal of Cbl-b from CAR-T cells enhances the antitumor

activity of CAR-T cells (46). Compared with the control group,
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Cbl-b -/-CAR-T cells significantly enhanced the killing ability of

CAR-T cells against CRC cells, which was manifested by

increased secretion of IFN-g, TNF-a and granzyme B (47).
Challenges

Adoptive T cells therapy is a new option for tumor patients,

but its efficacy is affected by various factors, it is imperative to

find relevant strategies to solve the problem.
Immunosuppression in the tumor
microenvironment

Hypoxia, acidic microenvironment and lack of substances

necessary for the survival, proliferation and activation of T

lymphocytes in tumor tissues will lead to immunosuppressive

microenvironment, thereby weakening the killing effect of CAR-

T cells on tumor cells (7). Tumor immunosuppressive

microenvironment includes suppressive immune cells such as

regulatory T cells (Treg), myeloid-derived suppressor cells

(MDSC), immunosuppressive cytokines such as IL-10 and

TGF-b, immunosuppressive molecules such as PD-1, and

other molecules such as indoleamine dioxygenase 2-3 (IDO1)

(7, 48). The immunosuppressive microenvironment promotes

tumor immune escape (49). The occurrence and development of

tumor are correlated strongly with immune escape (50), in

which immune checkpoints play an important role (51).

Programmed cell death protein 1 (PD-1) and its ligand PD-L1

are significant immune checkpoint proteins (52). PD-1 is an

immune checkpoint receptor expressed in T lymphocytes, and

PD-L1 is expressed mainly in the tumor microenvironment (53).

When PD-1 encounters antigens, its expression is increased and

binds to its ligand PD-L1, thereby inhibiting the immune
Frontiers in Immunology 03
response function of T cells and mediating immune

suppression (54).
CAR-T cells does not effectively
chemotaxis to tumor tissue

One of the challenges of CAR-T cells therapy for solid

malignancies is the specific recognition of targeted antigens

(55). Currently, the majority of tumor target antigens

recognized by CAR-T cells are also expressed in normal cells,

so when CAR-T cells are used to treat tumors, the therapeutic

effect is ineffective (7). Meanwhile, CAR-T cells can also injury

normal tissues and cause toxicity in vitro (7).
CAR-T cells can not proliferate and
persist in the blood or tumor area

The persistence and proliferation of CAR-T cells in blood or

tumor are important factors for the efficacy of CAR-T cells in

cancer treatment (56). Firstly, different costimulatory molecules

of CAR affect the survival and proliferation of CAR-T cells (57).

Secondly, in the tumor microenvironment, there are a series of

factors that affect the survival, proliferation and induce the

failure of CAR-T cells. For example, when CAR-T cells are in

chronic T helper 2 cells(Th2) inflammation state, their

expansion ability is weakened and the number of apoptotic

cells is increased (58). Thirdly, TGF-b and adenosine

significantly inhibit the tumor cytotoxicity of CD8 + T cells by

inhibiting the expression of granzyme (59, 60). In addition, the

hypoxic acid microenvironment in the local tumor can cause

damage to CAR-T cells, in which lactic acid accumulation can

inhibit the production of IL-2, thereby affecting the proliferation

and function of CAR-T cells (61). Further, the PD-1/PD-L1 axis
FIGURE 1

The chimeric antigen receptor (CAR) structure of four generations.
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affects the survival and function of CAR-T cells (62).

Transcription factors T-bet and B lymphocyte-induced

maturation protein 1 (Blimp1) regulate early CD8+T

lymphocytes (63, 64). Forkhead box protein O1 (FoxO1) can

regulate memory CD8+ T cell differentiation (65).
The level of CAR-T cells invasion in
tumor tissue was low

When a CAR-T cells is used to treat a tumor, the CAR-T

cells must reach the site of the tumor to perform their tumor-

killing function (7). In solid tumors, CAR-T cells must overcome

multiple obstacles to reach the tumor site, such as blood vessels

and the tumor’s stroma (66, 67). Primarily, when intravenous

infusion of CAR-T cells in the treatment of CRC, CAR-T cells

must cross the vascular barrier and interstitial barrier to enter

the tumor site to exert its efficacy (66). Intratumoral vascular

beds and interstitial abnormalities are the key factors affecting

the efficacy (66). Then, the inability of many T cells to reach the

cancer cells may depend on the lack of surface-expressed

chemokine receptor that match chemokine expressed in the

tumor or tumor stroma (68). When the chemokines/chemokine

receptors axis is mismatched, tumor cells secrete trace amounts

of chemokines, resulting in the inability of T cells to reach the

tumor tissues (68). For example, CXCL10 can make a variety of

antitumor lymphocytes chemotactic to tumor tissues, such as

CD8+ T cells, and is associated with T-lymphocytes infiltration

in solid tumors (69).
Strategies

Develop drugs and measures that can
improve the tumor microenvironment

In order to improve the tumor microenvironment to

improve the anti-tumor efficacy and durability of CAR-T cells,

there are currently the following methods.

It is essential that CAR-T cells secrete pro-inflammatory

cytokines to protect them from the inhibitory tumor

microenvironment. Studies have shown that secreted cytokines

such as IL-7 and IL-12 CAR T cells can improve the

immunosuppressive microenvironment (70, 71). Mesenchymal

Stem Cells (MSCs) are the main components of tumor stroma

and have the ability to actively migrate into tumor tissues (72,

73).By making MSCs capable of releasing IL-7 and IL-12 and

combining CAR-T cells, researchers found that CAR-T cells

could prolong the time of T cells attack on tumors and improve

the tumor immunosuppressive microenvironment (74). IDO1
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degrades tryptophan, an essential amino acid for T cells, which is

required for T cells survival and immune responses (75). The

expression of IDO1 is inhibited by miR-153 (76). When miR-

153 was overexpressed in tumor cel l s , the tumor

immunosuppressive environment was improved, CAR-T cells

targeting epidermal growth factor receptor variant III(EGFRIII)

were more effective in killing colon cancer cells overexpressing

miR-153 (77). CD30 signaling can promote the differentiation of

T cells to Th2, which has immunosuppressive function (78). In

CRC, CAR-T cells dual targeting CD30 and CEA can produce a

more significant proinflammatory response, manifested by

higher granzyme B and perforin levels In T cells, which

improves the ability of CAR-T cells to attack the tumor (27).

IL-10 binds to its cognate receptor IL-10R to cause a wide range

of immunosuppressive functions (79, 80). Recent studies have

shown that CAR-T cells combined with IL-10 monoclonal

antibody (mAb) can partially alleviate bone marrow cell-

mediated immunosuppression by blocking IL-10 signaling,

while promoting CAR-T cells expansion and enhancing killing

effect, thereby increasing anti-tumor function (81).

Guo and his team demonstrated that intravenous injection

of live attenuated Brucella in mice can promote the tumor

microenvironment to a proinflammatory state, enhance the

anti-tumor immunity of T cells, and reduce the resistance of

tumors to CAR-T cells (82). Dopamine treatment can promote

the differentiation of CD8+ T lymphocytes into CD103+ tissue-

resident memory CD8+ T lymphocytes (TRM), and TRM can

trigger stronger anti-tumor immunity. Moreover, dopamine

treatment enhanced the anti-tumor function of CAR-T

cells (83).

In addition, blockade of immune checkpoints can improve

immunosuppression. Adding genes expressing PD-1 negative

receptors to CAR-T cells can block intracellular immune

checkpoints and enhance the lethality to target cells (84, 85).

Investigators also used clustered regularly interspaced short

palindromic repeats (CRISPR) and CRISPR-associated protein

9 (Cas9) (CRISPR-Cas9) systems to knock down the expression

of PD-1 in CAR-T cells and achieved excellent preclinical

efficacy by blocking PD-1/PD-L1 induced suppression of T-cell

immune function (86–89).
Improve CAR-T cells targeting of tumors

Targeting multiple antigens and application of novel CAR

can improve the targeting of CAR-T cells. Jiang and colleagues

constructed a dual CAR system containing two extracellular

domains, NKG2D and PD-1, and showed that such CAR-T cells

effectively eliminated target cancer cells (90). CAR-T cells that

dual target CD30 and CEA have a more specific ability to kill
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tumor cells, which is manifested by blocking the inhibition of

cytotoxic T lymphocyte immune function induced by CD30

(27). In addition, when using the novel inhibitory CAR (iCAR)

construct, the iCAR can trigger inhibitory signals when CAR-T

cells are present in normal tissues, thereby inhibiting T cell

function, avoiding the attack of normal tissues, and enhancing

the targeting of tumor tissues (7). Additionally, switchable CAR

T cells can increase their targeting, with the “switch” acting as a

bridge between tumor cells and T cells, allowing T cells to

specifically kill tumor cells (91). Besides, the combination of

focused ultrasound (FUS) and CAR-T cells, in which only

tumors exposed to ultrasound are attacked by CAR-T cells,

also improves CAR-T cells targeting (22).
Amplification and long-term presence of
CAR-T cells

How to maintain sustained expansion of CAR-T cells in

vivo is a common consideration in the treatment of solid

tumors with CAR-T cells. Cytokines such as IL-2, IL-7, IL-12

and IL-15 play an important role in T cells activation,

proliferation and immune response (92–94). However, the

content of immune stimulatory cytokines in the tumor

microenvironment is very low. There are now several

therapies for combining cytokines with CAR-T cells to treat

tumors. CEA-CAR-T cells combined with rhIL-12 can increase

the multiplication, persistence and cytokines release of CEA-

CAR-T cells in vivo (28). When MSCs that can release IL-7 and

IL-12 are used in combination with CAR-T cells, CAR-T cells

survive longer and have better expansion ability in vivo,

thereby improving the anti-tumor response (74). Li and his

team demonstrated that inhibition of Wnt significantly

inhibited TGF-b expression in tumor tissues and improved T

cells infiltration (95). Moreover, after the inhibition of Wnt, the

contents of T-bet and FoxO1 in the nucleus of CAR-T cells

increased, and the expression of BLIMP1 increased, indicating

that the inhibition of Wnt can make CAR-T cells early kill

tumor function and differentiate into memory T lymphocytes

(95). CD133 is expressed in cancer cells of various epithelial

cell origins (96). A phase I trial of CAR-T cells targeting CD133

(CAR-T-133) in the treatment of advanced metastatic

malignancies has found that CAR-T-133 cells can persist in

vivo through multiple infusions and increase the content of

immunostimulatory cytokines, which makes valid disease

clearance and prevention of relapse possible (97). Previous

studies have shown that increasing telomerase activity in CAR-

T cells can enhance their proliferation ability and delay

senescence (98). Other studies have shown that the
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costimulatory domain 4-1BB of CAR-T cells can improve the

exhaustion of T cells and enhance their persistence in vivo (99).
Increased CAR-T cells invasion in tumors

Targeting tumor blood vessels and stroma and increasing the

expression of chemokines are important methods to improve

CAR-T cells infiltration into tumor tissues (100). Vascular

blocker combretastatin A4 phosphate (CA4P) is a vascular

inter fer ing agent wi th high se lec t iv i ty for tumor

vascular system (101). Targeting CA4P can block the VE-

cadherin signaling pathway, affect the stability of microtubule

polymerization of tumor cell-related vascular endothelial cells,

induce cell apoptosis, destroy the vascular system, reduce the

blood supply in the tumor, and lead to tumor cell necrosis in the

tumor tissue (101). CA4P combined with HER2-CAR-T cells

therapy has a better antitumor effect than CA4P or HER2-CAR-

T cell therapy alone, which can destroy tumor blood vessels,

thereby promoting the infiltration of T cells into tumor tissues

and enhancing the proliferation of CAR T cells (102). Vascular

endothelial growth factor (VEGF)/VEGFR axis can promote the

generation of vascular endothelial cells, which is a key signaling

pathway of angiogenesis (103). VEGFR -targeting CAR T cells

can disrupt vascular structures and obviously inhibit xenograft

tumor growth, invasion, and metastasis (104). Cancer-associated

fibroblasts (CAFs) are important components of tumor stroma

(105). Fibroblast activating protein (FAP) is over expression in

CAFs and suppresses tumor immune response by promoting the

recruitment of immunosuppressive cells (106). At present, FAP-

targeted CAR-T cells have achieved certain preclinical and

clinical efficacy in solid tumors (107, 108). When the Wnt

signaling pathway is blocked, it can up-regulate the expression

of chemokine CXCL10, improve T cells tumor infiltration in

cancer models, and improve the efficacy of CAR-T cells in CRC

treatment (95, 109).
Clinical trials

In the past few years, immune cell therapy has been

increasingly used in multicentre clinical trials. Multiple clinical

trials targeting tumor antigens have been approved, including

CEA, MSLN, EpCAM, HER2 and antigens, as well as NK group

2 member D ligands (NKG2DL), Mucin-1 (MUC1), B7-H3

(CD276), CD133, mesenchymal epithelial transfer factor(c-

Met), which is overexpressed in colorectal cancer, can be used

as a target for CAR-T cells. In Table 1, we summarized the

clinical information available on ClinicalTrials.gov regarding

CAR-T-cells therapy for CRC.
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In a phase I trial of CEA + CRC patients treated with CEA-

CAR-T cells (NCT02349724), five dose-escalation CAR-T cells

were administered to 10 patients with relapsed and refractory

CRC metastases. No serious adverse events related to CAR-T cells

therapy were observed in the trial (6). Among the 10 patients, 7

were stable after CAR-T cells therapy, of which 2 were stable for

more than 30 weeks and 2 showed tumor shrinkage (6).

A phase 1B hepatic Immunotherapy for Metastases-selective

internal irradiation therapy (HITM-SIR) trial was conducted in

patients with liver metastases from CRC (NCT01373047). Six of

them received anti-CEA CAR-T hepatic artery infusions (HAIs)

and SIRT. Significant reductions in Granulocyte macrophage

colony stimulating factor (GM-CSF), GM-CSF-R, IDO, and

Programmed death ligand-1(PD-L1) were observed after HITM
Frontiers in Immunology 06
CAR-T HAI treatment, suggesting a reversal of immunosuppressed

hepatic tumor microenvironment (TME). Subsequent increases in

IL-2 and IL-6 in tumor biopsies after infusion further demonstrated

pro-inflammatory liver TME. Themedian survival of patients in the

trial was 8 months (110).
Conclusions

There are many approaches to CRC adoptive cell therapy, of

which CAR-T cells are one of the most researched and promising,

although clinical studies are still in the early stages of clinical

trials. Many studies have demonstrated the efficacy and safety of

CAR-T cells in the treatment of CRC. However, the therapy faces
TABLE 1 Clinical trial of CAR-T cells in CRC(https://clinicaltrials.gov/).

Antigen phase Clinicaltrials. gov identifier CAR-T Cells Treatment Recruitment Status

NKG2DL Early Phase 1 NCT05248048 NA Recruiting

Phase 1 NCT04550663 NA Not yet recruiting

Phase 1 NCT03370198 3 DL: 3 × 108–3 × 109 cells/d(3ds) Active, not recruiting

Phase 1 NCT04107142 3DL:3 x 108- 3 x 109 CAR-gd T cells/d(4ds) Unknown

Phase 1 NCT03310008 3 DL: 108–109cells/d
(3 ds) and FOLFOX

Active, not recruiting

Phase 1 NCT03692429 3 DL:1-100x108cells/d (3 ds) andFOLFOX Recruiting

CEA Phase 1 NCT02850536 1 × 1010 cells/d(3 ds) with IL2 Completed

Phase 1 NCT02416466 1 × 1010 cells/d(3ds) with IL-2 Completed

Early Phase 1 NCT04513431 NA Not yet recruiting

Phase 1 NCT05240950 3DL:1- 6×106/kg anti-CEA CAR-T (+) cells(1d) Recruiting

Phase 1
Phase 2

NCT04348643 NA Recruiting

Phase 1 NCT02349724 5 DL: 105–108 CAR+ cells/kg (split: 10%,30% and 60% per day) Completed

Phase 1 NCT03682744 NA Active, not recruiting

Phase 1
Phase 2

NCT02959151 1.25~4×107 CAR+T cells/cm3 tumor bulk(1d) Unknown

MSLN Phase 1 NCT05089266 NA Not yet recruiting

Early Phase 1 NCT04503980 4DL:1×105-3×106aPD1 MSLN-CAR+ T cells/kg(1d) Recruiting

EpCAM Phase 1 NCT05028933 3DL:3-10×105EPCAM CAR-T/kg(1d) Recruiting

MUC1 Phase 1 NCT05239143 NA Recruiting

Phase 1
Phase 2

NCT02617134 NA Unknown

HER2 Phase 1 NCT03740256 7 DL: 1–100 × 106Cells(1d) and oncolytic adenovirus CAdVEC intra-
tumor injection

Recruiting

B7-H3 Phase 1 NCT05190185 3DL:1-100×106 CAR-T/kg(1d) Recruiting

EGFR Phase 1 NCT03542799 NA Unknown

Phase 1
Phase 2

NCT03152435 NA Unknown

CD133 Phase 1
Phase 2

NCT02541370 0.5–2 × 106 cells/kg(2ds) Completed

c-Met Phase 1
Phase 2

NCT03638206 NA Recruiting
frontiersin.o
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many challenges that limit its clinical application. In addition,

CAR-T cells therapy can cause a number of toxic effects, the most

common of which is cytokine release syndrome (CRS), which is a

cytokine secretion response after CAR-T cells infusion (111).

CRS has a series of non-characteristic manifestations, such as

fever, nausea, decreased cardiac function, and hypotension (112).

It can also cause other systemic toxicity, such as dyspnea,

respiratory failure, arrhythmia, elevated myocardial enzymes,

cardiac insufficiency, liver insufficiency, gastrointestinal

reaction, coagulation dysfunction, muscle injury, neurotoxic

allergy, etc (112). Only when these problems are effectively

addressed can the efficacy of CAR-T cells therapy for CRC be

improved and more patients receive effective treatment. In

conclusion, CAR-T cells are a promising treatment for CRC

and further research is needed.
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