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SUMMARY
Pathological examination is the gold standard for cancer diagnosis, and breast tumor cells are often found in
clusters. We report a case study on one triple-negative breast cancer (TNBC) patient, analyzing tumor devel-
opment, metastasis, and prognosis with simultaneous DNA and RNA sequencing of pathologist-defined cell
clusters from multiregional frozen sections. The cell clusters are isolated by laser capture microdissection
(LCM) from primary tumor tissue, lymphatic vessels, and axillary lymph nodes. Data are reported for a total
of 97 cell clusters. A combination of tumor cell-cluster clonality and phylogeny reveals 3 evolutionarily distinct
pathways for this patient, each associated with a uniquemRNA signature, and each correlatedwith disparate
survival outcomes. Hub gene analysis indicates that extensive downregulation of ribosomal protein mRNA is
a potential marker of poor prognosis in breast cancer.
INTRODUCTION

Pathological examination is the gold standard for cancer diag-

nosis. Assessments of frozen sections determine the degree of

tumor differentiation, immune differentiation, radiotherapy sensi-

tivity, chemotherapy sensitivity, and even genemutation.1 Tumor-

igenesis itself occurs by way of genetic aberrations that alter the

functionorexpressionof specificdriver genesand tumor suppres-

sors. For disease progression to occur, cancer cells are believed

to acquire additional mutations that promote expansion, invasion

of surrounding tissues, and, finally, metastasis.2 Selection pres-

sure from the local microenvironment or systemic drug treatment

can aid this process by promoting the expansion of tumor clones

with genetic or transcriptional abnormalities that are advanta-

geous for disease progression.2–4 Hence, at any time in the tumor

life cycle, there exists the possibility of detecting multiple tumor

clones in a single patient.5 These clonal populations contribute

to intratumor heterogeneity and are relevant for medicine as

they have the potential to become drug resistant or metastatic.6

The detection of clonal populations has been greatly

advanced by the advent of single-cell sequencing, which allows
Cell Repo
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us to attribute unique DNA and RNA signatures to tumor cells

based on their presence in specific microenvironments. In the

case of breast cancer, single-cell sequencing has helped define

gene expression signatures related to metastatic burden,7 met-

astatic subtype,8 and even spatial orientation within primary

breast cancer tissue.9,10 However, the extant methods for

isolating single cells, as well as the subsequent DNA and RNA

sequencing steps, vary widely, and few groups have analyzed

both genomic aberrations and gene expression changes

together in a particular cancer cell type. Furthermore,

sequencing single cells may not be the ideal method for charac-

terizing metastatic tumor populations because tumor cells that

circulate as clusters exhibit higher metastatic potential and are

associated with worse disease prognosis.11,12 Circulating tumor

cell clusters are often polyclonal, exhibiting a mix of primary tu-

mor and epithelial-like characteristics that are believed to

enhance their invasiveness, dissemination, and metastatic colo-

nization.11–13 Thus, analyzing invasive tumor cells as a collective

multicellular unit, rather than on a single-cell level, may provide a

more physiological representation of cancer cells with an

aggressively metastatic phenotype.
rts Medicine 2, 100404, October 19, 2021 ª 2021 The Author(s). 1
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We report here a case study of one triple-negative breast

cancer (TNBC) patient, with simultaneous genomic and tran-

scriptomic sequencing (G&T-seq)14 of pathologist-defined

cell clusters excised from multiregional frozen sections by

laser-capture microdissection (LCM). This combination of

methodologies allowed us to extract and characterize cell

clusters, not only from the primary and lymph node (LN)

tumors of this patient, but also from the lymphatic vessels,

enabling the analysis of cells discernably en route from the

primary tumor to the axillary LNs (i.e., lymphovascular inva-

sion [LVI]). G&T-seq was performed on these cell clusters to

assess the chromosome aberration patterns, genetic muta-

tions, and gene expression profiles associated with LVI and

LN metastasis. Not only did we identify genomic aberration

patterns and RNA expression profiles associated with LVIs

but, intriguingly, we also found evidence of three transcrip-

tionally distinct pathways of metastatic spread in this one pa-

tient that, when mapped to a much larger dataset of patient

outcomes, were varying predictors of survival outcome. We

believe the combined utilization of these methods may help

identify new targets for preventing metastatic disease and

may become a valuable tool in the development of precision

medicine for patients with genetically heterogeneous diseases

such as TNBC.

RESULTS

To avoid misunderstanding, we must first clarify what we are

trying to do versus what we are not trying to do, and the terminol-

ogy that we have adopted. Our analyses are primarily focused on

the progression of breast-derived cell clusters from the primary

tumor, through the LVI, to the LNs. We are not trying to ascertain

when a cell cluster should be declared a cancer or metastasis,

which in any case is surprisingly difficult to do, since a large num-

ber of apparently normal cells in seemingly healthy individuals

will often contain driver mutations.15,16 Although the term

‘‘clone’’ has been used to define genetically identical cells asex-

ually derived from a common ancestor, our analyses revealed

that cell clusters with different pathologist-defined classifica-

tions, based on the morphology of their dominant cells, can

share a common genomic or transcriptional profile. In that sense,

they can legitimately be called quasi-clones, but for brevity, we

simply used the word ‘‘clone.’’ This also reveals the inherent lim-

itations of morphology-based classifications, which are not

perfectly correlated with genomic or transcriptional profiles. As

the premise of this article is that we must study cancer progres-

sion on a collective level, using multicellular units excised by

LCM, we believe that this is an appropriate, if unconventional,

terminology.

Cell cluster isolation from primary breast tumor and
axillary LNs using LCM
To isolate and characterize cancer cells with an inherent ability to

invade the lymphovasculature and form distant metastatic le-

sions, we obtained fresh tissue samples from a 24-year-old

woman with T3 N1 M1, ER(�), PR(�), HER-2(�), grade 3, inva-

sive ductal breast carcinoma following palliative mastectomy

and full axillary LN dissection. This patient had treatment refrac-
2 Cell Reports Medicine 2, 100404, October 19, 2021
tory disease (two cycles of docetaxel and four cycles of doxoru-

bicin/cyclophosphamide chemotherapy), which, at the time of

sample collection, had metastasized to the patient’s local

regional axillary LNs and liver. To maximize the likelihood of de-

tecting LVI, we collected 2 tissue samples from the tumor-stro-

mal interface of the primary tumor, as well as 2 samples from

her carcinoma-positive axillary LNs (3 of the 15 removed LNs

were positive for metastatic disease). These tissue samples

were flash-frozen, sectioned, H&E-stained, and screened by 2

anatomic pathologists for the presence of cancer cell clusters

defined as histologically malignant groups of cells of at least

10 mm in diameter.12,17 Laser capture microdissection, which

permits the acquisition of select cells, while preserving anatom-

ical structures such as lymphatic vessels, was then used to

dissect cell clusters from select tissue sections. A total of 186

cell clusters were collected for processing, with 97 (�52%)

passing both DNA and RNA quality control (QC) checks for

sequencing analysis. These clusters comprised 17 morphologi-

cally normal breast epithelial cell clusters, 17 primary tumor can-

cer cell clusters, and 20 clusters found within lymphatic vessels,

which, due to the unidirectionality of lymphatic flow, represent

cells categorically en route to the axillary LNs from the primary

tumor. In addition, there were 36 cancer cell clusters and 7

lymphocyte cell clusters from the tumor-infiltrated axillary LN

samples. G&T-seq was then performed as described14 to simul-

taneously extract, amplify, and create DNA- and mRNA-seq

libraries from each LCM isolated cell cluster. In brief, multiple-

displacement amplification (MDA) was performed on the

genomic DNA (gDNA) isolated from each cluster, followed by

whole-genome (WGS) and whole-exome sequencing (WES) to

detect copy-number variants (CNV) and single-nucleotide vari-

ants (SNV), respectively. WGS was performed at a depth of

1.123, while WES was performed at a usage depth of 2723

(raw depth >1,0003). Whole-transcriptome sequencing (WTS)

was performed on mRNA isolated from each cluster at a

sequencing depth of 4.5 G clean bases with a quality score

of R30. An overview of the experiments and analyses is pre-

sented in Figure 1.

LVI-associated cell clusters share a CNV profile
abundant in chromosome amplification and deletion
events
We performed WGS on the gDNA isolated from each cluster to

detect CNVs. Using a single-cell CNV calling method previously

described18 to avoid amplification bias, we detected chromo-

some amplification and deletion events in every cell cluster

analyzed (Figure S1). This included clusters comprised of histo-

logically normal cells positioned in a well-organized breast duct,

indicative of the heterogeneous nature of the cell clusters iso-

lated from this patient. Next, we performed hierarchical clus-

tering using the Ward.D2 algorithm to generate a CNV heatmap

and evaluate the clonal architecture of these cell clusters, using

bootstrap to identify the stable clades. Heatmap analysis

showed the existence of three distinct CNV profiles that we

labeled CNV clone A, CNV clone B, and CNV clone C (Figure 2A).

Notably, the cell clusters obtained from lymphatic vessels map-

ped together, along with several primary cancer cell clusters, as

CNV clone B. In contrast, cell clusters associatedwith CNV clone



Figure 1. Schematic representation of LCM cell cluster isolation and G&T-seq from TNBC patient samples

Tissue samples were collected from the tumor-stromal interface of the primary tumor and carcinoma-positive axillary lymph nodes (LNs) of a single TNBCpatient.

Tissue samples were flash-frozen, sectioned, and H&E stained for pathological examination. LCMwas used to isolate epithelial, LVI, lymphocyte, and cancer cell

clusters measuring >10 mm in size from anatomically intact tissue sections. G&T-seq was then performed to extract and sequence gDNA and mRNA from each

cell cluster. gDNA was amplified with MDA, and mRNA was amplified using a modified Smart-seq2 protocol. WGS and WES was performed on the amplified

gDNA for CNV and SNV detection, respectively, while WTS was performed on amplified mRNA transcripts for transcriptome analysis.
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Cwere isolated exclusively from the LNs of this patient. Because

no cell type heterogeneity was associated with CNV clone C, this

indicates that we either did not sample the closest ancestor of

this LN clone, or that the signature of its ancestor changed

significantly over the course of disease progression. Lastly,

CNV clone A was found to be a combination of epithelial,

lymphocyte, primary, and LN cancer cell clusters. These cell

clusters exhibited relatively few CNVs (4.1%), but shared a com-

mon amplification of the X chromosome. Notably, because the

cell clusters associated with the mixed-epithelial CNV clone

included LN cancer cells, this suggests that relatively few CNV

changes were required to promote LN metastasis. The LVI and

LN CNV clones by contrast had a substantial number of CNV

changes, characteristic of chromosome instability (CIN). The

LVI clone contained CNVs that covered �71.7% of the genome

and included amplification of the X chromosome. The LN clone

also had extensive CNV changes covering �53.1% of the

genome, but did not show a significant X chromosome amplifica-

tion (Table S1.1).

Cell clusters associated with LVI have a high
homozygous mutational burden
Next, we performed WES on the gDNA isolated from each cell

cluster to detect SNVs. We again performed unsupervised clus-

teringandconstructedSNVheatmapsbasedon thehomozygous

and heterozygous SNVs detected in each cell cluster.19 Similar to

our CNV findings, analysis of the SNVs revealed three distinct
SNV clones with shared gene mutation patterns (Figure 2B).

SNV clone A was comprised of LCM cell clusters from every

cell type tested, with the exception of lymphatic vessel-associ-

ated cell clusters (as in CNV clone A), and harbored SNVs occur-

ring at a range of frequencies (6.7%–100%) from >750 genes

(Table S1.2). SNV clone B contained cell clusters isolated from

theprimary tumor and lymphatic vessels, indicating the presence

of an LVI clone. Finally, some of the LCM cell clusters from the

LNs exhibited a similar gene mutation pattern, indicative of a

SNV LN clone. Mutations were found in the LVI and LN SNV

clones at a range of frequencies (LVI SNV clone 11.1%–100%,

LN SNV clone 18.2%–100%), affecting >540 and 450 genes,

respectively. Furthermore, cell clusters associated with the

SNV LVI clone were found to have, on average, a higher homozy-

gousmutation burden, suggesting that the degree of SNV homo-

zygosity may be related to LVI invasiveness (Figure S2.1).

LVI cell clusters contain numerous oncogenic
mutations, including BRCA1 and TP53

Using our WGS and WES results, we next sought to identify

potentially significant oncogenic events that may have occurred

in this patient. We compiled a list of >89 known transformation-

associated genes and assessed each cell cluster for the fre-

quency of SNV missense, splice site, and frameshift mutations,

as well as for CNV-associated chromosome deletion and

amplification events. In total, 59 of the genes were found to har-

bor either SNV or CNV mutations (Figure 2C). As commonly
Cell Reports Medicine 2, 100404, October 19, 2021 3
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Figure 2. CNV and SNV sequencing reveal the presence of a distinct LVI cancer cell clone among a vast mutational landscape

(A) CNV heatmap generated by unsupervised hierarchal clustering of 80 cell clusters following WGS. Cell clusters are plotted along the x axis, and CNVs are

plotted in genomic order along the y axis. Color bars (top) represent cell type (yellow, LN; red, primary tumor; purple, primary tumor-associated vessels; green,

epithelial; blue, lymphocytes) and clone designation (green, mixed clone; red, intravasation clone; blue, LN clone). Chromosomal amplifications are depicted in

red, while deletions are shown in blue.

(B) SNV heatmap generated by unsupervised hierarchal clustering of 59 cell clusters following WES. Cell clusters are plotted along the x axis, and SNVs are

plotted according to clone prevalence along the y axis. The phylogeny on the left shows an unsupervised clustering to classify the most abundant SNVs in each

clone. Cell type and clone designation are indicated as in (A). Homozygous SNVs are depicted as dark blue, heterozygous SNVs are light blue, and genes with no

mutations are white. Only SNVs present in more than half of the cell clusters of each clone were shown. All SNVs can be found in Table S1.2 and are shown in

Figure S2A.

(C) Oncoplot depicting chromosome alterations and/or genetic mutations detected in 59 common oncogenes. Each vertical column represents the CNV

(amplification, red; deletion, blue), SNV (missense, green; splice site, pink; frameshift, yellow) or multihit (black) mutations detected in each oncogene from the

gDNA of each cell cluster following WGS and WES sequencing. Stacked bars (top) show the accumulated alterations (both CNV and SNV) across all 23,588

reference genes in each cell cluster. Stacked bars (right) show the accumulated number of CNV and SNVmutations detected in each oncogene across all 80 cell

clusters and the percentage of cell clusters harboring mutations in each oncogene. Individual cell clusters are arranged based on CNV clone association, and

oncogenes are arranged by mutation/chromosome alteration frequency.
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observed in young TNBC patients,20–22 the DNA repair-associ-

ated gene BRCA1 either contained a missense mutation, was

deleted, or exhibited multiple transformative hits in �76% of all

cell clusters isolated, including those from the mixed-epithelial

clone A. Other genes affected by such variabilities included the

tumor suppressor TP53, which was mutated or exhibited multi-
4 Cell Reports Medicine 2, 100404, October 19, 2021
ple hits in the LVI and LN clones, and APC, which was mutated

in �71% of all of the cell clusters isolated. In accordance with

an amplification of the X chromosome, two genes, AR and

MSN, located on the X chromosome, were amplified in a high

proportion of mixed-epithelial and LVI clones, but to a lesser de-

gree in the LN (Table S1.3) clone. Furthermore, MYC, ERG,
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Figure 3. G&T-seq identifies 4 RNA-based clones in a single TNBC patient and permits direct comparison between DNA and RNA clones

(A) RNA heatmap depicting the unsupervised hierarchal clustering of 92 cell clusters based on their relative expression of select marker genes. Cell clusters are

plotted along the x axis and marker genes are plotted along the y axis. Color bars (top) represent the cell type (yellow, LN; red, primary tumor; purple, primary

tumor associated lymphatic vessels; green, epithelial cells; blue, lymphocytes) and RNA clone designation (green, epithelial clone; red, LVI clone; blue, LN

subclone 1; yellow, LN subclone 2). Increases in relative gene expression are represented on a Log2 (TPM+1) scale where 10 (dark red) is equivalent to >1,000-

fold increase and 0 (dark blue) indicates no relative increase in gene expression.

(B) Sankey diagram comparison of CNV clones, SNV clones, and RNA clones. For any pairwise comparison, we show only those cell clusters that were shared by

both pairs. RNA had 92 cell clusters pass quality control (QC), CNV had 84 cell clusters pass QC, but only 83 were shared. SNV had 59 cell clusters pass QC, and

of these, 57 were shared with either RNA or CNV. Clones are shown by the colors defined in (A).
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MCL1, VHL, MSH2, and CDK6 were amplified, while STK11,

FGFR2, and IGF1R were deleted in nearly all of the LVI and LN

clones. Overall, this demonstrates the complex CNV and SNV

landscape in this patient, with genetic alterations affecting not

only the CIN-associated LVI and LN clones but also the mixed-

epithelial clone.

Two distinct LN RNA clones are identified by whole-
transcriptome sequencing
In metastatic breast cancer, the tumor microenvironment varies

considerably among the primary tumor, the tumor-associated

lymphatic vessels, and the sentinel LNs. This influences the

gene expression patterns.WTSwas performed on themRNA ex-

tracted from each cell cluster to detect the relative expression of

23,588 RefSeq-curated genes. RNA clustering proved more

challenging than CNV and SNV clustering insofar as the previ-

ously deployed algorithms did not provide robust bootstrap

values. We therefore used the single-cell consensus clustering

(SC3) algorithm,23 which generates high accuracy and robust-

nessbycombiningmultiple unsupervisedclustering solutions us-

ing a consensus approach. SC3 computes a silhouettewidth and

a stability index, which lets users evaluate the optimal number (k)

of clones.Bothmethodsconcluded that fourwas theoptimum for

our dataset (Figure S3). The first clone identified was called an

epithelial clone (RNA clone A) because cell clusters with this

gene expression patternwere predominantly composedof histo-

logically normal breast epithelial cells. Again, LCM cell clusters
isolated from lymphatic vessels grouped together and were

found to exhibit a unique RNA expression pattern, indicating

the presence of a LVI clone (RNA clone B). Although the SC3 al-

gorithm uses all the genes for clustering purposes, some genes

aremore statistically informative, and these are themarker genes

depicted in Figure 3A. Marker genes highly expressed by cell

clusters with an LVI clone phenotype included several related

to tumor invasion and cell differentiation, such as FOXC1/D1/

Q1, NOTCH1, ART3, BIRC7, RAB40B, PTP4A3, CDK1, CLDN4/

7, FGFR3, QSOX2, AURKB, SCRIB, and CCNB1 (Table S2.1).

Unlike ourCNVandSNVanalysis, the transcriptional assessment

detected the presence of twodistinct LNRNAclones, eachwith a

uniquepattern of gene expression. RNALNclone 2 (RNAcloneD)

exhibited a very high expression of a number of immune-related

genes such as CD163, HMOX1, and TYROBP, as well as several

genes involved in cell migration such as VCAN and CTSH. RNA

LN clone 1 (RNA clone C) by comparison demonstrated a rela-

tively muted level of gene expression, with POMK, CYP3A4,

and several solute carriers being among the most highly ex-

pressed genes. Thus, while these LN clones are related in terms

of physical location, their gene expression profiles are distinct,

suggesting that they are genetically unrelated.

G&T-seq enables direct comparison between DNA and
RNA clones
G&T-seq facilitates the analysis of DNA and RNA from the same

sample, but it is still important to validate the clonal assignments
Cell Reports Medicine 2, 100404, October 19, 2021 5
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and confirm the relationships between the CNV, SNV, and RNA

clones identified. To visualize these relationships, we used a

Sankey diagram (Figure 3B). In Figure 3B, we present the flow

from CNV clones / RNA clones in the left panel, the flow from

SNV clones / RNA clones in the center panel, and compare

CNV clones with SNV clones in the right panel. Almost all (56/

57 z 98%) of the CNV clones and SNV clones were perfected

correlated. Therefore, in comparing to RNA clones, we need

only focus on CNV clones and can ignore SNV clones. For

RNA clone B, 21/26 z 81% of the cell clusters matched CNV

clone B, both of which came from the LVI. Interestingly, RNA

clones A and D were both entirely matched to CNV clone A,

demonstrating that the same CNV (and SNV) profile can match

to completely different RNA profiles, perhaps as the result of

the different microenvironments around the cell clusters (i.e.,

RNA clone A came from the primary tumor and RNA clone D

came from the LN). Lastly, for RNA clone C, 14/24 z 58% of

the cell clusters matched CNV clone A, while 9/24 z 38%

matched CNV clone C and 1/24 z 4% matched CNV clone B.

The overall lesson is that while CNV (and SNV) profiles can be

matched to RNA profiles, they are not by themselves sufficient

to predict RNA profiles.

For individual cell clusters that matched consistently to a CNV,

an SNV, and an RNA clone, we also generated Venn diagrams to

depict the number of shared genes (Figure S2.2). Little mutual

overlap was observed for genes associated with either the

mixed-epithelial clone or LN clone 2. However, the number of

overlapping genes, particularly those affected by both CNV

and SNV changes, was higher in cell clusters associated with

LN clone 1 and the LVI clone. This is consistent with these clones

exhibiting a large number of genomic alterations, and the LVI

clone being themost homogeneous in terms of cell-type compo-

sition. Furthermore, the number of overlapping genes between

CNV and RNA clones was in general much higher compared to

SNV and RNA clones. This suggests that while point mutations

may have played a role in shaping the transcriptome, CNVs ap-

peared to have a larger influence.

G&T-seq conveys the evolutionary history of tumor cell
clones and pathways of metastatic spread
Having defined LVI, LN, and mixed/epithelial clones from G&T-

seq data, we infer how they are evolutionarily related. To begin,

we constructed aCNVmaximumparsimony tree to trace descent

from common ancestors, and measure evolutionary distances

between each CNV clone.9,19,24 LCM cell clusters were plotted

against hamming distance and categorized based on cell type

and location (LN versus breast tissue). Overall, the CNV phyloge-

netic tree was rooted by themixed-epithelial clone with relatively

few CNVs, and had evidence of both branched and gradual evo-

lution (Figure 4A). Two early divergent subpopulationswere iden-

tified branching from the mixed epithelial clone, representing the

LN and LVI clones, both of which are highly CIN. Once diverged,

these two clones experienced many copy-number changes. By

comparison, the mixed-epithelial clone exhibited a relatively flat

evolutionary profile with just a few minor diverging subpopula-

tions. These likely represent random changes in genetic copy

number that ultimately were not advantageous to the tumor. A

second maximum parsimony tree constructed from the SNV
6 Cell Reports Medicine 2, 100404, October 19, 2021
data showed a similar result, in which the LN and LVI clones

evolved separately and gradually from an ancestor of mixed-

epithelial origin (Figure 4B). In contrast to the CNV phylogenetic

tree, the evolutionary distances between the three SNV clones

were much smaller, and the SNV LVI clone seems to have arisen

from a more closely related SNV LN clone. Overall, this phyloge-

netic analysis suggests that each of the CNV and SNV clones are

evolutionarily distinct, and provides evidence for the LVI and LN

clones being seeded by a mixed/epithelial clone originally pre-

sent in the primary tumor.

As chromosomal aberrations and genetic polymorphisms do

not readily translate into predictable gene expression changes,

we assessed the evolution of our clones at a transcriptional level.

For this analysis, we used the Monocle 2.0 algorithm to organize

the cell clusters based on their transcriptional similarity and to

construct transcriptional trajectories representative of the gene

expression pattern exhibited by individual cell clusters during

differentiation.25,26 Cell clusters weremapped against a pseudo-

time that served as a quantitative measure of developmental

progress. Branch points in the trajectories appear when varia-

tions in gene expression were found to yield distinct differentia-

tion events. Using the marker genes defined by the SC3

algorithm, we plotted the RNA expression trajectories from

Monocle 2.0. This analysis revealed the presence of two tran-

scriptionally distinct tumor cell differentiation fates, or trajec-

tories, each originating from cell clusters with an RNA epithelial

clone phenotype (Figure 4C). Notably, the RNA LVI clone and

the RNA LN2 clone were found to differentiate along a similar tra-

jectory, suggesting that they are related to each other develop-

mentally. Because the Sankey diagram (Figure 3B) showed

that the RNA LVI clone maps to the CNV LVI clone with extensive

chromosome aberrations, and the RNA LN2 clone maps to the

CNV mixed-epithelial clone with relatively few chromosome ab-

errations, it is not possible for the RNA LVI clone and the RNA

LN2 clone to be genetically related. It is unlikely that the RNA

LVI clone seeded either of the two RNA LN clones. We

concluded that there were three metastatic paths in this one pa-

tient, despite there being only two RNA trajectories. Pseudotime

gene expression profiles and Venn diagram analysis confirmed

that these paths were largely unique, each with a distinct gene

expression pattern (Figure S4; Table S2.2).

Combining these metastatic paths with oncogene assess-

ments, we can begin to reconstruct a simplified history of dis-

ease progression in this patient, as illustrated in Figure 4D. The

original primary tumor likely had a BRCA1 driver mutation that

was inherited by most successor cells. Furthermore, because

the X chromosome is amplified in the RNA epithelial, LVI, and

LN2 clones but not in the RNA LN1 clone, we conclude that

the RNA LN1 clone must have evolved from an ancestral clone

in the primary tumor that was either not sampled by us, or is

no longer present. Duplication of the X chromosome occurred

later and led to the RNA epithelial clone that is still present in

the primary tumor, and metastasized to the patient’s LNs as

the RNA LN2 clone. Based on the CNV phylogenetic tree, the

RNA epithelial clone also seeded the RNA LVI clone, whose

high mutational burden and CIN are most likely related to the

chemotherapeutic regimen that was administered to this patient

before our sample acquisition. This may have also played a role
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B Figure 4. Evolutionary history of cancer cell

clones reveals 3 distinct pathways of meta-

static disease in one patient

(A and B) Maximum parsimony tree constructed

based upon the CNV (A) and SNV (B) detection.

Each marker represents an individual cell cluster

isolated from either breast tissue (circle) or LN

tissue (triangle). Markers are colored according to

their cell type. Lines between cell cluster markers

correspond to CNV/SNV clone type and represent

the evolutionary distance between cell clusters.

(C) Metastatic transcriptional pathways of each

RNA clone as defined by the Monocle 2.0 algo-

rithm. Individual cell clusters are defined by cell

type and tissue location as described in (A) and (B)

and plotted against pseudotime.

(D) Combined reconstruction of the evolutionary

history of the tumor cell-clusters isolated from

our patient. Clones detected by G&T-seq are

depicted by solid circles, while unsampled

clones are represented with hash marks. The key

genes potentially affected by oncogenic events

are shown below each clone. Clone location is

shown on the right (epithelial/primary tumor,

green; lymphatic vessel, red; LN, blue) and met-

astatic pathway (Path1, Path2, Path3) is depicted

on the bottom.
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in the development of the genomically unstable RNA LN1 clone,

derived from an unsampled primary tumor clone that lacked the

X chromosome amplification and metastasized to the LNs. In

summary, with limited tissue sampling, G&T-seq allowed us to

reconstruct a complex model of tumor progression and metas-

tasis in this patient.

Gene enrichment identifies distinct metastatic and
immune-related biological processes for each of three
paths
Having deduced the existence of three transcriptionally distinct

metastatic paths in this patient, we sought to determine the

key biological processes and genes associated with each of

these paths. Following gene-set enrichment of significantly

changing genes associated with each path by Metascape27
Cell Report
(Table S3.1), we selected the 20 most

representative biological processes

across all 3 metastatic paths and gener-

ated a heatmap to compare their relative

significance to each path (Figure 5A).

Similar to other reports, all three paths

were enriched in biological processes

related to epithelium morphogenesis,28

suggesting that epithelial changes pro-

vided a foundation for metastasis.

Furthermore, the two metastatic paths

exhibiting genome instability (path 1,

RNA LVI clone; path 3, RNA LN1 clone)

shared biological processes related to

cell cycle and oxidative stress, indicative

of rapid proliferation and a role for hypox-
ia. Metastatic paths involving the primary cancer cells (path 1,

RNA LVI clone; path 2, RNA LN2 clone) were enriched in biolog-

ical processes for blood vessel development, epithelial cell

migration, and regulation of cell adhesion, all of which are related

to tumor cell invasion and migration.29–31 Each metastatic path

was also associated with unique biological processes such as

chromosome segregation and T-helper cell differentiation for

path 1; extracellular matrix organization, Toll-like receptor

signaling, and response to interferon-g (IFN-g) for path 2. Path

3 was enriched in biological processes associated with immune

regulation—for example, antigen processing and presentation

via major histocompatibility complex class I (MHC class I),

cellular metabolism (e.g., oxidative phosphorylation), and trans-

lation termination. These results are detailed in Figures 5A and

S5 and Table S3.1.
s Medicine 2, 100404, October 19, 2021 7
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Figure 5. Biological process, hub gene, and overall survival (OS) analysis of each metastatic pathway reveals distinct gene signatures
associated with variable patient outcomes

(A) Heatmap depicting the relative significance of the top 20 Metascape-defined biological process groupings to each metastatic pathway. Biological processes

are arranged based upon being (1) shared by all paths, (2) shared by CIN clones, (3) shared by LN clones, (4) shared by primary cancer clones, or (5) path specific.

Scale coloring represents the log p value for the indicated biological process grouping.

(B–D) PPI network map of hub genes associated with path 1 (B), path 2 (C), and path 3 (D). Nodes represent individual genes, and edges denote a known as-

sociation between genes. Red nodes represent genes exhibiting an increase in expression, while blue nodes represent genes with decreased expression. Hub

genes, which were among the top 10 hits from each metastatic path but did not demonstrate a significant change in expression, are depicted in gray. Node size

denotes the relative importance of each gene to the network.

(E) Kaplan-Meier plots depicting OS outcomes of breast cancer patients with high (red) versus low (black) expression for the top 20 hub genes associated with each

metastatic path. OS curves were generated using KM-plotter from a cohort of 1,089 breast cancer tumor samples and corresponding patient survival data. Hazard

ratios and log-rank p values (0.0037, 0.099, 0.0045 for paths 1 to 3) are shown in the top right-hand corner of each Kaplan-Meier curve. mOS,median overall survival.

(F) Violin plots depicting the fold change in expression of 80 RPL and RPS genes across 17 cancer types in comparison to normal tissue. RPL and RPS expression

data were derived from the TCGA database incorporating ENCORI. Tumor types are sorted from lowest to highest median fold change in ribosomal protein

expression. The median fold change value of each cancer type is presented by a dot in the center of each violin plot. The horizontal orange dashed line marks a

fold change value of 1.0. The violin shape corresponds to the density of data (more bulbous means more data). The tumor types assessed are as follows: BRCA,

breast-invasive carcinoma; UCEC, uterine corpus endometrial carcinoma; HNSC, head and neck squamous cell carcinoma; STAD, stomach adenocarcinoma;

KICH, kidney chromophobe; PAAD, pancreatic adenocarcinoma; THCA, thyroid carcinoma; BLCA, bladder urothelial carcinoma; ESCA, esophageal carcinoma;

LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; PRAD, prostate adenocarcinoma; COAD, colon adenocarcinoma; KIRP, kidney renal

papillary cell carcinoma; KIRC, kidney renal clear cell carcinoma; LIHC, liver hepatocellular carcinoma; CHOL, cholangiocarcinoma.
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We used the Cytoscape application CHAT32 to identify hub

genes (i.e., highly interconnected genes critical to the gene

network) associated with each metastatic path and to compute
8 Cell Reports Medicine 2, 100404, October 19, 2021
protein-protein interactions (PPIs). The hub genes associated

with path 1 (RNA LVI clone) included those related to cell

cycle (FZR), cell division (CDC20), and nucleosome structure



Article
ll

OPEN ACCESS
(HISTIH2BG) (seeFigure5BandTableS2.3). This isconsistentwith

chromosome segregation being a key biological process associ-

ated with path 1, implying that CIN caused by abnormal chromo-

some segregation may have led to metastasis by LVI-associated

clonal populations. Path 2 (RNA LN2 clone) was associated

more with inflammation and invasion-related matrix metallopro-

tease genes (MMP9, MMP2), as well as genes for cell adhesion

(VCAN, ITGB3) (see Figure 5C and Table S2.3). Elevated expres-

sion of these particular genes is consistent with Toll-like receptor

signaling and antigen receptor�mediated signaling being en-

richedbiological processes, suggesting that path2maybe related

to the epithelial-mesenchymal transition (EMT)-inflammation axis

of cancer cell metastasis. Finally, almost all of the hub genes (48

of the top 50) associated with path 3 (RNA LN1 clone) were ribo-

somal, and all of these were downregulated, with the exception

of RPL10L (see Figure 5D and Table S4.1). This reduction in the

expression of transcripts encoding ribosomal proteins, combined

with enrichment for biological processes antigen processing and

presentation via MHC class I, TAP-dependent (GO [Gene

Ontology]: 0002479), and translation termination, suggests that

path3 is trying to limit protein synthesis andneo-antigenpresenta-

tion on cell surfaces.

Extensive downregulation of transcripts encoding
ribosomal proteins is a potential marker of poor
prognosis in breast cancer
Finally, we aimed to determine whether the hub gene expression

profiles associated with each metastatic path correlated with dif-

ferences in breast cancer survival outcomes. To extrapolate our

findings beyond this one TNBC patient, we used KM-plotter,33

which incorporates gene expression and survival data from pub-

licly accessible databases to generate Kaplan-Meier overall sur-

vival (OS) curves. By comparing the survival outcomes of patients

exhibiting high versus low mean expression of the top 20 hub

genes from each metastatic path, we inferred that path 1 (RNA

LVI clone) and path 3 (RNA LN1 clone) are correlated with signifi-

cantly worse prognoses for breast cancer patients (Figure 5E; p =

0.0037, hazard ratio [HR] 1.63 [1.17–2.28] and p = 0.0045,HR0.58

[0.39–0.85], respectively). By contrast, path 2 showed little impact

onbreast cancerOS (p=0.099,HR0.76 [0.55–1.05]).Moreover, of

the 1,089 patient samples we included in this OS analysis, a larger

numberwere found to exhibit a path 3 hub gene expression signa-

ture (N = 792), in comparison to both path 1 (N = 273) and path 2

(N = 473). Knowing that increased ribosome biogenesis is a hall-

mark of many cancers and a recognized marker of poor disease

prognosis,34 our finding that the extensive downregulation of

both S ribosomal proteins (RPS) and L ribosomal proteins (RPL)

associated with path 3 correlated with worse clinical outcomes

was unexpected, and it warranted further investigation. Of our

80 ribosomal protein genes, 78 were found to be downregulated

in path 3 (Table S4.1), and 64 of these had a log rank p < 0.05 in

KM-plotter, correlating with a poor prognosis when downregu-

lated. Only RPL10L, which exhibited an increased expression in

path 3, was associated with improved prognosis (p = 3.2e�5).

To determine whether such ribosomal protein gene downre-

gulation occurs universally in breast cancer, or potentially,

even in other cancer types, we performed a pan-cancer differen-

tial gene expression analysis of 80 RPL and RPS ribosomal pro-
tein genes across 17 different cancer types using the expression

data from The Cancer Genome Atlas (TCGA) with integration by

ENCORI (Encyclopedia of RNA Interactomes35) (Table S4.2). We

found that ribosomal protein genes are broadly downregulated in

breast cancer, with 51 of 80 genes having significantly reduced

expression in comparison to normal tissue. Furthermore, breast

cancer had the lowest median fold change (<0.9) in ribosomal

protein expression, when compared to other cancer types

(Figure 5F; Table S4.3). By contrast, 9 of 17 cancer types demon-

strated extensive ribosomal protein gene upregulation, with >1.1

median fold change. This indicates that the reduced expression

of ribosomal proteins is a potential marker for poor survival

outcome in breast cancer.

DISCUSSION

Lymphovascular invasive tumor cells have received little atten-

tion, despite their strong correlation with clinical outcomes in

breast and other cancers. We used a multi-omics approach

to study pathologist-defined cell clusters sampled from multi-

ple sites in one TNBC patient. Combining laser capture micro-

dissection with simultaneous genome and transcriptome

sequencing, we were able to explore the genetic mechanisms

promoting the metastatic spread of breast-derived cells from

the primary tumor to the axillary LNs. Our analyses revealed

a highly heterogeneous genetic profile, with a vast mutational

landscape, typified by extensive chromosome aberrations

and single-nucleotide mutations. These mutations affected

many key oncogenes such as BRCA1, TP53, CHEK2, APC,

MYC, CDK6, and MCL1. They were present not only in

cancerous cells but also histologically normal breast epithelial

cells. Our analysis found that LVI-associated breast cancer

cells exhibited common chromosomal and transcriptional fea-

tures such as CIN. Moreover, we discovered evidence of poly-

clonal metastasis in this patient, with three transcriptionally

distinct metastatic pathways identified.

It is important to note that the cell clusters analyzed in these

experiments were dissected directly from H&E-stained patho-

logical slides prepared from frozen tissues. This enabled the his-

tological identification and dissection of specific cells based on

their association with specific morphological structures. Impor-

tantly, we were able to recover clusters of lymphovascular

invasive cells directly from lymphatic vessels, which, due to the

unidirectionality of lymph flow, represent disseminated tumor

cells categorically en route to the axillary LNs from the primary

tumor. Furthermore, because previous breast cancer studies

found LVI and LN metastasis to be mediated by collective

cellular invasion,36 these methods allowed us to characterize

what we believe are more physiologically representative multi-

cellular invasive units.

Performing unsupervised hierarchal clustering, we found LVI-

associatedcells tobegenomically and transcriptionally similar, ex-

hibitinganexceptionally largenumberof chromosomeaberrations

andexpressinghigh levelsof a numberof genes related to invasion

and EMT regulation such as FOXC1, ART3, BIRC7, RAB40B,

PTP4A3, andNOTCH1.Ourdataalsosuggest thatLVI cells arege-

nomically unstable, consistentwithBCRA1beinga foundingdriver

mutation in our patient, and spindle checkpoint/chromosome
Cell Reports Medicine 2, 100404, October 19, 2021 9
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maintenance genes being identified as key biological processes.

Chromosome aberrations have been observed in many human

cancers,37 and recentwork38 has linkedCIN tometastatic spread,

whereby the rupture of CIN-inducedmicronuclei elicits a cytosolic

DNA response, which ultimately converge onto noncanonical nu-

clear factor kB (NF-kB) activation concomitant with increased

metastasis in animal models. Although the number of NF-kB and

inflammatory genes directly associated with the LVI clones in our

study is limited, we believe that a similar mechanism may still be

at play, as RNA trajectory analysis placed LVI cells in a state of dif-

ferentiationpreceding thatof theLNcancerRNAcloneD (RNALN2

clone), which had a clear inflammatory and invasive phenotype.

Moreover, because the LVI-associated cells in our studywere iso-

lated from within lymphatic vessels, their transcriptional profiles

may be suppressed, as a method to circumvent immune surveil-

lance and physical stresses of lymphatic transit. It is also worth

mentioning thatanumberofprimary tumorcell clusterswere found

toexhibit aCNV/SNVprofilesimilar to thatof theLVI cells, suggest-

ing that these invasive cells may have arisen directly from cancer

cells positioned along the stromal interface of the primary tumor.

While spatial mapping of the cell clusters collected would be

required to confirm this association, similar correlations have

been described by other groups,39 suggesting that these primary

cancer cells could be therapeutically targeted to inhibit the meta-

static spread of disease via the lymphatic system.

Our study also found evidence of polyclonal metastasis, with

two genetically and transcriptionally distinct cancer cell popula-

tions identified in the LNs of this patient. Based on evolutionary

evidence, these two populations were likely established by

asynchronous metastatic events that occurred at both early

(RNA LN2 clone) and late (RNA LN1 clone) time points. This is

consistent in part with the theory that early dissemination can

seed metastatic breast cancer.40,41 Moreover, the two LN

clones were associated with transcriptionally distinct paths,

and disparate OS outcomes when extrapolated to a cohort of

1,089 breast cancer patients. Path 2 (RNA LN2 clone) exhibited

a relatively benign gene signature compared to path 1 (RNA LVI

clone) and path 3 (RNA LN clone 1). This is consistent with path

2 exhibiting a more pro-inflammatory phenotype that may

encourage immune detection, and points to a role for the

EMT-inflammation axis in promoting disease progression. The

possibilities are not mutually exclusive, since immune surveil-

lance mechanisms restricting tumor growth can be overcome

by tumor-induced immunosuppressive changes, as has been

extensively reviewed.42–46

Aggressive cancers are generally believed to have a high rate

of protein synthesis. Ribosomal protein expression is often

increased in most cancers and regarded as amarker of poor dis-

ease prognosis.34 Accordingly, we were very surprised that path

3 (RNA LN1 clones) showed a reduced expression of transcripts

encoding numerous ribosomal proteins, and that this was asso-

ciated with worse survival outcomes in breast cancer patients.

We hypothesize that path 3 is trying to limit protein synthesis

and neo-antigen presentation on cell surfaces. This could serve

as both a coping mechanism in response to proteostatic

stress34,47 and an immune evasion strategy to prevent cytotoxic

T cell responses with immune cell infiltration of the tumor.48 The

extensive downregulation in ribosomal protein expression and
10 Cell Reports Medicine 2, 100404, October 19, 2021
its effect on survival outcomes appears to be unique to breast

cancer, with most other cancer types exhibiting increased

expression of these genes. Themechanism behind this phenom-

enon, and its significance to breast cancer, remains unclear.

Because these experiments are a temporal assessment of an

advanced heterogeneous disease, it is uncertain whether this

gene expression pattern is stable, or is a temporary phenotype

in the spectrum of tumor cell plasticity. Recent studies have

shown that energetics and protein synthesis rates are highly

plastic, and alterations in these phenomena may underpin resis-

tance to therapy.49 Further investigations into the role of ribo-

somal protein expression in breast cancer progression must be

explored.

Although there are obvious limitations to any publication

based on just one patient, there are also questions that are

difficult (if not impossible) to answer by the sequencing of

bulk samples, especially when taken from just one body site.

For example, simpler experimental designs may not have de-

tected multiple exits from the primary tumor. Unfortunately,

we did not have access to distant metastasis tissues from

this one patient, so we could not determine which (if any) of

our hypothesized LVI exits was their precursor. Previous

studies have attributed 25%–35% of distant metastasis to LN

metastasis, albeit by studying heterogenous bulk samples.50,51

Future studies using multiregional sampling and simultaneous

DNA/RNA sequencing (i.e., similar to our experiment but on a

much larger number of patients) are likely required for definitive

answers to such questions.

Limitations of study
Beyond the inherent limitations of a case study based on one

patient, the deeper problem is that we could not sample more

time points and more body sites. Hence, we had to infer the ex-

istence of multiple clones. We do not see any obvious way to

avoid making such inferences since ethical issues will always

make it difficult (if not impossible) to collect the requisite sam-

ples. The number of clones for the CNV and SNV analyses

was robust at three, but the number of clones for the RNA anal-

ysis could conceivably have been five. We chose four to

simplify the interpretation. The computed gene networks for

the different paths were based on a comparison of RNA clones

B, D, and C, for paths 1, 2, and 3, respectively, against RNA

clone A. Since clone B came mostly from breast tissue and

lymph vessels, while clones C and D came mostly from LNs,

the microenvironments are different, and that too can influence

gene expression. Experimental validation of the computed gene

networks is also lacking, so the specific genes that are identi-

fied must be interpreted with caution. However, the survival

outcome (Figure 5E) and ribosomal protein (Figure 5F) results

used public data for over a thousand patients, which should

be more robust.
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Biological samples

Human tumor biopsy tissue Cross Cancer Institute, Edmonton,

Alberta, Canada, T6G 1Z2

HREBA.CC-18-0470

Chemicals, peptides, and recombinant proteins

Clear Frozen Section Compound VWR 95057-838

Hematoxylin 7211 Thermo Fisher 7211

Eosin-Y Thermo Fisher 7111

Lithium Carbonate (Bluing reagent) Thermo Fisher 7301

Xylene Fisher Chemicals X 5-1

Ethyl alcohol anhydrous Commercial alcohols P016EAAN

Ethyl alcohol 95% Commercial alcohols P016EA95

Buffer RLT Plus QIAGEN Cat# 1053393

ERCC ExFold RNA Spike-In Mixes Invitrogen Cat# 4456739

M-280 Streptavidin Dynabeads� Invitrogen Cat #11205D

RNase inhibitor NEB Cat# M0314L

Nuclease-free water Ambion Cat# AM9938

MgCl2 1M Invitrogen Cat# 20-303

Betaine solution 5M Sigma-Aldrich Cat# B0300-1VL

SuperScript� II Reverse Transcriptase Invitrogen Cat# 18064-014

dNTPs (10mM) NEB Cat# N0447

2 3 KAPA HiFi HotStart ReadyMix KAPA BIOSYSTEMS Cat# KK2602

Agencourt AMPure XP AGENCOURT Cat# A63881

Transposase BGI Cat # BGE005

10% SDS Ambion Cat# AM9822

ATP Solution, Tris buffered Thermo Fisher Cat# R1441

T4 DNA ligase (600U/mL) Enzymatics Cat# L6030

Exonuclease I (20U/mL) NEB Cat# M0293L

Exonuclease III (100U/mL) NEB Cat# M0206L

dNTPs (2.5mM) Invitrogen Cat# R72501

BSA NEB Cat# B9000S

rTaq (5U/mL) Thermo Fisher Cat# EP0402

Phosphate buffer saline (pH 7.4) GIBCO Cat# 10010-031

Critical commercial assays

REPLI-g Single Cell Kit QIAGEN Cat# 150345

MGIEasy DNA Rapid Library Prep Kit MGI Cat# 200033-00

MGIEasy Exome Capture V4 Probe Set MGI Cat# 1000007745

Qubit dsDNA HS Assay kit Invitrogen Cat# Q32854

KAPA HiFi HotStart ReadyMixPCR Kit KAPA BIOSYSTEMS Cat# KR0370

Deposited data

WGS sequencing data of 97 LCM cell

cluster

This paper https://db.cngb.org/cnsa (accession

number CNP0000440)

WES sequencing data of 97 LCM cell

cluster

This paper https://db.cngb.org/cnsa (accession

number CNP0000440)

RNA sequencing data of 97 LCMcell cluster This paper https://db.cngb.org/cnsa (accession

number CNP0000440)
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Oligonucleotides

Biotinylated-Oligo-dT30VN primer Sangon Biotech 50-Bio-AAGCAGTGGTATCAACGCA

GAGTACT30VN-30

TSO Sangon Biotech 50-AAGCAGTGGTATCAACGCAGAGTACr

GrG+G-30

IS PCR Primer Sangon Biotech 50-AAGCAGTGGTATCAACGCAGAGT

AC-30

Splint oligo Sangon Biotech 50-GCCATGTCGTTCTGTGAGCCAAGG-30

PhoAd153 F primer Sangon Biotech 50-phoGAACGACATGGCTACGATCCGA

CTT-30

Ad153 R primer Sangon Biotech 50- TGTGAGCCAAGGAGTTGTTGTC

TTC-30

Ad153-F-tag Sangon Biotech 50-phosGAACGACATGGCTACGATC

CGACTTTCGTCGGCAGCGTC-30

Ad153-R-tag Sangon Biotech 50-TGTGAGCCAAGGAGTTGTTGT

CTTCN10GTCTCGTGGGCTCGG-30

CYB5A Forward Sangon Biotech 50-GGCAACGCTTAGACTCTGTGTG-30

CYB5A Reverse Sangon Biotech 5’-CTGCCCTTGGCCTAACTAACCT-30

Software and algorithms

BWA (Version: 0.7.17) Li and Durbin, 200952 http://bio-bwa.sourceforge.net/

ANNOVAR (v2017-07-17) Wang et al., 201053 https://annovar.openbioinformatics.org/

en/latest/

bowtie2 (Version: 2.3.1) Langmead et al., 200954 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

Picard (Version:1.9) GATK https://broadinstitute.github.io/picard/

BEDTools (v2.17.0) Quinlan and Hall, 201055 https://bedtools.readthedocs.io/en/latest/

CHAT (version:1.0.5) Muetze et al., 201632 https://apps.cytoscape.org/apps/chat

Cytoscape (Version:3.6.1) Shannon et al., 200356 https://cytoscape.org

EnrichmentMap (version:3.1.0) Isserlin et al., 201457 https://apps.cytoscape.org/apps/

enrichmentmap

GSEA (v06-Apr-2017) Subramanian et al., 200558 https://gsea-msigdb.org/gsea/index.jsp

MonoVar (no version available) Zafar et al., 201659 https://bitbucket.org/hamimzafar/monovar

RSEM (v1.2.29) Li and Dewey et al., 201160 https://deweylab.github.io/RSEM/

SAMtools (Version: 0.1.19) Li et al., 200961 http://samtools.sourceforge.net/

SOAPnuke (Version: 1.5.6) Chen et al., 201862 https://github.com/BGI-flexlab/SOAPnuke

ape (Version: 5.1) Bioconductor https://cran.r-project.org/web/packages/

ape/index.html

copynumber (Version:1.22.0) Bioconductor https://bioconductor.org/packages/

release/bioc/html/copynumber.html

ggtree (Version: 1.14.6) Bioconductor http://bioconductor.org/packages/release/

bioc/html/ggtree.html

hcluster (Version: 1.1.25) Bioconductor https://www.rdocumentation.org/

packages/fastcluster/versions/1.1.25/

topics/hclust

pheatmap (version: 1.0.12) Bioconductor https://www.rdocumentation.org/

packages/pheatmap/versions/1.0.10/

topics/pheatmap

DNAcopy (Version: 1.22.0) Bioconductor http://www.bioconductor.org/packages/

release/bioc/html/DNAcopy.html

Monocle2 (Version: 2.0) Qiu et al., 201726 http://cole-trapnell-lab.github.io/

monocle-release/docs/

(Continued on next page)

Cell Reports Medicine 2, 100404, October 19, 2021 e2

Article
ll

OPEN ACCESS

http://bio-bwa.sourceforge.net/
https://annovar.openbioinformatics.org/en/latest/
https://annovar.openbioinformatics.org/en/latest/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://broadinstitute.github.io/picard/
https://bedtools.readthedocs.io/en/latest/
https://apps.cytoscape.org/apps/chat
https://cytoscape.org
https://apps.cytoscape.org/apps/enrichmentmap
https://apps.cytoscape.org/apps/enrichmentmap
https://gsea-msigdb.org/gsea/index.jsp
https://bitbucket.org/hamimzafar/monovar
https://deweylab.github.io/RSEM/
http://samtools.sourceforge.net/
https://github.com/BGI-flexlab/SOAPnuke
https://cran.r-project.org/web/packages/ape/index.html
https://cran.r-project.org/web/packages/ape/index.html
https://bioconductor.org/packages/release/bioc/html/copynumber.html
https://bioconductor.org/packages/release/bioc/html/copynumber.html
http://bioconductor.org/packages/release/bioc/html/ggtree.html
http://bioconductor.org/packages/release/bioc/html/ggtree.html
https://www.rdocumentation.org/packages/fastcluster/versions/1.1.25/topics/hclust
https://www.rdocumentation.org/packages/fastcluster/versions/1.1.25/topics/hclust
https://www.rdocumentation.org/packages/fastcluster/versions/1.1.25/topics/hclust
https://www.rdocumentation.org/packages/pheatmap/versions/1.0.10/topics/pheatmap
https://www.rdocumentation.org/packages/pheatmap/versions/1.0.10/topics/pheatmap
https://www.rdocumentation.org/packages/pheatmap/versions/1.0.10/topics/pheatmap
http://www.bioconductor.org/packages/release/bioc/html/DNAcopy.html
http://www.bioconductor.org/packages/release/bioc/html/DNAcopy.html
http://cole-trapnell-lab.github.io/monocle-release/docs/
http://cole-trapnell-lab.github.io/monocle-release/docs/


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

SC3 (Version:1.10.1) Bioconductor http://bioconductor.org/packages/release/

bioc/htmlSC3.html

dendextend (version: 1.8.0) Bioconductor https://bioconductor.org/packages/

release/bioc/html/DECIPHER.html
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Gane Ka-

Shu Wong (gane@ualberta.ca).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All raw and processed sequencing data generated in this study are deposition on the publicly accessible database CNGBNucleotide

Sequence Archive (CASA: CNP0000440, CNSA: https://db.cngb.org). Any additional information required to reanalyze the data re-

ported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study and analysis were approved by Health Research Ethics Board of Alberta, Cancer Care committee (Approval # HREBA.CC-

18-0470), and the BGI institutional review board on bioethics and biosafety (Approval No. BGI-IRB 15148). Patient informed consent

was obtained prior to the performance of experimental procedures.

Patient basic information
Tissue samples were provided by a 24-year-old Caucasian female with T3 N1 M1, ER(-), PR(-), HER-2(-), grade 3, invasive ductal

breast carcinoma following palliative mastectomy and full axillary lymph node dissection. This patient had received previous treat-

ment with two cycles of docetaxel and four cycles of doxorubicin/cyclophosphamide chemotherapywith little or no clinical response.

At the time of sample collection, metastasis has occurred to the patient’s local regional axillary lymph nodes (3 of 15 nodes were

positive for metastatic carcinoma), as well as the liver. Two tissue samples were collected from the tumor-stromal interface of the

primary tumor, and two additional tissue samples were collected from carcinoma positive axillary lymph nodes. Samples were ob-

tained within 10min from resection and immediately immersed in liquid nitrogen for flash freezing. The patient survived �18 months

following initial diagnosis, and passed away �9 months following sample donation.

METHOD DETAILS

Laser capture microdissection (LCM) and cell cluster lysis
Frozen tissues were embedded in Clear Frozen Section compound (VWR cat no. 95057-838), sectioned on a cryostat (Leica,

CM3050S) and stained with hematoxolin and eosin (H&E) to identify areas for laser capture microdissection. LCM was performed

with a Leica CRT6000 laser capture microdissection microscope (Concord, ON, Canada) within 15 min of sectioning to avoid

RNA degradation. All of our cell clusters were subject to pathologist identification. From the primary cancer tissue, we obtained

cell clusters labeled epithelial, cancer, and LVI. Only when the tumor or normal proportion is over 95% was a cell cluster labeled

as cancer or epithelial, respectively. For lymph node, the categories were lymphocyte and cancer. Each cell cluster determination

wasmade by two pathologists, based on cellular morphology, and we have included as Figure S1 representative microscope images

used for this purpose. Cell clusters were classified as groups of cells over 10mm in diameter. Each cell cluster contained an estimated

50-200 cells. Extracted cell clusters were incubatedwith a lysismixture (20mLRLT Plus buffer (QIAGEN 1053393), plus 1mL of spike-in

RNA (1:250,000), and immediately placed on ice for subsequent steps.

Oligo-dT30VN bead labeling; mRNA and gDNA separation
M-280 Streptavidin Dynabeads� (Invitrogen, catalog no. 11205D) were washed according to the manufacturer’s recommendations,

mixed 1:1 with biotinylated-Oligo-dT30VN primer (100 mM), and incubated for 20min at room temperature. Oligo-dT30VN-labeled

beads were then washed and resuspended in bead resuspension buffer (Superscript II first-strand buffer, RNase inhibitor,

nuclease-freewater (NF-H2O)). FormRNAandgDNAseparation, 10mLofOligo-dT30VN labeledbeadswas added to tubes containing
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lysed cell clusters. 2.5mL of RLT Plus buffer was added to each tube and bead/cell suspensions were incubated for 20 min at room

temperature. Samples were then placed on a magnet for 1min for bead separation. Supernatant containing gDNA was transferred

to a new tube. Oligo-dT30VN labeled beads were then washed twice with 10 mL of G&T seq wash buffer (50 mM Tris-HCl, pH 8.3,

75 mM KCl, 3 mM MgCl2, 10 mM DTT, 0.5% Tween-20, 0.2 3 RNase inhibitor), and supernatant containing gDNA was transferred

into new tubes and stored at �80�C until further processing. The remaining Oligo-dT30VN-labeled beads coupled to cell-cluster ex-

tracted mRNA were prepared for reverse transcription.

Reverse transcription, amplification, purification of cDNA
For reverse transcription (RT), 10mL of RTMastermix (53SuperScript II First-Strand Buffer, 5MBetaine, 100mMMgCl2, 100mMDTT,

100uM TSO, RNase inhibitor, SSII, dNTPs (10mM)) was added to tubes containing the Oligo-dT30VN-labeled beads coupled to the

mRNA from each cell cluster. Samples were placed in a Veriti 96-Well Thermal Cycler (Applied Biosystems, Catalog no. 4375786) for

RT using the following program settings: 42�C 2min, 42�C 60min, 50�C 30min, and 60�C 10min. 12.5 mL of PCRMastermix (23KAPA

HiFi HotStart ReadyMix, IS PCR Primer) was then added to each RT reaction tube. Tubes were placed in the thermal cycler for cDNA

amplification at the following program settings: 98�C 3min, 98�C 20 s, 67�C 15 s, 72�C 6min, 98�C 20 s for 22 cycles and 72�C 5min.

Amplified cDNA was stored at �20�C until purification. To purify amplified cDNA, room temperature AMPure XP beads (Agencourt,

catalog no A63881) were added at a 0.8:1 ratio to cDNA containing tubes and incubated at room temperature for 5min. The super-

natant was removed, beadswerewashed twicewith 100mL 80%ethanol and allowed to dry. Beadswere then resuspended in 21mL of

NF-H2O.

Tn5 cDNA library preparation and sequencing
1.0ng of cDNA from each sample wasmixed with a fragmentationmixture containing the BGI enzyme Tn5 Transposase (BGI, catalog

no. BGE005) embedded with adaptors, and heated to 55�C for 7 min. The reaction was stopped by adding 5 mL of 0.1% SDS to each

sample. 25 mL of PCR reactionmix (5 x KAPA Fidelity Buffer, 10mMeach dNTP, PhoAd153 F primer (10 mM), Ad153 R primer (10 mM),

Ad153-F-tag (0.5 mM), Ad153-R-tag (0.5 mM), KAPA HiFi DNA polymerase), was added to each fragmented cDNA sample. Samples

were transferred to a thermal cycler for amplification using the following program settings: 72�C5min, 95�C 3min, 98�C20 s, 60�C15

s, 72�C 25 s for 15 cycles, 72�C 5min. After amplification, 0.6X and 0.2X AMPure XP beads were used to select 300bp ± 100bp size

fragments. These were then pooled for a total of 520ng cDNA per sample. cDNA in was cyclized by adding 20 mM Splint oligo (In-

vitrogen, Shanghai, China), and NF-H2O to each sample for a final volume of 70 mL and heating samples to 95�C for 3min. 10x TA

buffer (100mMATP, T4 DNA ligase (600U/mL), NF-H2O), was added to each reaction for a final volume of 120 mL. Samples were incu-

bated at 37�C for 1hr. EXO digestion was then performed by adding 10x TA buffer mixed with EXO I (20U/mL), EXO III (100U/mL) and

NF-H2O to each sample for a final volume of 128 mL. Samples were incubated at 37�C for 30 min. Reaction products were then

purified by adding 320 mL of AMPure XP beads to obtain the cDNA library. Rolling circle amplification (RCA) was performed to pro-

duce DNA Nanoballs (DNBs) that were loaded on to the BGISEQ-500 sequencing platform (BGI, Shenzhen, China). Qualified cDNA

libraries were sequencing with 100bp paired-end reads.

Purification and amplification of gDNA
To enriched cell cluster gDNA, AmPure XP Beads were added to gDNA containing supernatants at a 0.6:1 gDNA to bead ratio, and

incubated for 8 min at room temperature. The supernatants were then discarded, and the remaining beads were washed twice with

100mL 80% ethanol, followed by the addition of 5mL NF-H2O. gDNA was amplified using a REPLI-g Single Cell Kit (QIAGEN, Catalog

no. 150345). Briefly, 3.5mL of Buffer D2 (denaturation buffer) was added to the beads and incubated for 10 min at 65�C. The reaction

was stopped by adding 3 mL of Stop Solution to each sample. 40mL of Master Mix (29mL REPLI-g sc Reaction Buffer, 2mL REPLI-g sc

DNAPolymerase, NF-H2O sc), was added to each denaturedDNA sample for amplification. Sampleswere then incubated at 30�C for

8 h and the reaction was stopped by heating samples to 65�C for 3 min.

Housekeeping test for MDA products
Prior to the WES/WGS sequencing, the quality of the amplified DNA products was assessed using a multiplex PCR based method

that evaluated the presence of eight genes (CYB5A, PRPH, GABARAPL2, ACTG1, NDUFA7, UQCRC1, MYC, MIF) from different

chromosomes. 1mL of PCR mix (3.0 mL 10x Buffer, dNTP (2.5mM) 3.2 mL, 3.0 mL Primer Mix (10 mM) 0.2 mL 100 x BSA, 0.4 mL

rTaq (5U/mL)), was added to each amplified gDNA sample. These were then placed in a thermal cycler for amplification of the above

gene products using the program settings: 95�C 4min; 95�C 30 s; 56�C 50 s and 72�C 1min for 35 cycles; 72�C 10min. Agarose gel

electrophoresis was then performed on the PCR amplification products. Samples in which 4 or more bands were detected were sub-

jected to downstream library preparation.

WGS library preparation and sequencing
Whole genome sequencing (WGS) libraries were constructed from quantified and amplified gDNA from each cell cluster using an

MGIEasy DNA Rapid Library Prep Kit (BGI, catalog no, 940-200033-00), and the BGISEQ-500 sequencing platform. Briefly, high-

quality gDNA was randomly fragmented using a Covaris LE220 ultrasonicator (Covaris, Woburn, MA, USA). AMPure XP magnetic

bead-based cleanup was conducted to select fragments ranging from 100-700 base pairs (main band 200-300bp). Selected
Cell Reports Medicine 2, 100404, October 19, 2021 e4
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fragments were tailing-end repaired by adding Adaptor Mix after which the ligated was DNA purified. Purified DNA samples were

transferred to a thermal cycler and amplified with the following program settings: 95�C 3 min; 8 cycles of 98�C 20 s, 60�C 15 s, 72�C
30 s; then 72�C 10 min. The PCR products were purified with AMPure XP magnetic beads. Samples were mixed with different barc-

odes and NF-H2O was added to each sample for a final volume of 48 mL. The homogenized PCR products were then denatured by

heating them to 95�C for 3 min in a thermal cycler. 11.8 mL of Reaction Mixture was added to each sample. Denatured DNA was

circularized by placing samples in a thermal cycler for 30 min at 37�C. Circularized DNA was then digested by added 4mL of Diges-

tion Reaction Solution to each sample for 30 min at 37�C. This reaction was stopped by added 7.5 mL of Digestion Stop Buffer.

Single stranded circular DNA was then purification using AMPure XP magnetic beads. RCA was performed to produce DNBs

that were loaded on to the BGISEQ-500 sequencing platform. The qualified WGS libraries were sequenced with an average

coverage of 0.5�1X with 100bp single-end reads.

WES library preparation and sequencing
Whole exome sequencing (WES) libraries were constructed from quantified and amplified cDNA from each cell clusters using

MGIEasy Exome Capture V4 Probe set (BGI, Shenzhen, China). cDNA pre-hybridization was performed by heating samples to

95�C for 5min followed by hybridization at 65�C for 24h. After elution of hybridized cDNA products, a post-PCR reaction mixture

(2X KAPA HiFi HotStart Ready Mix, Ad-153-F (20 mM) and 4 NF-H2O) was added to each sample. Samples were divided in half

and amplified on a thermal cycler with the following program settings: 95�C 3 min;13 cycles of 98�C 20 s, 60�C 15 s, 72�C 15sec;

then 72�C 10 min. PCR products were then purified using AMPure XP magnetic beads. PCR products totaling 330ng were pooled

together. Samples were processed for splint circulation andmade into a single strand circular DNA forWES library construction. RCA

was performed to produce DNBs that were loaded onto the BGISEQ-500 sequencing platform and sequenced for 1 lane with 100bp

paired-end reads.

WGS data processing and CNV calling
Deconvoluted sequencing FASTQ data corresponding to each cell cluster sample was aligned to HG19/NCBI37 using BWA-MEM

algorithms (BWA, Version: 0.7.17). SAMtools (Version: 0.1.19) was used to sort BAM files, mark and removed PCR duplicates,

and calculate each chromosome’s depth and coverage. BAM files produced by alignment were counted in 5k,10k, 20k, 50k genomic

bins using a ‘‘non-overlapping’’ ‘‘variable binning’’ strategy as previously described.18,63 ‘‘‘Variable binning’’ results in each bin hav-

ing variable start and end coordinates. Since the reference length is fixed, a smaller genome cutting bin number will require a larger

bin length, i.e., for 5k, 10k, 20k, 50k bins, the median genomic length spanned by each bin is 554kb, 220kb, 136kb and 54kb, respec-

tively. The variable start and end coordinates were determined by mapping back 200 million simulated sequence reads with 100nt

length to the HG19/NCBI37 reference to determine bins for further calculation. ‘Non-overlapping bins’ means the boundary of each

bin did not overlap with the genome coordinates, enabling us to clearly identity the copy number variation value of each chromosome

segments and annotate the CNV affected genes. Unique normalized read counts of each variable bin was calculated using the Cir-

cular Binary Segmentation (CBS) method from R Bioconductor ‘DNAcopy’ package.64 The parameters used for CBS segmentation

were alpha = 0.05, nperm = 1000, undo.SD = 1.0, min.width = 5. Default parameters were used for MergeLevels which removed erro-

neous chromosome breakpoints. Themedian absolute pairwise difference (MAPD) was calculated to quantify the copy number noise

of each cell cluster. We choose the 5k bin for further clustering analysis as it had a higher average MAPD value compared with 10k,

20k and 50k bins. Next, we filtered out cell clusters with coverage lower than 10% as calculated using BEDTools (v2.17.0), and with a

MAPD greater than 1.00. This accounted for approximately 18% (17 of 97 cell clusters) of the total cell clusters for this patient.

CNV heatmap construction and clone identification
Toconstruct a clusteredCNVheatmap,wecalculatedEuclideandistances from thecopynumberdatamatrix. Eachcolumn represents

one cell cluster, and each row represents the relative copy number ratio of diploid cells fromeach segment.Ward.D2 hierarchical clus-

tering algorithmwas performed in R using the pheatmap (version: 1.0.12) package available on CRAN. Columns representing a single

cell were hierarchically clustered using Ward.D2 linkage on the basis of pairwise Euclidean distances, and the x axis was ordered by

chromosomecoordinates of genomeposition. To estimate the reliability of eachcladedefinedby theWard.D2clustering algorithm,we

used the bootstrapmethod by R package pvclust (Version: 2.0.0) to calculate the AU (Approximately Unbiased) p value and BP (Boot-

strap Probability) value. An AU p value > 0.95 is seen as stable clade to define a CNV clone.

Maximum parsimony tree construction
To detect common chromosome breakpoints and segments that were shared by cell cluster samples in each identified DNA-CNV

clone, we applied a multiple-sample population segmentation algorithm using a Bioconductor R package copynumber (Version:

1.22.0), with parameter gamma = 1. Piecewise constant curves were fitted to the cell cluster CNV data by minimizing the distance

between the curve and the observed multi-cell data, and returning multi-cell segments with a fitting clonal CNV result. The Maximum

Parsimony tree was calculated from the CNV-clone matrix using the parsimony ratchet algorithm with R package phangorn (Version:

2.4.0). Homozygous deletion, heterozygous deletion, neutral, or amplification, were treated as characters, and missing values were

treated as ambiguous items. Hamming distance was calculated for branch lengths with R package ape (Version: 5.1). Phylogenetic

trees were exported in Newick format, and R package ggtree (Version: 1.14.6) was introduced for visualization.
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WES data processing, SNV clone calling, heatmap construction, and clone identification
Ontargetsequencing reads in theFASTQfilesof eachcell clusterwerecleanedbySOAPnuke (Version:1.5.6), alignedbyBWA(Version:

0.7.17), sorted by SAMTools (Version: 0.1.19), PCR duplications removed by Picard, and realigned by GATK Realigner. The putative

SNVs for each cell cluster were called by Monovar with the parameter setting: p = 0.002, a = 0.2, t = 0.05, m = 4, c = 1 and annotated

byANNOVAR(humandb:20170901).PutativeSNVswere thenfilteredusing the followingparameters: 1000G_ALL<0.5%,ExAC_ALL<

0.5%, ESP6500siv2_ALL < 0.5%, genomicSuperDups score < 0.9. Only mutations with nonsynonymous, stop/gain and stop/loss in

exonic and splicing regions were kept as final SNVs for each cell cluster. The SNVmatrix containing the final SNVs of each cell cluster

was generated, where 0 represent not mutated or unidentified SNV sites, 1 represent heterozygous SNV sites and 2 represent homo-

zygous SNV sites. SNV heatmaps were constructed using the Ward.D2 clustering method with Euclidean distances of SNV matrix

construed by Monovar. DNA-SNV clones were identified using the same method as described above for the DNA-CNV clones.

WTS data processing and quality control
Sequencing data was first processed to filter out low quality reads which were defined as: 1) ‘‘N’’ bases accounting for 5% read

length; 2) Bases with quality < 15 accounting for 50% read length; 3) Containing the adaptor sequence; 4) Duplicate reads. The reads

that passed were then aligned to ribosomal RNA sequences downloaded from NCBI Reference Sequence Database using SOAP-

aligner (soap2 V2.21t). The unmapped reads were aligned to human genome assembly GRCh37 (hg19). Gene expression TPM was

calculated using bowtie2 plus RSEMwith default parameters. Saturation curves were then calculated for each cell cluster, and curve

densities were compared between each saturation curve. Cell clusters showing an unsaturated curve and an obviously skewed den-

sity plot were considered unqualified samples.

RNA clone calling for cell clusters
For each cell cluster, TPM was calculated for each given gene in Refseq. TPM matrices for genes were supplied to SC3,23 a single-

cell consensus clustering pipeline, with the following parameters: pct_dropout_min = 2 and pct_dropout_max = 90. After the

consensus matrix was built by SC3, the average silhouette width and stability index values were calculated. These were combined

with cell type and the best empirically performing clustering were determined. Once the stable clusters were determined to identify

RNA clones, genes exhibiting the highest variability among each LCM cell cluster was calculated. The resultant marker genes were

identified by a ROC curve (AUROC) > 0.85 and p value < 0.01. The top ten maker genes of each cluster were shown in the heatmap

with a log2(TPM+1) value.

RNA trajectory reconstruction and gene set enrichment
TPMmarker genes identified using SC3 were supplied to Monocle2 to generate pseudotime plots that reflect cell fate decisions and

differentiation trajectories. Genes were identified as being differentially expressed between trajectories using a cut-off q value of q <

0.01. We choose the top 800 qualifying genes and defined these as ‘‘significant changing genes’’ for each RNA trajectory. By further

analyzing the branches of each RNA trajectory, we found statically significant (q < 0.001) branch-dependent genes. We used the pre-

viously defined ‘‘significant changing genes’’ and the branch-dependent genes associated with each trajectory to do GSEA, and to

determine the related GO BPs (gene ontology biological processes). We defined significant biological processes as those with a q <

0.01 as calculated by GSEA.

DNA and RNA-clone comparison
The cell cluster DNA-CNV-tree was constructed using the Euclidean distance of the CNV data matrix, clustered with the hclust func-

tion using WARD.D2 linkage in R, then outputted as Newick format. Each clade of the tree reflects a DNA-CNV-clone. The RNA-tree

was constructed by SC3 and the tree clade was outputted as Newick format. We mapped the DNA-CNV-tree and DNA-SNV-tree

using a Sankey diagrams generated by an online tool at http://sankey-diagram-generator.acquireprocure.com. The DNA-CNV-

clones was mapped to the RNA-clones to compare the consistency between DNA and RNA clones.

Gene set enrichment and hub gene identification
Genes exhibiting a significant change in expression (Table S2.2,Top 800 with q < 0.01), from each metastasis paths identified

following Monocle 2.0 analysis was supplied to Metascape27 to independently perform biological pathway and process enrichment

analysis using the following ontology sources: GO Biological Processes and GO Molecular Functions (Database Last Update Date:

2019-06-11). All genes associated with eachmetastatic path were used for this enrichment. Enrichment termswith a p value < 0.01, a

minimum count of 3, and an enrichment factor > 1.5, were collected and grouped into clusters based on membership similarities

calculated by Metascape. Specifically, accumulative hypergeometric distributions and Benjamini-Hochberg statistics were applied

to calculate the p values and q-values of each term.65 Kappa scores were used as a similarity metric when performing hierarchical

clustering on the enriched terms, and sub-trees with a similarity of > 0.3 are considered a cluster. The most statistically significant

terms within a cluster are chosen to represent each cluster. To further capture the relationships between terms, a subset of enriched

terms was selected and used to generate a network map whereby terms with a similarity > 0.3 are connected by edges. Networks

were visualized using Cytoscape with a layout generated by employing the yFiles Radial method, whereby each node represents an

enriched term and is colored by its cluster ID.We further grouped each term into five subgroups (‘‘shared by three paths,’’’’ Shared by
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Primary Cancer Clones,’’ ‘‘Shared by CIN Clones,’’ ‘‘Shared by Lymph node Clones’’ and ‘‘Path Specific’’), and marked these sub-

groupings on each Cytoscape network based upon cell cluster location. We then choose the 20 most respective terms combined

across all metastatic paths to generate a heatmap in which the coloring is representative of the log p values associated with each

term for each metastatic path. Terms in the heatmap were further defined as belonging to 1 of 3 three categories: 1) Metastasis

related terms’’; 2) ‘‘Immune related terms’’; and 3) ‘‘Other terms.’’

Hub gene identification and Kaplan-Meier analysis
Genes exhibiting a significant change in expression, as well as their fold-change value (Table S2.2), were supplied to the Cytoscape

application CHAT (Contextual hub analysis tool, version:1.0.5) to identify hub genes related to each metastatic path, and generate a

PPI network from the BioGRID database of Human/Homo sapiens Taxonomy. Themean expression of the top 20 hub genes for each

metastatic path were also supplied to Kaplan-Meier Plotter33 to generated Kaplan-Meier survival curves for these signatures, based

upon the survival data of 1089 breast cancer patients sourced from GEO (Gene Expression Omnibus), EGA (The European Genome-

phenomeArchive), and TCGA (TheCancer GenomeAtlas) databases. The top 20 geneswere selected based upon the significance of

prognosis prediction. 80 of themost characterized ribosome protein genes (RPS andRPL) were also supplied to Kaplan-Meier Plotter

to generate Kaplan-Meier overall survival p value across 21 types of cancer available in Kaplan-Meier Plotter database (Table S4.4).

Pan-cancer ribosome protein gene analysis
80 of themost characterized ribosome protein genes (RPS and RPL) were individually supplied to ENCORI (The Encyclopedia of RNA

Interactomes; http://starbase.sysu.edu.cn/index.php), a Pan-Cancer Analysis Platform which enables differential gene expression

analysis between tumor and normal tissues using available mRNA data from TCGA (The Cancer Genome Atlas; https://www.

cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga). The differential expression data of these 80 ribosomal

proteins was available in ENCORI for 17 types of cancers with 7086 tumor and 704 normal samples. Results of this analysis are shown

in Table S4.2.

QUANTIFICATION AND STATISTICAL ANALYSIS

DNA and RNA amplification and library qualification
Amplification DNA was quantified using housekeeping genes as described using a Qubit dsDNA High Sensitivity kit (Invitrogen,USA;

catalog number: Q32854)as per the manufacturer’s instructions. Amplified RNA was quantified using an Agilent’s 2100 Bioanalyzer

(Agilent Technologies, CITY, STATE) and the library was quantified using Qubit dsDNA High Sensitivity kit (Invitrogen,USA;catalog

number: Q32854).

Statistical analysis
The statistic of AU (Approximately Unbiased) p value is calculated by multiscale bootstrap resampling by pvcluster package (v2.0.0).

P values of chi-square test were based on asymptotic theory. Silhouette width and stability index statistics were calculated using the

SC3 package. All p values were two-sided and q < 0.01 was considered significant. Maker genes of each RNA clonal were defined by

a q-value < 0.01 and a ROC value > 0.85. A Significant change in gene expression was defined as q < 0.01 with top800 genes of three

paths. The hub genes for each path were defined using an adjust P value < 0.01. All other statistical analyses were carried out as

described in the text using the R statistical environment (v3.4.4 and v3.5.0). Pathway network graphs were generated using Cyto-

scape (v3.6.1).
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