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Abstract

Synonymous variations, which are defined as codon substitutions that do not change the encoded amino acid, were
previously thought to have no effect on the properties of the synthesized protein(s). However, mounting evidence shows
that these ‘‘silent’’ variations can have a significant impact on protein expression and function and should no longer be
considered ‘‘silent’’. Here, the effects of six synonymous and six non-synonymous variations, previously found in the gene of
ADAMTS13, the von Willebrand Factor (VWF) cleaving hemostatic protease, have been investigated using a variety of
approaches. The ADAMTS13 mRNA and protein expression levels, as well as the conformation and activity of the variants
have been compared to that of wild-type ADAMTS13. Interestingly, not only the non-synonymous variants but also the
synonymous variants have been found to change the protein expression levels, conformation and function. Bioinformatic
analysis of ADAMTS13 mRNA structure, amino acid conservation and codon usage allowed us to establish correlations
between mRNA stability, RSCU, and intracellular protein expression. This study demonstrates that variants and more
specifically, synonymous variants can have a substantial and definite effect on ADAMTS13 function and that bioinformatic
analysis may allow development of predictive tools to identify variants that will have significant effects on the encoded
protein.
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Introduction

ADAMTS13 (A Disintegrin-like and Metalloprotease with

Thrombospondin type-1 repeats, member-13) plays an integral

role in vascular hemostasis by cleaving von Willebrand Factor

(VWF) within intact blood vessels under shear stress [1]. At sites of

vascular injury, VWF binds to the sub-endothelium and tethers

platelets to this site, initiating coagulation. A deficiency in

ADAMTS13 activity – either through inactivation by autoanti-

bodies, lack of expression, or a genetic variation affecting function

(these primarily include single site codon substitutions) – results in

increased VWF thrombogenic potential. Extreme cases of

ADAMTS13 deficiency precipitate Thrombotic Thrombocytope-

nic Purpura (TTP [OMIM 274150] - http://www.omim.org/),

a life threatening hematological disease [2].

Single nucleotide polymorphisms (SNPs), originally defined as

single site codon substitutions that occur in .1% of the

population, are prevalent and are found across the entire human

genome coding sequence, with few exceptions. Approximately

962,258 unique SNPs have been reported in the coding sequence

of the human genome, although frequency data are not available

for all of these SNPs. Therefore, SNPs are now classified as

genomic variants and it is no longer possible to distinguish

between SNPs and mutations based on their frequency [3].

Mounting evidence suggests that these synonymous (‘‘silent’’)

variants may impact protein expression and function [4–10]. In

humans, synonymous variants have been shown to affect mRNA

splicing [5], mRNA stability [11] and/or mRNA secondary

structure [12–15], translation efficiency and kinetics [16,17],

protein folding [10,18,19], and protein function [18].
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At the inception of this project, we chose to investigate twelve

ADAMTS13 variants – six synonymous variants and six non-

synonymous variants (the latter defined as single site codon

substitutions that do change the encoded amino acid) and

originally listed in the coding region of the gene in the NCBI

dbSNP (http://www.ncbi.nlm.nih.gov/snp, last accessed 24

October 2011). Some of these variants have been previously

investigated using in vitro methods by other researchers [20–23].

One hundred and thirty more variants have been added to dbSNP

recently, probably as a result of the increased population

sequencing from the 1000 Genomes Project. These variants are

not subjects of the current study; however, we do plan to include

them in future analyses.

Here, we have used a transient expression system to study the

effects of the twelve variants mentioned above on mRNA and

protein expression levels, protein activity and conformation ex vivo,

in cells. In addition, we have employed a variety of computational

methods to analyze the potential effects of these variants on

ADAMTS13 mRNA splicing, change in mRNA structure, codon

usage and amino acid conservation as well as the relationships

between the location of these variants in the encoded polypeptide

chain and the wild-type (WT) ADAMTS13 (predicted) protein

structure.

Substantial differences in protein expression levels, activity and

conformation were found between WT ADAMTS13 and

ADAMTS13 variants, suggesting that both non-synonymous and

synonymous variants in ADAMTS13 are not neutral. Furthermore,

we demonstrate that in silico analysis may serve as a tool to identify

variants that may potentially have an effect on the protein bearing

them, altering its expression levels and/or activity. In silico

variables with high correlation to ex vivo results (Spearman’s

rho$0.6; p-value,0.05) may become important for the charac-

terization of potential TTP patients carrying genetic variants.

These in silico variables may also be used in the future for

developing safer and more effective therapeutic recombinant

proteins. This may be achieved by taking into account the

predicted effects of variants (and even haplotypes) on ADAMTS13

or any other therapeutic recombinant protein characteristics.

Results

Computational Prediction of mRNA Structure/Stability
and Analysis of ADAMTS13 mRNA Expression Levels
Drawing on many previous reports that analyzed the local

secondary structure of mRNA, we used mFold [24], a static

secondary structure predictor, and KineFold [25], a stochastic

secondary structure predictor, to analyze potential changes in the

minimum free energy (DG) of the mRNA fragments harboring

variants under investigation. The DDG (variant DG minus WT

DG) was calculated for mRNA fragments of different lengths (25,

75, 151 and 399 nucleotides), with the variant of interest

positioned in the middle of the mRNA fragment analyzed. We

have limited our analysis to RNA fragments/lengths described

above, as it is currently unfeasible to predict with sufficient

accuracy the structure/stability of longer RNA fragments, as the

number of possible structures grows exponentially with the

sequence length [24]. The absolute DDG values calculated for

a given variant by different software programs and for RNA

fragments of different lengths as well as their associated trends

were not always in agreement with each other, potentially

reflecting the exceptional plasticity of RNA, as well as known

limitations of the software packages used, e.g. only KineFold is able

to predict pseudoknots (Figure 1AB). Nevertheless, synonymous

variant 354, independently of the length of the RNA fragment

analyzed, was predicted (using both programs) to affect RNA

stability to a similar extent (although the absolute magnitude of the

effects differed for the two programs used), while synonymous

variant 420 showed considerably different DDG values and trends

associated with RNA fragments of different lengths (Figure 1AB).

Overall, the highest DDG calculated by mFold was observed for

synonymous variant 4221 (for a fragment of 75 nucleotides in

length) and the lowest DDG was observed for synonymous variant

420 (for a fragment of 151 nucleotides in length) (Figure 1A). At

the same time, the highest DDG calculated by KineFold was

observed for non-synonymous variant 1451 (for a fragment of 399

nucleotides in length) and the lowest DDG was observed for

synonymous variant 1716 (for a fragment of 399 nucleotides in

length) (Figure 1B). Although, analysis of mRNA structure within

the coding region is admittedly a yet-to-be developed research

area, the predicted changes in DDGs may lead to change in

mRNA stability and/or protein expression levels.

In order to test whether there might be any association between

the predicted changes in mRNA stability and mRNA expression

levels, we performed qPCR to determine ADAMTS13 mRNA

expression levels in transfected cells. mRNA levels were monitored

24 hours (h.) post-transfection. Significant differences in

ADAMTS13 mRNA levels between cells transfected with a plasmid

harboring WT ADAMTS13 gene and those transfected with

ADAMTS13 variants were observed for variants 1451, 1716, and

2699 (p-value ,0.02, 0.02, 0.04 by 2-sided t test, respectively)

(Figure 1C). On average, the change in mRNA expression levels

was not more than 50% of WT (Figure 1C) for the majority of

variants under investigation. One of the largest changes, was found

for non-synonymous variant 1451, and remained only 191611%

of WT. Additionally, we observed a correlation (Spearman’s

rho=20.62, p-value,0.03) between the mRNA levels (Figure 1C)

and their predicted free energies as calculated by KineFold for

a nucleotide length of 25 (Figure 1B).

Computational Analysis of Codon Usage
While several codons may encode a single amino acid due to

general degeneracy of the genetic code, not all codons occur at the

same frequency throughout the genome and a strong codon bias

exists [26]. Moreover, different organisms have distinct codon

biases [26] and it is possible that there may be differences in codon

biases between tissues within the same organism [27–31],

reflecting tissue specificity in gene expression. More importantly

for the present study, changes in codon frequencies (in addition to

the changes in RNA structure) have been shown to affect the local

speed of translation and this can also impact co-translational

protein folding and result in a protein with different conforma-

tion/specific activity [18,19,32]. It is believed that the overall

impact of a given codon change on the rate of translation and co-

translational protein folding would be more detrimental in the case

that it would cause a more substantial change in the codon usage

frequency [18,19,32]. We therefore compared the codon usage

frequencies of each individual variant versus WT codon at the

same position using two different approaches (see Materials and

Methods for details). In brief, the differences between a variant’s

codon usage and the corresponding WT codon usage were

calculated using either the Relative Synonymous Codon Usage

(RSCU) values [33] or the log ratio of the human codon usage

frequencies and the codon usage frequencies of ADAMTS13, and

are shown in Figures 1D and 1E, respectively. The twelve variants

studied here were chosen at random and the DRSCU and Dlog
ratio scores of all twelve fall within the distribution of DRSCU and

Dlog ratio scores of all synonymous and non-synonymous variants

in ADAMTS13 (Figure 1F).

Synonymous and Non-Synonymous Variants in ADAMTS13
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The most substantial change in the log ratio of codon usage

frequencies from variant to WT codon as well as the highest

DRSCU was observed for non-synonymous variant 2699

(Figures 1D and 1E). Three of the largest increases in the Dlog
ratio of codon frequency and DRSCU, regardless of the analysis

method used, are for synonymous variants –354, 420 and 2280–

demonstrating that the WT codon in each of the above mentioned

cases is rarer than the variant codon. Additionally, five variants

revealed different changes in their log ratio of codon frequencies

based on genomic and ADAMT13 codon frequencies: non-

synonymous variants 1423, 1451 and 3097 and synonymous

variants 2910 and 4221. The most noticeable difference between

ADAMTS13 and genomic codon frequencies was observed for

non-synonymous variant 1451 in which ADAMTS13 absolute Dlog
ratio of codon frequency is roughly 16% of the genomic Dlog ratio
of codon frequency (Figure 1E), suggesting that the AAA codon

Figure 1. Analysis of mRNA structure/stability, codon usage and expression levels of ADAMTS13 variants: A. mFold DDG values of
ADAMTS13 mRNA fragments: RNA fragments of 25, 75, 151, and 399 nucleotides in length were queried using online mFold server, utilizing default
server settings. Variants were centered within the RNA fragments used in the analysis. The most stable structures (lowest DG) for both variant and WT
ADAMTS13 variants were chosen. DDG (DG variant - DG WT) was calculated and is displayed here for each of the variants. B. KineFold DDG values
calculated using online KineFold server (obtained employing a similar strategy). C. ADAMTS13 mRNA expression levels as determined by qPCR:
Analysis of mRNA expression was performed 24 h. post-transfection with quantitative real time PCR on WT ADAMTS13 and all twelve variants. GAPDH
was used as a reference and a DDCp was calculated using the average of all WT DCp results for comparison. Fold change relative to WT is presented
on a logarithmic scale. mRNA expression levels were analyzed in multiple independent transfection experiments utilizing each variant and WT
ADAMTS13 variant, and found to be consistently similar from one experiment to the another (**p-value ,0.05). D. Differences in Relative
Synonymous Codon Usage (RSCU) values between each of the ADAMTS13 variant codons and the WT codon: DRSCU= D(RSCUVariant – RSCUWT);
the more positive is the DRSCU value, the more common is the variant codon compared to WT codon. RSCU values were calculated using the
ADAMTS13 coding region and human codon usage information. E. Differences between log ratio of codon usage values for each of the ADAMTS13
variants and WT. The plotted values are the differences between log ratio of codon usage frequency of the variant and WT codon (D(variant – WT)).
The more positive the delta, the more commonly used the variant codon is, compared to WT. Values were calculated using the ADAMTS13 coding
region and human codon usage information. F. Normal distribution of RSCU values for all variants in ADAMTS13: The RSCU and log ratio of codon
usage values were determined for all variants in the coding region of ADAMTS13. MAD scores were assigned to the DRSCU and Dlog ratio of all
variants. Comparison of MAD scores of twelve variants and all variants in ADAMTS13 revealed that DRSCU and Dlog ratio scores for the twelve variants
fell within the distribution of variants in ADAMTS13. ADAMTS13 variants harboring synonymous variants are marked with (*).
doi:10.1371/journal.pone.0038864.g001

Synonymous and Non-Synonymous Variants in ADAMTS13
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(Table 1, see nsSNP 1451) is underrepresented in the ADAMTS13

sequence in comparison with the entire ORFeome.

Changes in Protein Expression of ADAMTS13
Immunoblot analysis against the linear V5 epitope (at the C-

terminus of ADAMTS13) was used to determine the effect of each

variant on the expression of the mutant proteins as compared to

the WT ADAMTS13. Both intra- and extra-cellular ADAMTS13

expression levels were determined. Transient transfections with

WT ADAMTS13 construct were performed in triplicate and the

resulting protein expression levels were measured at a range of

total protein concentrations (loaded on a gel) to ensure that final

measurements were done within the region of linear response

(Figure 2A). Based on these data, 40 mg of total protein was

selected as the optimal loading amount to establish the assay. Our

results were linear within 95% confidence limits (Figure 2A). It

should also be noted that trends in expression levels of

ADAMTS13 constructs harboring the same variant were similar

for all experiments done in parallel. Densitometry analyses of the

band intensities of WT and variant-containing ADAMTS13

samples were performed and presented as a percent of WT,

where WT expression level was set to 100%.

Cells expressing ADAMTS13 non-synonymous variant 3097

revealed the highest increase in extracellular ADAMTS13

expression of 179635% of WT (p-value = 0.06 by 2-sided t test)

(Figure 2B). ADAMTS13 constructs with synonymous variants 354

and 420 showed the second and third highest respective increases

in extracellular expression levels as compared to WT (137617%,

p-value,0.06 and 120626%, of WT, p-value = 0.3 by 2-sided t

test, respectively). The non-synonymous variant 1852 showed

a significant decrease, resulting in less than a third (3163%, p-

value,0.0007 by 2-sided t test) of the extracellular WT expression

level. As both intracellular and secreted proteins represent the

active forms of ADAMTS13 [34], we have also compared the

levels of intracellular ADAMTS13 (Figure 2C). The non-

synonymous variants 1451 and 2699 and synonymous variant

1716 ADAMTS13 variants showed decreased intracellular

expression compared to WT (4865% p-value,0.003, 29613%

p-value,0.002 and 8267% of WT p-value = 0.04 by 2-sided t

test, respectively), while non-synonymous variants 1342 (p-

value,0.05 by 2-sided t test) and 1423 ADAMTS13 variants (p-

value,0.02 by 2-sided t test) showed increased (41% and 30%,

respectively) intracellular expression compared to WT. In lieu of

an increase in extracellular expression above WT, the

ADAMTS13 construct harboring synonymous variant 354 also

revealed a 146621% (p-value = 0.06 by 2-sided t test) increase in

intracellular expression above WT.

ADAMTS13 variants did not show any significant correlation

between intra- and extracellular expression (Spearman’s

rho= 0.98, p-value.0.7). Mutants highly expressed in the in-

tracellular compartment were not necessarily highly secreted and

vice versa. A representative example, in which three independently

transfected ADAMTS13 constructs (WT, non-synonymous var-

iants 1451 and 1852) were simultaneously analyzed, is shown in

Figure 2D. The ADAMTS13 non-synonymous 1451 variant

showed decreased intracellular expression levels compared to WT

and unaffected extracellular levels (compared to WT), while the

ADAMTS13 non-synonymous variant 1852 variant showed the

opposite trend. These results indicate that various ADAMTS13

variants may have different effects on intracellular and extracel-

lular protein expression and these two parameters may not

necessarily correlate. These differences in intra- and extracellular

expression levels may result from the conformational changes

between the ADAMTS13 variants that differentially facilitate or

impede their travel through certain intracellular compartments,

and/or subject them to enhanced degradation.

We found that changes in intracellular ADAMTS13 expression

levels correlated strongly (Spearman’s rho= 0.67, p-value = 0.02)

with corresponding changes in RSCU values calculated using

human codon frequencies. In addition, changes in mRNA

minimum free energy values (DDGs based on KineFold predic-

tions for the 175 nucleotide fragment (Spearman’s rho= 0.69, p-

value = 0.012)) unexpectedly correlated with the corresponding

changes in ADAMTS13 extracellular expression levels. We found

no correlation between ADAMTS13 mRNA levels and either

extracellular protein expression (Spearman’s rho= 0.20, p-val-

ue = 0.40) or intracellular protein expression levels (Spearman’s

rho=20.29, p-value = 0.35).

ADAMTS13 Variants Show Differences in Specific Activity
Activity of each ADAMTS13 variant was determined (and

compared to that of the WT protein) using the FRETS-VWF73

fluorogenic substrate and normalized to extracellular ADAMTS13

expression levels to yield the specific activity (Figure 3A). Un-

expectedly, two ADAMTS13 synonymous variants, 354 and 2280,

demonstrated the highest specific activity (207677% and

181641%, respectively) compared to WT. Statistical analysis

demonstrated that these differences in specific activity were not

significant (p-value,0.1 and 0.2 by 2-sided t test, respectively). At

the same time non-synonymous variants 1451 and 1423 were

found to have the lowest specific activity (5668% with p-

value,0.01 and 5865% with p-value,0.006 by 2-sided t test,

respectively). We further chose to investigate the non-synonymous

2699 variant (which revealed a ,25% decrease in specific activity)

because the ADAMTS13 protein bearing this variant revealed the

lowest intracellular expression level compared to WT protein, with

no change in extracellular protein expression levels compared to

WT. This suggests possible conformation changes within the

mutant protein that perhaps might lead to enhanced intracellular

degradation of non-synonymous variant 2699 species that do not

pass quality control mechanisms in the ER. However this protein

might also travel faster through the secretory pathway and thus the

total amount of the extracellular protein may remain unchanged.

In order to detect any minor changes in conformation between

2699 and WT, a more detailed kinetic analysis was performed in

the case of non-synonymous variant 2699 and WT (Figure 3B,

middle panels). Vmax (RFU min21) and KM (mM) for WT

ADAMTS13 and non-synonymous variant 2699 mediated cleav-

age of the fluorogenic substrate FRETS-VWF73 are shown in

Figure 3B. These data revealed an approximately 2-fold difference

estimated in Km and Vmax values between the intracellular forms

of the non-synonymous variant 2699 and WT proteins, re-

spectively. Thus, our analysis of the specific activity of 12

ADAMTS13 variants and the detailed kinetic analysis of non-

synonymous variant 2699 clearly demonstrated differences in

specific activity as compared to WT.

Limited Trypsin Digestion Suggests that ADAMTS13
Variants may have Different Conformations
To probe and compare the conformations of the variant

ADAMTS13 proteins, we subjected them to limited proteolysis

with trypsin. We specifically chose to investigate non-synonymous

variant 1852, because this ADAMTS13 variant revealed the

lowest extracellular expression levels and reduced specific activity

as compared to the WT protein. We hypothesized that the

differences in expression and function may result from conforma-

tional changes within the protein. Increased resistance to limited
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Figure 2. Ex vivo analysis of expression levels of ADAMTS13 variants. A. Western blotting data revealing linear dependence between the
amount of the loaded protein and the western signal: Media was collected and concentrated 24 h. post-transfection. Increasing amounts of total
protein (5, 10, 20, 40, 60 and 80 mg) were subjected to SDS-PAGE analysis. Anti-V5 antibody was used to detect ADAMTS13 and densitometry analysis
was performed as described in Materials and Methods. The dashed bolded lines indicate 95% confidence limits and the dashed non-bolded lines
represent 90% confidence limits. B. Extracellular ADAMTS13 Expression (based on immunoblot analysis). Expression results for each variant are
presented relative to WT. Multiple independent transfection experiments utilizing each variant and WT ADAMTS13 construct were performed (**p-
value ,0.05). C. Intracellular ADAMTS13 Expression (based on immunoblot analysis): GAPDH and/or b-actin were used as loading controls (not
shown). Expression results for each variants are presented relative to WT. Multiple independent transfection experiments utilizing each variant and
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proteolysis with trypsin was revealed for non-synonymous variant

1852, as compared to WT (Figure 3C).

Analysis of ADAMTS13 Structure and Locations of
Variants
It has been suggested that not every non-synonymous or

synonymous codon substitution would have an equal impact on

protein folding in the cell [17]. The impact of any given variants

on the folding of any given protein was suggested to be dependent

on the effects produced by variants on the stability and structure of

the folding intermediates forming along the co-translational

folding pathway [17]. Substitutions that affect codons encoding

structurally important residues and/or protein fragments (e.g.

domain linkers) were suggested to elicit more substantial effects on

protein folding in comparison with other non-synonymous or

synonymous variants [17]. Therefore, we have attempted to

predict and analyze the structure of the ADAMTS13 protein and

locate the residues encoded by codons/variants under investiga-

tion onto the predicted structure (Figure 4, Table 1). Although

prediction of the protein structure is yet a very challenging task

and cannot be considered proof that the predicted structures will

form, we believe that this prediction can be taken into account

with certain level of precaution. Comparative modeling of the

ADAMTS13 structure using the 3D-PSSM algorithm [35] yielded

two protein fragments (comprising residues 77–470 and 674–1254

respectively) and allowed us to conclude that variants under

investigation might affect residues located at the edges of the

secondary structures (most likely beta-structures) (Figure 4, top two

panels; Table 1). It should also be noted that the structure of the

ADAMTS13 fragment (comprising residues 287–682) has been

recently solved by X-ray crystallography (PDB ID 3GHM) and

thus we were able to extend our analysis onto this fragment (which

was not covered by in silico predictions). Similar to in silico findings,

4 out 5 variants in the ADAMTS13 (287–682) X-ray fragment

encode residues located in beta-structures (Pro475 (ADAMTS13

variant 1423), Arg484 (ADAMTS13 variant 1451), Thr572

(ADAMTS13 variant 1716) and Pro618 (ADAMTS13 variant

1852), respectively) with 2 (ADAMTS13 variants 1451 and 1852)

located at the very edges of the secondary structures (Figure 4,

bottom panel; Table 1). This observation complements our in silico

predictions.

Analysis of Conservation of Residues Associated with
ADAMTS13 Variants
An interesting question to consider is whether ADAMTS13

variants under investigation are found at codons that encode in

WT ADAMTS13 evolutionary conserved amino acid residues.

One would expect that non-synonymous variants will be found at

less conserved residues, as variants at conserved residues are

expected to severely affect protein function, while synonymous

variants, should, in principal, be subjected to less evolutionary

pressure. To answer this question, we have determined the

conservation of the ADAMTS13 amino acid residues using

sequence alignments of 50 homologues proteins from Swissprot

database (http://www.uniprot.org/, last accessed 7 June 2011)

and by employing the ConSeq server [36]. The ConSeq server

scores the conservation of amino acids from 1 (not conserved) to 9

(most conserved). Overall, as shown in Table 2, the conservation

of the 12 residues under investigation was relatively low, albeit on

average ranging from not conserved to moderately conserved

(Table 2). The highest conservation was observed for Thr1407

associated with synonymous variant 4221. Notably, we did not

observe a substantial difference in the conservation values between

synonymous and non-synonymous variants.

Discussion

To our knowledge this is the first study that simultaneously

analyzes a large number of ADAMTS13 variants by employing

a variety of experimental approaches and in silico tools. Our ex vivo

results revealing differences in ADAMT13 expression levels and

activities are fully in agreement with the range of protein activities

observed in healthy individuals (A summary of ex vivo results can be

found in Table S2). For example, Bohm and colleagues [37]

reported similar changes in ADAMTS13 activities up to a 135%

increase or 50% decrease in ADAMTS13 activity, using VWFcp

as measured by the RCo-based assay, and similarly, Zhou and

Tsai [38] reported that ADAMTS13 activity may range from 70%

to 170% in normal individuals. At the same time, Mannucci and

colleagues [39] demonstrated that the expression levels of

ADAMTS13 in individuals of O blood type or non-O blood type,

range from ,35% to ,170%, respectively. However, one should

note that the exact activity level of each ADAMTS13 variant

observed in ex vivo experiments might not precisely correlate with

its activity in plasma. A single variant should not be compared to

a variant coupled with other variants that often appear together as

a frequent haplotype, which may have an alternative significant

effect on hemostasis. Information regarding the frequency of

variants in various populations is not very abundant and the

present study cannot accurately mimic natural ADAMTS13

haplotypes without obtaining additional data that will ultimately

require sequencing of a multitude of patient populations.

However, we believe that the obtained information may yet be

very useful in assessing the effects of individual variants.

Reports in the last five years have indicated that not only non-

synonymous variants, but also synonymous ones, can have

substantial effects on protein expression and function [5,8,40].

Traditionally, recombinant protein therapies and gene therapeu-

tics have introduced variants (most commonly synonymous

variants) in order to facilitate increased protein expression [41].

Similarly, the DNA sequence used in development of recombinant

protein therapeutics sometimes contains one or more variants and

little attention has been previously paid to the effects of such

genetic variants. We believe the results of the present study as well

as the tools and approaches that we have employed and developed

for the analysis of ADAMTS13 variants may be helpful in analyses

of the effects of variants found in other genes/proteins.

The results presented here clearly demonstrate that both non-

synonymous and synonymous variants can affect protein expres-

sion levels and function (Figures 2B, 2C, and 3A). While

highlighting the effects of non-synonymous variants on

ADAMTS13 conformation and activity (Figures 3B and 3C),

our study strongly suggests that the effects of neither non-

synonymous nor synonymous variants should be neglected in any

gene sequence. Importantly, nine of the twelve ADAMTS13

variants under study didn’t have any substantial effect on mRNA

expression levels (Figure 1C), thus suggesting that their effects on

WT ADAMTS13 construct were performed as above (**p-value ,0.05). D. SDS-PAGE immunoblot analysis of ADAMTS13 WT, non-synonymous
variants 1451 (Arg.Lys) and 1852 (Pro.Ala) expression levels using anti-V5 antibody: Top – extracellular ADAMTS13, middle – intracellular
ADAMTS13 and bottom - GAPDH loading control. ADAMTS13 variants harboring synonymous variants are marked with (*).
doi:10.1371/journal.pone.0038864.g002
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Figure 3. Specific activity of ADAMTS13 variants and limited proteolysis with trypsin. A. Specific activity of twelve ADAMTS13 variants vs.
WT as determined using FRETS-VWF73 substrate: Samples containing equal amounts of total extracellular protein were incubated with 5 mM of
FRETS-VWF73 substrate and fluorescence readings were taken at 5 min intervals over the course of 2 h. Specific activity was calculated as the
increase in relative fluorescence units (RFU)/min per unit of ADAMTS13 in the total extracellular protein samples. Extracellular ADAMTS13 protein
amounts were determined using immunoblot analysis with anti-V5 antibody as in Figure 2. ADAMTS13 variants harboring synonymous variants are
marked with (*) (**p-value ,0.05). B. Expression and Michaelis-Menten Kinetics of non-synonymous variant 2699 vs. WT protein: HEK293 cells were
transfected with WT and non-synonymous variant 2699 and harvest 24 h. post-transfection. Samples containing equal total protein amounts, both
intracellular (I) and extracellular (E) (40 mg each), were separated by SDS-PAGE and probed with anti-V5 antibody to determine ADAMTS13
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protein expression and function were at the post-transcriptional

level. For the constructs that demonstrated significant differences

in mRNA expression levels, i.e. 1451, 1716, and 2699, we found

no corresponding change in extracellular protein expression levels

or specific protein activity. mRNA expression levels of non-

synonymous variants 1451 and 2699 were significantly higher than

that of WT, but this could not account for the differences observed

in protein expression levels, as intracellular protein expression

levels of both variants were found to be significantly lower than

WT and no change in extracellular expression, compared to WT

was observed. Synonymous variant 1716 exhibited significantly

lower mRNA expression levels compared to WT, and this

difference may account for significantly lower intracellular protein

expression levels of this variant compared to WT. However, at the

same time no corresponding change in extracellular protein

expression levels was observed for this synonymous variant as

compared to WT. These findings are consistent with previous

reports indicating that some variants may affect mRNA expression

levels [42]. Further, analysis of the changes in mRNA expression

levels and intra- or extracellular protein expression levels and

expression. Intracellular (N) and extracellular (m) protein samples were incubated with 0–10 mM FRETS-VWF73 substrate. Fluorescence released upon
cleavage was plotted over time, as previously described, and a best-fit linear regression was calculated to determine the initial rate of the reaction.
The change in RFU per unit time was then used to estimate the specific activity of ADAMTS13. Specific activity at each substrate concentration was
plotted and a Michaelis-Menten plot was generated using GraphPad Prism software to calculate KM and Vmax values. C. Limited Trypsin digestion of
ADAMTS13 variants: Resistance of the intracellular full-length ADAMTS13 non-synonymous variant 1852 (m) was compared to that of WT (&) using
densitometry analysis of the immunoblot data, as described the Materials and Methods. Non-synonymous variant 1852 revealed increase resistance to
trypsin digestion compared to WT.
doi:10.1371/journal.pone.0038864.g003

Figure 4. Ribbon diagrams of the ADAMTS13 fragments. Two upper panels: Left - comprising residues (77–470) and right (674–1254) built
using comparative modeling (3D-PSSM algorithm). Bottom panel ADAMTS13 X-ray structure residues (287–682) PDB ID 3GHM. Helices are depicted in
red and beta-structures are in yellow. Residues encoded by codons/variants under investigation are denoted with residue number (van der Waals’
radii of the side chains are shown). Beginning and end of each fragment are also denoted with a residue number.
doi:10.1371/journal.pone.0038864.g004
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specific activity revealed no significant correlation. It is well known

that in higher eukaryotes only a small fraction of the changes at the

proteome level is directly reflected by the changes at the

transcriptome level [43] thus highlighting an important role

played by the translation and post-translational controls of gene

expression. Yet, the possibility that changes in protein expression

levels observed in the present study may also arise as a result of

alternative mRNA splicing [34] could not be completely ruled out.

However, putative alternative splicing would not affect mRNA

levels, but might impact efficiency of translation. Computational

analysis done in the present study using a variety of approaches

[44–47] indicated that this scenario is very unlikely. No novel

splice sites were predicted to arise in ADAMTS13 mRNA due to

variants under investigation (Table S1).

Therefore, the reported changes in protein expression levels are

very likely to arise at the post-transcriptional level. Changes in

mRNA structure/folding and minimum free energy may represent

one of the reasons for altered protein production. Interestingly, we

found a negative correlation between the DDG values of the

mRNA 175-nucleotide fragments harboring ADAMTS13 variants

(when calculated using KineFold, Figure 1B) and extracellular

ADAMT13 protein expression levels (Figure 2B). This negative

correlation is rather unexpected, since one would normally expect

the opposite–RNA structures with higher minimum free energies

are expected to impede efficient protein translation, while lower

minimum free energies are predicted to facilitate it. While these

results may yet suggest that changes in the predicted minimum

free energy of mRNA within the coding sequence may reflect

protein expression levels, they may also underline the importance

of post-translational events in the secretory pathway that alter the

amount of the final secreted product. It should also be mentioned

that eukaryotic mRNAs do not exist in cells as naked polynucleo-

tides, but rather are represented by messenger ribonucleoprotein

complexes mRNPs [48]. It was shown that mRNA binding

proteins may affect almost every aspect of mRNP metabolism

from transport to localization, translation and turnover [48].

Variants may produce changes in the mRNA sequence/structure

affecting its association with specific proteins and thus altering the

fate of the encode protein. However, such effects are extremely

difficult to predict. It is important to note that we did not observe

any correlation between DDG mRNA values and the changes in

intracellular protein expression levels (Figure 2C) (Spearman’s

rho= 0.02, p-value = 0.96), further suggesting that the observed

relationship between changes in mRNA minimum free energy and

extracellular protein expression is likely due to the secondary

effects perhaps related to the altered protein conformation and

stability rather than to the direct effects related to the efficiency of

protein translation.

It should be noted however that our analysis of mRNA structure

and stability has a number of drawbacks and is limited by the

centering of the variant nucleotide position within the queried

nucleotide sequence. Previously, De Smit and van Duin quanti-

tatively demonstrated the relationship between translational

efficiency and mRNA structure at the initiation site; an increase

in the stability corresponds to a decrease in initiation rate, which

was measured by expression levels of RNA bacteriophage MS2

gene [49]. This observation was further supported in a study

utilizing a synthetic library of 154 GFP gene variants expressed in

E. coli that varied randomly at synonymous sites [50] and more

recently in a genome wide association study in yeast [51].

However, in prokaryotes and lower eukaryotes mRNPs are less

abundant and thus the impact of the effects at the polynucleotide

level can be better seen and/or be more pronounced [48]. It

should be also mentioned that it has been suggested that after

translational initiation (particularly in higher eukaryotes), the

ribosome can, in most cases, locally destabilize secondary

structures and move along the message without any significant

delays [52], yet complex and stable structures close to the initation

site may be detrimental to elongation process [11]. Overall, GC

content of the mRNA, which may impact the stability of the

mRNA structure, was also reported to alter protein expression

levels in mammalian cells as measured using a GFP reporter

system [53]. In addition, Bartoszewski and colleagues recently

reported that a synonymous variant (in position 507) in the coding

region of the human CFTR may alter mRNA structure and reduce

translation rate and expression of CFTR, as compared to WT

protein in addition to the known variant in position 508 [54].

While the data at present are insufficient to draw a conclusion with

regard to the predicted structure of mRNA and protein expression

levels [55], our results suggest that analysis of the changes in

mRNA free energies associated with variants of interest bears

further investigation which may lead to their development as

predictive tools for protein expression levels.

To look at other possibilities we decided to explore a possible

relationship between ADAMTS13 expression levels and changes

in codon usage, a known mediator of protein expression,

associated with variants under investigation. We found a strong

correlation between intracellular ADAMTS13 levels and the

changes in codon usage as measured by RSCU (Figure 1D). This

strong correlation between in vitro and in silico data may enable us

to establish a number of predictive tools for future analysis of other

variants and their effects. However, more data would be required

in order to make such type of predictions truly reliable.

We further chose to look at ADAMT13 specific activity as

a measure of protein folding/conformation (Figure 3A). Fluoro-

genic FRETS-VWF73 substrate [56,57] was chosen to test

ADAMTS13 activity due to the following reasons: (i) It has been

reported in an international independent blind study that FRETS-

VWF73 is the most reproducible ADAMTS13 activity assay [58].

(ii) Data from Tripodi et al. suggests that inter-individual variation

between normal subjects is more pronounced during shorter

incubation times: therefore, initial rate of the specific activity by

FRETS-VWF73 was used here as a means of measuring

Table 2. Conservation of ADAMTS13 variants across species.

Base-pair position Amino-acid position Conservation score

354* 118 6

420* 140 3

1342 448 4

1423 475 5

1451 484 4

1716* 572 5

1852 618 1

2280* 760 3

2699 900 5

2910* 970 1

3097 1033 6

4221* 1407 7

*Synonymous ADAMTS13 variants.
Conservation scores were calculated using tools from the ConSeq server (http://
conseq.tau.ac.il/ver1.1/index.html). The conservation ranges from 1 (not
conserved) to 9 (most conserved).
doi:10.1371/journal.pone.0038864.t002
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ADAMTS13 activity [59]. In choosing the FRETS-VWF73 assay

we are not accounting for possible in vivo interactions between

ADAMTS13 variants and the full-length VWF. By eliminating the

complexity of confounding variables, such as substrate binding

affinity and cleavage, the ADAMTS13-mediated proteolysis could

be directly quantified for all twelve variants and WT.

Analysis of specific activity of non-synonymous 2699

ADAMTS13 variant vs. WT revealed significant differences in

KM and VMAX between the intracellular forms but no difference

between the extracellular forms (Figure 3B). Our hypothesis is that

intracellular non-synonymous variant 2699 consists of several

forms, some of them with conformation(s) that allow higher affinity

to the substrate and hence activity, but they could not pass the ER

quality control to be secreted [60–64]. Upon secretion, the WT

and the variant carry similar activity. Moreover, the observed

increases and decreases in activity of the polymorphic

ADAMTS13 variants examined in this study were quite in-

teresting considering the fact that these variants do not reside in

the active site. Therefore, the effects of these variants on the

function of ADAMTS13 may be exerted by way of altered

conformation between variants and WT. Limited trypsin digestion

demonstrate that the WT and variants have different trypsin

sensitivity possibly due to exposure of different trypsin sites e.g. the

non-synonymous 1852 variant showed reduced susceptibility to

trypsin as compared to WT protein (Figure 3C).

It is also interesting to note that many variants under discussion

are predicted to occur in beta-structures/their edges (Figure 4,

Table 1). In particular, non-synonymous variant 1852 results in

a substitution of Pro to Ala at the edge of a short 3-residue beta-

structure which is a part of an extended antiparallel beta-sheet,

forming beta-sheet sandwich (Figure 4). Beta-sheets, as a rule, are

thermodynamically more stable than alpha-helices and hence their

impact on overall protein folding/stability is greater. Therefore,

variants in beta-sheets are expected to produce greater impact on

protein folding [65]. Our analysis however didn’t reveal any

statistically significant association between the location of variants

and the residue conservation (Table 2). The exact reasons why

synonymous substitution of CCG to CCA encoding Pro118Pro

(synonymous variant 354) results in a substantial increase of

ADAMTS13 specific activity, while substitution of GGT to GGC

encoding Gly760Gly (synonymous variant 2280) did not, remain

unclear. Both synonymous variants Pro118Pro (variant 354) and

Gly760Gly (2280) were predicted to be located at the edges of the

beta-structures. Perhaps, CCG to CCA substitution may facilitate

cis-trans Pro118 isomerization and thus lead to an increased

ADAMTS13 specific activity.

In sum, we have demonstrated that non-synonymous and

synonymous variants can significantly alter both intracellular and

extracellular protein expression as well as protein activity.

Currently, there are only a handful of ex vivo studies focused on

ADAMTS13 variants, however to our knowledge there have been

no comprehensive reports detailing such an extensive array of

variants for mRNA and protein expression as well as protein

specific activity. Our results concur with a previous report by

Plaimauer et al. establishing that the expression of intracellular

non-synonymous variant 1852 is similar to WT but extracellular

expression is only 27% of WT (we report 28% of WT) [21].

Plaimauer et al. also reported the extracellular expression of non-

synonymous variant 1342 to be 95% of WT; similarly Kokame et

al. reported similar expression of non-synonymous variant 1342 as

compared to WT (although careful quantitation of the products

was not performed in this study) [20,21]. However, we found

a slightly larger decrease in the expression of ns1342 ADAMTS13

variant as compared to WT. Furthermore, Kokame et al., observed

that non-synonymous variant 1423 showed no change in

expression as compared to WT [20]. However, we detected

a 12% increase in extracellular expression as compared to WT for

non-synonymous variant 1423.

Other reports have investigated several of the ADAMTS13

variants studied here alone or in concert with additional variants,

however their results cannot be directly compared to the results

reported here due to differences in the expression systems and

methods used; yet, some valuable information can be extracted. In

a different system which examines the expression and function

72 h. post-transduction, Tao et al. used a synonymous 3097

ADAMTS13 variant as a positive control and observed equal

extracellular expression and VWF-cleavage activity compared to

WT ADAMTS13 in HeLa cells [23]. Interestingly, at the same

time, secreted WT ADAMTS13 was not expressed at levels

comparable to that of the synonymous variant 3097 during short-

term expression which might reflect the situation of clot formation

in vivo. In addition to these ex vivo studies, Schettert et al. reports an

association between the non-synonymous variant 2699 and

increased risk of death by an adverse cardiovascular event and

lower cholesterol levels, while no such association was found for

the 1852 variant [22]. The correlation between cardiovascular

events and expression and specific activity of individual variants

has yet to be determined. Therefore, the significant decrease in

expression of the non-synonymous variant 1852 and a lack of

adverse cardiovascular events in patients may suggest other

complex factors.

So, how do variants under study, particularly synonymous

variants, exert their effects (leading to altered protein conforma-

tion) without altering protein composition? One of the elements

that might influence protein folding is codon-usage bias. A co-

translational, sequential folding model which incorporates a folding

funnel characterized by conformation intermediates and an

eventual free energy minima ground-state conformation has been

suggested as a plausible hypothesis for in vivo protein folding [10].

Recent evidence has demonstrated that codon usage can fine-tune

this co-translational folding as the ribosome pauses at rare codons

or speeds up at common codons providing a delay or lack thereof

in the growth of the nascent polypeptide [19]. We hypothesize that

the conformational differences observed between synonymous

ADAMTS13 variants may result from the changes in codon usage

and corresponding ribosomal translation speeds. This change in

translation speed prompts a divergence from the WT folding

pathway and therefore might create a new protein conformation.

Statistical analysis revealed no inherent bias in our codon usage

tools (RSCU and log ratio) resulting from our choice of twelve

variants, compared to the RSCU and log ratio of all variants

within ADAMTS13. No correlation was found between the

DRSCU using genomic codon usages and the specific activity of

ADAMTS13 using the FRETS-VWF73 substrate. Extracellular

protein expression may be significantly influenced by variant-

induced conformational changes and this may explain an

additional lack of correlations between specific activity and in

silico analyses. This indeed suggests that codon usage plays an

important role in the protein activity implying that codon usage

affects the local rates of translation and thus protein folding and

specific activity.

In the last few years, the general belief that synonymous variants

are silent has been reevaluated due to the accumulation of data

suggesting that they can interfere with the mRNA structure, codon

usage and/or conformation of the resultant protein, thereby

possibly affecting its function. Moreover, many recombinant

proteins carry variants or common haplotypes with currently little

attention being paid to which haplotype is used in their
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production. A set of experimental approaches and tests used here

are precise enough to distinguish between slight changes in protein

expression and activity levels. Therefore, we believe that these tests

and type of analysis may serve as useful tools to better understand

the effects of different variants in any target protein and may be

also used during the design and evaluation of therapeutic

recombinant proteins.

Materials and Methods

Cell Lines, Culture and Transfection Conditions
Human embryonic kidney cells (HEK293– ATCC; Manassas,

VA) were grown in Dulbecco’s Modified Eagle Medium (DMEM)

(Quality Biological, Inc; Gaithersburg, MD) with 1% glutamine

(Quality Biological, Inc), 1% penicillin- streptomycin (Hyclone;

Logan, UT) and 10% fetal bovine serum (Quality Biological, Inc)

at 37uC under humid conditions in 5% CO2. 1.26106 cells were

plated 24 hours (h.) before transfection in 2 mL growth medium in

6-well plates. Prior to transfection, DMEM was replaced with

1.6 mL Opti-MEM reduced Serum Medium (Invitrogen; Carls-

bad, CA). Cells were transfected with 1 mg of plasmid DNA using

6 mL of Lipofectamine 2000 (Invitrogen) in a total of 400 mL Opti-

MEM (Invitrogen). Independent transfections using the variant

and WT constructs were performed in triplicate for each variant.

A ratio of 1:9 and 1:5 eGFP: ADAMTS13 was used with the same

transfection conditions for co-transfection of eGFP and

ADAMTS13 in order to confirm similar transfection efficiencies

of the WT ADAMTS13 and each of the variants (data not shown).

Plasmids and Site Directed Mutagenesis
pcDNA4-ADAMTS13 (a gift from Dr. Evan Sadler; St. Louis,

MO), which carried a full-length ADAMTS13 (NM_139025)

cDNA conjugated to V5 and poly (His) tags was used as

a backbone for all constructs. Site directed mutagenesis (SDM)

was performed using the QuikChange Site Directed Mutagenesis

Kit (Stratagene; Cedar Creek, TX) to change this sequence to

WT. This sequence was then used as the WT reference standard

and as the backbone for all twelve variants containing constructs

produced via SDM. Bi-directional sequencing was used to confirm

that variants were successfully introduced. An empty vector was

used for mock-transfection control studies. All ADAMTS13

plasmids were purified using cesium chloride gradient (performed

by Lofstrand Labs Limited; Gaithersburg, MD) to obtain high

quality supercoiled plasmids. Plasmid expressing enhanced green

fluorescence protein (Clontech peGFP-C1, referred here as eGFP)

was used for co-transfection assays. All the variants investigated in

this study are described in Table 1.

Cell Harvest: Cell Lysate and Media Preparation
To detect minor changes in ADAMTS13 expression or

function, we chose to harvest cells 24 h. post–transfection because

ADAMTS13 expression and function are in a linear response

range. Cells and media were collected, cell lysates were prepared

and cell media was concentrated, as previously described [18,66].

Protein concentration was measured using Bio-Rad Protein Assay

according to the manufacturer’s instructions (Bio-Rad; New York,

NY) or by A280 using a NanoDrop 2000C (Thermo Scientific;

Wilmington, DE). Concentrated media and cell lysates were

aliquoted and stored at 280uC until further use. The following

controls were applied in order to assure similar condition between

different transfection experiments: (i) Only high quality, super-

coiled DNA plasmids were used for transfections, (ii) eGFP co-

transfections were carried out and flow cytometry was used to

determine equal transfection efficiencies, as specified below, (iii)

the exact same number of cells were plated for each transfection,

(iv) each study included a transfected WT plasmid for internal

comparison among variants transfected concurrently, and (v) each

study included a transfected empty plasmid, a negative control

which was used for expression and function studies.

RNA and qPCR Preparation
RNA was isolated (24 h. post-transfection) using RNeasy Plus

Mini Kit (Qiagen Sciences, Germantown, MD) following

manufacturer’s instructions. Reverse Transcription was carried

out as previously described [34]. Quantitative real time PCR

(qPCR) was done using the LightCycler RNA master SYBR

Green Kit and LightCycler 480 (Roche Applied Science,

Indianapolis, IN), using 1 ng of total RNA with an initial melting

cycle of 30 seconds (s) at 95uC followed by 40 cycles of 8 s at 95uC,
12 s at 58uC and 10 s at 72uC. ADAMTS13 was probed with 59-

tcacagccaacctcacctcg’39 (Forward (F)) and 59-ccgcacctgccggttac-39

(Reverse (R)) primers using GAPDH as a reference gene with

primers 59-tcgtggagtccactggcgtctt-39 (F) and 59-tggcagtgatggcatg-

gactgt-39 (R). Crossing Point (Cp) values were obtained and

presented in the DDCp method using WT as the comparative

control for each variant as previously described [67].

SDS-PAGE Immunoblotting
Samples were sonicated twice for 5 min., boiled in SDS

reducing buffer for 10 min. and then resolved by electrophoresis

in NuPAGE 7% Tris-Acetate gels (Invitrogen). Mouse anti-V5

primary antibody (Invitrogen) and goat anti-mouse HRP second-

ary antibody (Thermo Scientific) were used to detect the

transfected ADAMTS13. Antibody staining was detected using

Amersham ECL Western Blotting Detection Reagents (GE

Healthcare; Piscataway, NJ) on Hyblot CL Autoradiography film

(Denville Scientific, Inc.; Metuchen, NJ). Densitometry analysis of

band intensities was performed using ImageJ 1.42 q software

(http://rsbweb.nih.gov/ij/) or the 4000 MM Pro Image Station

(CareStream Health, Inc; Woodbridge, CT) with CareStream

software. The following controls, in addition to those specified

under cell harvest: cell lysate and media preparation subsection, were

applied in order to assure reproducibility between different

transfection experiments and exclude results due to method

variations: (i) samples for Western blotting were loaded per total

protein concentrations, (ii) a loading control to verify equal total

protein loading using anti-b-actin (Abcam, Inc.; Cambridge, MA)

or anti-GAPDH (Santa Cruz Biotechnologies; Santa Cruz, CA)

were used in lysate samples, (iii) purified recombinant

ADAMTS13 (rADAMTS13 - a gift from Dr. Friedrich Schei-

flinger of Baxter Innovations GmbH; Vienna, Austria) was used as

a control, (iv) immunoblot analysis of three independent transfec-

tions using the linear V5 epitope, was used to determine the

internal variation of the variants on the level of ADAMTS13.

eGFP co-transfections were performed and harvested 24 h. post-

transfection as described above. Cells were washed twice with PBS

and eGFP was detected in FL-1 to determine transfection

efficiencies between ADAMTS13 plasmid constructs that were

shown to be similar (e.g. the median arbitrary fluorescence units of

the empty pcDNA3.1 plasmid and synonymous variant 420 was

524.2 and 556.9, respectively).

Trypsin Digestion
ADAMTS13-cell lysates (1852 vs. WT) were diluted using

100 mM Tris-HCl (Fisher Scientific; Fair Lawn, NJ) and subjected

to trypsin digestion for 5 minutes (min.) at 37uC with increasing

concentrations of freshly made enzyme (Sigma-Aldrich; St. Louis,

MO) at the following concentrations ranges 0–0.0005 mg/mL.
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The reaction was stopped with 1 mg/mL Trypsin soybean

inhibitor (Sigma-Aldrich) and analyzed by immunoblotting as

described below. Half life of the protein was calculated using

GraphPad Prism software.

FRETS-VWF73 Activity Assay
Fluorogenic FRETS-VWF73 substrate (Peptides International;

Louisville, KY) was prepared and assayed according to manu-

facturer’s instructions and as previously described [66]. Fluores-

cence readings were taken at 3–5 min. intervals for 2 h. at 30uC
by the Infinite F5000 spectrophotometer (Tecan US; Durham,

NC). Equal total volume of media was assayed and normalized

according to immunoblot densitometry data. FRETS-VWF73 was

analyzed using the rate of ADAMTS13 activity as a change in

fluorescence per unit of protein per min. An expanded activity

assay was performed for the non-synonymous variant 2699 using

a range of FRETS-VWF73 substrate concentrations, 0, 2.5, 5.0

and 10 mM. The kinetics of ADAMTS13 protease activity were

obtained by plotting this specific activity of the enzyme as

a function of substrate concentration and a Michaelis-Menten plot

was generated using GraphPad Prism software.

Relative Synonymous Codon Usage
Relative Synonymous Codon Usage (RSCU) was calculated for

all variants in the coding region of ADAMTS13 as described by

Sharp and Li

RSCU~
xij

1
ni

Pni

j~1

xij

where xij is the number of occurrences of the jth codon for the ith

amino acid, which is encoded by ni synonymous codons [33,68].

Each variant was analyzed relative to both the codon frequency

within ADAMTS13 cDNA as well as the codon frequency within

the entire human genome using the Codon Usage Database

(http://www.kazusa.or.jp/codon/, last accessed 21 May 2010)

[69]. The ADAMTS13 constructs used here are under transcrip-

tional control of a CMV promoter, which was reported to have

a 2,500% increase in activity when compared to a human BL-3

promoter [70]. Comparison of the viral promoters SV40, EMC,

HBV and CMV (which all carry high activity compared to human

promoters) in an adeno-associated viral infection system revealed

significantly higher expression of Blood Coagulation Factor IX

under a CMV promoter [71]. Therefore, the massive increase in

ADAMTS13 under the CMV promoter compared to basal

ADAMTS13 expression levels would alter the various natural

tRNA concentrations within the cell by depleting more quickly

tRNAs that bind to highly used codons in ADAMTS13. In-

terestingly, the CG content of the coding region of WT

ADAMTS13 is 64.8%, while in the average, protein coding

sequence it is only about 46% [72]. Additionally, ,8.3% of all

amino acids in WT ADAMTS13 are prolines (118 prolines), while

prolines only make up 6.2% of amino acids in the human genome.

Thus, although it is typical to perform these analyses using the

complete human genomic codon frequencies, over-expression of

ADAMTS13 in the transient transfection system enacts a signifi-

cant change in codon usage within the cell. Therefore, both

RSCU and the log ratio of codon frequencies were calculated not

only using human genomic frequencies but also using ADAMTS13

cDNA codon usages to mimic the strain of such over-expression.

RSCU values were calculated for each variant using the variant

codon. At all variant locations, the DRSCU value was computed

between the variant and WT sequence.

Log Ratio of Codon Frequencies
The frequency of the given codon divided by the frequency of

all synonymous codons for the encoded amino acid was calculated

for each variant. A log ratio of this frequency analysis was

performed in order to assess differences between variant and WT.

At each variant location, the log ratio of the frequency of the

individual codon was calculated. Two different frequencies were

used in these calculations: (i). Derived from human WT

ADAMTS13 cDNA codon frequencies (ii). Derived from the

human Codon Usage Database [69]. For all calculations, a Dlog
ratio of codon frequency value of variant versus the WT was

calculated. A third method employed by Dos Reis et al. [73], was

not used in the current study because the tRNA adaptation index

does not take into account intercellular differences in tRNA

content, which is necessary to address the relation of tRNA

content to codon bias and translation speed.

mFold and KineFold Analysis of mRNA Minimum Free
Energy Structures
Using default parameters, short fragments of ADAMTS13 ORF

(25, 75, 151, and 399 nt in length) were analyzed by mFold’s

online server (http://mfold.rna.albany.edu/?q =mfold/RNA-

Folding-Form) as well as the KineFold online server (http://

kinefold.curie.fr/cgi-bin/form.pl); variants were centered within

these sequences [24,74]. To better understand the impact of

variants on the minimum free energy of mRNA structure we have

expanded the range of lengths to investigate. The most stable

structure in terms of Gibbs free energy (DG) was determined and

used for later analysis. Additionally, WT sequences of the same

lengths were queried and a delta-delta G (DDG) value was

established by subtracting the Gibbs free energy value of WT from

the variant. The DDG was plotted and used for correlation studies.

ADAMTS13 3-D Structure Prediction and Analysis: Comparative

modeling of the ADAMTS13 structure was performed using the

3D-PSSM algorithm developed by Kelley and Sternberg and

Swiss-Pdb Viewer V4.0.2 using 1D and 3D sequence profiles

coupled with secondary structure and solvation potential in-

formation. PSSM E-value (the score or ‘‘expectation value’’ of the

match; ‘‘% Certainty’’) was used to compare different model

structures and the structures with the lowest E-value were chosen

for further analysis [35]. Two model fragments/structures

comprising ADAMTS13 residues 77–470 and 674–1254 (out of

the 1427 total residues) were built with the help of PyMOL v0.98

and/or Swiss-Pdb Viewer V4.0.2 and the amino acids encoded by

the codons/variants under investigation (whenever it was possible)

were visualized (van der Waals’ radii of the side chains were

shown). ADAMT13 fragment (comprising residues 287–682),

whose structure was solved by X-Ray crystallography (PDB ID

3GHM) was also visualized using Swiss-Pdb Viewer V4.0.2 and

the amino acids encoded by the codons/variants under in-

vestigation in this region (namely Gln448, Pro475, Arg484,

Thr572, Pro618) were also visualized (van der Waals’ radii of

the side chains were shown).

Variant Conservation
Using the ConSeq server (http://conseq.tau.ac.il/ver1.1/index.

html), the conservation of each individual variant was calculated

[75,76]. The conservation ranges from 1 (not conserved) to 9 (most

conserved) and based on a multiple sequence alignment of 50
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homologues proteins from the SwissProt database (http://www.

uniprot.org/, last accessed 7 June 2011).

Statistical Analysis
The mean ADAMTS13 mRNA transcript level, intracellular &

extracellular expression levels, and specific activity for the variants

and the wild-type were compared using 2-sided t tests for

independent samples, and a p-value less than.05 was considered

to be of statistical significance. We performed correlation analysis

using ex vivo and computational data. We first obtained compu-

tational data for variants and WT ADAMTS13 mRNA/protein.

The Spearman’s correlation coefficient between in silico and ex vivo

data was then computed. Finally, we performed linear regression

analysis for highly correlated cases where the correlation was

statistically significant at or below 5% using ordinary least squares

method. The statistical significance of DRSCU and Dlog ratio

scores for our set of variants was evaluated by assigning a MAD

score (robust Z-score) to each parameter. DRSCU and Dlog ratio

for all variants within the coding region of ADAMTS13 were

calculated based on data given the NCBI dbSNP database (http://

www.ncbi.nlm.nih.gov/snp, last accessed 24 October 2011). Since

the distribution of DRSCU and Dlog ratio for all variants within

the coding region of ADAMTS13 cannot simply assumed to be

normal, we used the MAD score as a more robust estimate of

outliers. All DRSCU and Dlog ratio scores for our set of variants

had |MAD score| ,3 i.e. they fall within the range of median

63MAD of the distribution of all variants within ADAMTS13.

Further, Spearman’s correlation matrix was computed for in

silico data (correlation $0.6 or #20.6; P,0.05) and ex vivo data in

order to determine if highly correlating sets of computational data

could possibly provide explanation for ex vivo data. We also looked

at correlation of ex vivo data between themselves. Additionally,

a linear regression analysis was performed for all the above cases to

ensure that obvious outliers that would skew the correlation

coefficient were not present.

Supporting Information

Table S1 Changes in predicted binding motif of splicing
site regulators between variant and WT using SPmap
web server.

(DOC)

Table S2 Summary of in vitro data for synonymous and
nonsynonymous variants.

(DOC)

Acknowledgments

The authors would like to thank Justin Muste and Ergin Ayalp for

contributing work and George Leiman for assistance with illustrations. We

would like to thank Baxter International Inc. for its donation of

recombinant ADAMTS13. The findings and conclusions in this article

have not been formally disseminated by the US Food and Drug

Administration and should not be construed to represent any Agency

determination or policy.

Author Contributions

Conceived and designed the experiments: NCE ZAH AB ZES AAK CK-S.

Performed the experiments: NCE ZAH AP AB DBK AS RF WP JN CEA

GS CO. Analyzed the data: NCE ZAH AP AB RS TMP AAK IK NS CK-

S ZES VG. Contributed reagents/materials/analysis tools: RS TMP AAK

IK NS CK-S. Wrote the paper: NCE ZAH AS ZES YM-G AAK CK-S.

References

1. Zheng XL, Chung D, Takayama TK, Majerus EM, Sadler JE, et al. (2001)

Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metallo-

protease involved in thrombotic thrombocytopenic purpura. Journal of
Biological Chemistry 276: 41059–41063.

2. Levy GG, Nichols WC, Lian EC, Foroud T, McClintick JN, et al. (2001)
Mutations in a member of the ADAMTS gene family cause thrombotic

thrombocytopenic purpura. Nature 413: 488–494.

3. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, et al. (2001) dbSNP: the

NCBI database of genetic variation. Nucleic Acids Res 29: 308–311.

4. Andersson SGE, Kurland CG (1990) Codon Preferences in Free-Living

Microorganisms. Microbiological Reviews 54: 198–210.

5. Chamary JV, Parmley JL, Hurst LD (2006) Hearing silence: non-neutral
evolution at synonymous sites in mammals. Nat Rev Genet 7: 98–108.

nrg1770;10.1038/nrg1770.

6. Czech A, Fedyunin I, Zhang G, Ignatova Z (2010) Silent mutations in sight: co-

variations in tRNA abundance as a key to unravel consequences of silent
mutations. Molecular Biosystems 6: 1767–1772.

7. Duret L (2002) Evolution of synonymous codon usage in metazoans. Current

Opinion in Genetics & Development 12: 640–649.

8. Hunt R, Sauna ZE, Ambudkar SV, Gottesman MM, Kimchi-Sarfaty C (2009)

Silent (synonymous) SNPs: should we care about them? Methods Mol Biol 578:
23–39.

9. Komar AA, Lesnik T, Reiss C (1999) Synonymous codon substitutions affect
ribosome traffic and protein folding during in vitro translation. FEBS Lett 462:

387–391. S0014–5793(99)01566–5.

10. Tsai CJ, Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM, et al.
(2008) Synonymous mutations and ribosome stalling can lead to altered folding

pathways and distinct minima. J Mol Biol 383: 281–291.

11. Gu W, Zhou T, Wilke CO (2010) A universal trend of reduced mRNA stability

near the translation-initiation site in prokaryotes and eukaryotes. PLoS Comput
Biol 6: e1000664. 10.1371/journal.pcbi.1000664.

12. Capon F, Allen MH, Ameen M, Burden AD, Tillman D, et al. (2004) A

synonymous SNP of the corneodesmosin gene leads to increased mRNA stability
and demonstrates association with psoriasis across diverse ethnic groups. Hum

Mol Genet 13: 2361–2368. 10.1093/hmg/ddh273;ddh273.

13. Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, et al. (2003)

Synonymous mutations in the human dopamine receptor D2 (DRD2) affect
mRNA stability and synthesis of the receptor. Hum Mol Genet 12: 205–216.

14. Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, et al.

(2006) Human catechol-O-methyltransferase haplotypes modulate protein

expression by altering mRNA secondary structure. Science 314: 1930–1933.

314/5807/1930;10.1126/science.1131262.

15. Chamary JV, Hurst LD (2005) Evidence for selection on synonymous mutations

affecting stability of mRNA secondary structure in mammals. Genome Biol 6:

R75. gb-2005–6-9-r75;10.1186/gb-2005–6-9-r75.

16. Lavner Y, Kotlar D (2005) Codon bias as a factor in regulating expression via

translation rate in the human genome. Gene 345: 127–138. S0378–

1119(04)00708–5;10.1016/j.gene.2004.11.035.

17. Tuller T, Waldman YY, Kupiec M, Ruppin E (2010) Translation efficiency is

determined by both codon bias and folding energy. Proc Natl Acad Sci U S A

107: 3645–3650. 0909910107;10.1073/pnas.0909910107.

18. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, et al. (2007) A

‘‘silent’’ polymorphism in the MDR1 gene changes substrate specificity. Science

315: 525–528.

19. Komar AA (2009) A pause for thought along the co-translational folding

pathway. Trends Biochem Sci 34: 16–24.

20. Kokame K, Matsumoto M, Soejima K, Yagi H, Ishizashi H, et al. (2002)

Mutations and common polymorphisms in ADAMTS13 gene responsible for

von Willebrand factor-cleaving protease activity. Proc Natl Acad Sci U S A 99:

11902–11907.

21. Plaimauer B, Fuhrmann J, Mohr G, Wernhart W, Bruno K, et al. (2006)

Modulation of ADAMTS13 secretion and specific activity by a combination of

common amino acid polymorphisms and a missense mutation. Blood 107: 118–

125.

22. Schettert IT, Pereira AC, Lopes NH, Hueb WA, Krieger JE (2010) Association

between ADAMTS13 polymorphisms and risk of cardiovascular events in

chronic coronary disease. Thromb Res 125: 61–66. S0049–3848(09)00166–

2;10.1016/j.thromres.2009.03.008.

23. Tao Z, Anthony K, Peng Y, Choi H, Nolasco L, et al. (2006) Novel ADAMTS-

13 mutations in an adult with delayed onset thrombotic thrombocytopenic

purpura. Journal of Thrombosis and Haemostasis 4: 1931–1935.

24. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization

prediction. Nucleic Acids Res 31: 3406–3415.

25. Xayaphoummine A, Bucher T, Isambert H (2005) Kinefold web server for

RNA/DNA folding path and structure prediction including pseudoknots and

knots. Nucleic Acids Res 33.

26. Ikemura T (1985) Codon usage and tRNA content in unicellular and

multicellular organisms. Mol Biol Evol 2: 13–34.

Synonymous and Non-Synonymous Variants in ADAMTS13

PLoS ONE | www.plosone.org 14 June 2012 | Volume 7 | Issue 6 | e38864



27. Dittmar KA, Goodenbour JM, Pan T (2006) Tissue-specific differences in

human transfer RNA expression. PLoS Genet 2: e221. 06-PLGE-RA-
0311R3;10.1371/journal.pgen.0020221.

28. Sharp PM, Cowe E, Higgins DG, Shields DC, Wolfe KH, et al. (1988) Codon

usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae,
Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens;

a review of the considerable within-species diversity. Nucleic Acids Res 16:
8207–8211.

29. Sharp PM, Averof M, Lloyd AT, Matassi G, Peden JF (1995) DNA sequence

evolution: the sounds of silence. Philos Trans R Soc Lond B Biol Sci 349: 241–
247. 10.1098/rstb.1995.0108.

30. Hershberg R, Petrov DA (2008) Selection on codon bias. Annu Rev Genet 42:
287–299. 10.1146/annurev.genet.42.110807.091442.

31. Sharp PM, Emery LR, Zeng K (2010) Forces that influence the evolution of
codon bias. Philos Trans R Soc Lond B Biol Sci 365: 1203–1212. 365/1544/

1203;10.1098/rstb.2009.0305.

32. Zhang G, Hubalewska M, Ignatova Z (2009) Transient ribosomal attenuation
coordinates protein synthesis and co-translational folding. Nature Structural &

Molecular Biology 16: 274–280.
33. Sharp PM, Tuohy TM, Mosurski KR (1986) Codon usage in yeast: cluster

analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids

Res 14: 5125–5143.
34. Shomron N, Hamasaki-Katagiri N, Hunt R, Hershko K, Pommier E, et al.

(2010) A splice variant of ADAMTS13 is expressed in human hepatic stellate
cells and cancerous tissues. Thromb Haemost 104: 531–535.

35. Kelley LA, Maccallum R, Sternberg MJE (1999) Recognition of Remote Protein
Homologies Using Three-Dimensional Information to Generate a Position

Specific Scoring Matrix in the program 3D-PSSM. In: Sorin I, Pavel P, Michael

W, editors. N.Y.: The Association for Computing Machinery.
36. Berezin C, Glaser F, Rosenberg J, Paz I, Pupko T, et al. (2004) ConSeq: the

identification of functionally and structurally important residues in protein
sequences. Bioinformatics 20: 1322–1324. 10.1093/bioinformatics/

bth070;bth070.

37. Bohm M, Vigh T, Scharrer I (2002) Evaluation and clinical application of a new
method for measuring activity of von Willebrand factor-cleaving metalloprotease

(ADAMTS13). Ann Hematol 81: 430–435. 10.1007/s00277–002–0502–3.
38. Zhou W, Tsai HM (2004) An enzyme immunoassay of ADAMTS13

distinguishes patients with thrombotic thrombocytopenic purpura from normal
individuals and carriers of ADAMTS13 mutations. Thromb Haemost 91: 806–

811. 10.1267/THRO04040806;04040806.

39. Mannucci PM, Capoferri C, Canciani MT (2004) Plasma levels of von
Willebrand factor regulate ADAMTS-13, its major cleaving protease. Br J

Haematol 126: 213–218. 10.1111/j.1365–2141.2004.05009.x;BJH5009.
40. Sauna ZE, Kimchi-Sarfaty C (2011) Understanding the contribution of

synonymous mutations to human disease. Nat Rev Genet 12: 683–691.

nrg3051;10.1038/nrg3051.
41. Ward NJ, Buckley SMK, Waddington SN, VandenDriessche T, Chuah MKL,

et al. (2011) Codon optimization of human factor VIII cDNAs leads to high-level
expression. Blood 117: 798–807.

42. Halvorsen M, Martin JS, Broadaway S, Laederach A (2010) Disease-associated
mutations that alter the RNA structural ensemble. PLoS Genet 6: e1001074.

10.1371/journal.pgen.1001074.

43. Pascal LE, True LD, Campbell DS, Deutsch EW, Risk M, et al. (2008)
Correlation of mRNA and protein levels: cell type-specific gene expression of

cluster designation antigens in the prostate. BMC Genomics 9: 246. 1471–2164–
9-246;10.1186/1471–2164–9-246.

44. Fairbrother WG, Yeh RF, Sharp PA, Burge CB (2002) Predictive identification

of exonic splicing enhancers in human genes. Science 297: 1007–1013. 10.1126/
science.1073774;1073774.

45. Goren A, Ram O, Amit M, Keren H, Lev-Maor G, et al. (2006) Comparative
analysis identifies exonic splicing regulatory sequences - The complex definition

of enhancers and silencers. Mol Cell 22: 769–781.

46. Wang Z, Rolish ME, Yeo G, Tung V, Mawson M, et al. (2004) Systematic
identification and analysis of exonic splicing silencers. Cell 119: 831–845.

S0092867404010566;10.1016/j.cell.2004.11.010.
47. Zhang XH, Chasin LA (2004) Computational definition of sequence motifs

governing constitutive exon splicing. Genes Dev 18: 1241–1250. 10.1101/
gad.1195304;1195304.

48. Glisovic T, Bachorik JL, Yong J, Dreyfuss G (2008) RNA-binding proteins and

post-transcriptional gene regulation. FEBS Lett 582: 1977–1986. S0014–
5793(08)00207-X;10.1016/j.febslet.2008.03.004.

49. de Smit MH, van DJ (1990) Secondary structure of the ribosome binding site
determines translational efficiency: a quantitative analysis. Proc Natl Acad

Sci U S A 87: 7668–7672.

50. Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence
determinants of gene expression in Escherichia coli. Science 324: 255–258. 324/

5924/255;10.1126/science.1170160.
51. Kertesz M, Wan Y, Mazor E, Rinn JL, Nutter RC, et al. (2010) Genome-wide

measurement of RNA secondary structure in yeast. Nature 467: 103–107.
nature09322;10.1038/nature09322.

52. Liebhaber SA, Cash FE, Shakin SH (1984) Translationally associated helix-

destabilizing activity in rabbit reticulocyte lysate. J Biol Chem 259: 15597–
15602.

53. Bauer AP, Leikam D, Krinner S, Notka F, Ludwig C, et al. (2010) The impact of
intragenic CpG content on gene expression. Nucleic Acids Res 38: 3891–3908.

54. Bartoszewski RA, Jablonsky M, Bartoszewska S, Stevenson L, Dai Q, et al.

(2010) A Synonymous Single Nucleotide Polymorphism in Delta F508 CFTR

Alters the Secondary Structure of the mRNA and the Expression of the Mutant
Protein. Journal of Biological Chemistry 285: 28741–28748.

55. Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and
consequences of codon bias. Nature Reviews Genetics 12: 32–42.

56. Kremer Hovinga JA, Mottini M, Lammle B (2006) Measurement of ADAMTS-

13 activity in plasma by the FRETS-VWF73 assay: comparison with other assay

methods. J Thromb Haemost 4: 1146–1148. JTH1904;10.1111/j.1538–
7836.2006.01904.x.

57. Mahdian R, Rayes J, Girma JP, Houllier A, Obert B, et al. (2006) Comparison
of FRETS-VWF73 to full-length VWF as a substrate for ADAMTS13 activity

measurement in human plasma samples. Thromb Haemost 95: 1049–1051.
06061049;10.1160/TH06–03–0166.

58. Franchini M, Mannucci PM (2008) Advantages and limits of ADAMTS13
testing in thrombotic thrombocytopenic purpura. Blood Transfus 6: 127–135.

59. Tripodi A, Chantarangkul V, Bohm M, Budde U, Dong JF, et al. (2004)
Measurement of von Willebrand factor cleaving protease (ADAMTS-13): results

of an international collaborative study involving 11 methods testing the same set
of coded plasmas. J Thromb Haemost 2: 1601–1609. 10.1111/j.1538–

7836.2004.00879.x;JTH879.

60. Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat

Rev Mol Cell Biol 4: 181–191. 10.1038/nrm1052;nrm1052.

61. Jarosch E, Taxis C, Volkwein C, Bordallo J, Finley D, et al. (2002) Protein

dislocation from the ER requires polyubiquitination and the AAA-ATPase
Cdc48. Nat Cell Biol 4: 134–139. 10.1038/ncb746;ncb746.

62. Jarosch E, Geiss-Friedlander R, Meusser B, Walter J, Sommer T (2002) Protein
dislocation from the endoplasmic reticulum–pulling out the suspect. Traffic 3:

530–536. tra030803.

63. Brodsky JL, McCracken AA (1999) ER protein quality control and proteasome-

mediated protein degradation. Semin Cell Dev Biol 10: 507–513. S1084–
9521(99)90321-X;10.1006/scdb.1999.0321.

64. Tsai B, Ye Y, Rapoport TA (2002) Retro-translocation of proteins from the
endoplasmic reticulum into the cytosol. Nat Rev Mol Cell Biol 3: 246–255.

10.1038/nrm780;nrm780.

65. Henzler Wildman KA, Lee DK, Ramamoorthy A (2002) Determination of +-
helix and +-sheet stability in the solid state: A solid-state NMR investigation of
poly(L-alanine). Biopolymers 64: 246–254. 10.1002/bip.10180.

66. Sauna ZE, Okunji C, Hunt RC, Gupta T, Allen C, et al. (2009)

Characterization of conformation-sensitive antibodies to ADAMTS13, the von

Willebrand cleavage protease. PLoS One 4: e6506.

67. Calcagno AM, Chewning KJ, Wu CP, Ambudkar SV (2006) Plasma membrane

calcium ATPase (PMCA4): a housekeeper for RT-PCR relative quantification of
polytopic membrane proteins. BMC Mol Biol 7: 29. 1471–2199–7-29;10.1186/

1471–2199–7-29.

68. Sharp PM, Li WH (1987) The codon Adaptation Index–a measure of directional

synonymous codon usage bias, and its potential applications. Nucleic Acids Res
15: 1281–1295.

69. Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from
international DNA sequence databases: status for the year 2000. Nucleic Acids

Res 28: 292.

70. Coleman TA, Chomczynski P, Frohman LA, Kopchick JJ (1991) A comparison

of transcriptional regulatory element activities in transformed and non-
transformed rat anterior pituitary cells. Mol Cell Endocrinol 75: 91–100.

0303–7207(91)90223-F.

71. Chen L, Perlick H, Morgan RA (1997) Comparison of retroviral and adeno-

associated viral vectors designed to express human clotting factor IX. Hum Gene
Ther 8: 125–135. 10.1089/hum.1997.8.2–125.

72. Galtier N, Piganeau G, Mouchiroud D, Duret L (2001) GC-content evolution in
mammalian genomes: the biased gene conversion hypothesis. Genetics 159:

907–911.

73. Reis Md, Savva R, Wernisch L (2004) Solving the riddle of codon usage

preferences: a test for translational selection. Nucleic Acids Res 32: 5036–5044.

74. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence

dependence of thermodynamic parameters improves prediction of RNA
secondary structure. J Mol Biol 288: 911–940.

75. Berezin C, Glaser F, Rosenberg J, Paz I, Pupko T, et al. (2004) ConSeq: the

identification of functionally and structurally important residues in protein

sequences. Bioinformatics 20: 1322–1324. 10.1093/bioinformatics/
bth070;bth070.

76. Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) ConSurf 2010:
calculating evolutionary conservation in sequence and structure of proteins and

nucleic acids. Nucleic Acids Res 38: W529–W533. gkq399;10.1093/nar/
gkq399.

Synonymous and Non-Synonymous Variants in ADAMTS13

PLoS ONE | www.plosone.org 15 June 2012 | Volume 7 | Issue 6 | e38864


