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Abstract

Background: Metagenomic assembly using high-throughput sequencing data is a powerful method to construct microbial genomes
in environmental samples without cultivation. However, metagenomic assembly, especially when only short reads are available, is a
complex and challenging task because mixed genomes of multiple microorganisms constitute the metagenome. Although long read
sequencing technologies have been developed and have begun to be used for metagenomic assembly, many metagenomic studies
have been performed based on short reads because the generation of long reads requires higher sequencing cost than short reads.

Results: In this study, we present a new method called PLR-GEN. It creates pseudo–long reads from metagenomic short reads based on
given reference genome sequences by considering small sequence variations existing in individual genomes of the same or different
species. When applied to a mock community data set in the Human Microbiome Project, PLR-GEN dramatically extended short reads
in length of 101 bp to pseudo–long reads with N50 of 33 Kbp and 0.4% error rate. The use of these pseudo–long reads generated by
PLR-GEN resulted in an obvious improvement of metagenomic assembly in terms of the number of sequences, assembly contiguity,
and prediction of species and genes.

Conclusions: PLR-GEN can be used to generate artificial long read sequences without spending extra sequencing cost, thus aiding
various studies using metagenomes.
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Background
Metagenomic sequences containing all sequenced genetic ma-
terials in environmental samples are one of the most impor-
tant resources for understanding the roles of microorganisms
in an environment. Metagenomic sequences have been widely
used for characterizing microbial communities in various envi-
ronments, such as animal organs, seawater, hydrothermal en-
vironment, plants, and soils [1–6]. In studies using metage-
nomic sequences, the creation of high-quality metagenomic as-
semblies is critical to accurately discover the composition and
function of microbes within the environment. Although sev-
eral metagenomic assembly algorithms have been developed [7–
12], the task of metagenomic assembly remains challenging be-
cause of the complexity of metagenomic sequences consisting
of sequences of many short DNA fragments of diverse species
[13, 14].

The development of third-generation sequencing technologies
aiming to increase sequence length has provided new oppor-
tunities for metagenomic assembly because longer sequences
are more useful for resolving repetitive genome sequences and
distinguishing sequences from different species [15–18]. With
recently developed hybrid assemblers that use long reads to-
gether with short reads, the contiguity of genome assemblies
is increased while minimizing assembly errors [19, 20]. How-
ever, the generation of long reads requires relatively higher se-
quencing cost than short reads, thus limiting their applica-
tions for metagenomic assembly [16]. Indeed, short read–based

metagenomic assemblies have been used in many recent studies
[6, 21–24].

In this situation, there was a recent effort to generate and use
artificial long reads from real short reads to take advantage of the
benefits of both short and long reads without needing extra se-
quencing cost. For example, a recently developed local de novo as-
sembly tool called Konnector can generate elongated pseudo–long
reads from paired-end tag sequencing data for a single genome as-
sembly [25]. Paired-end tag pseudo–long reads generated by Kon-
nector have been successfully used to assemble the genome of
the American bullfrog [26]. However, this approach cannot be di-
rectly applied to metagenomic sequences because of the complex-
ity of metagenomic sequences resulting from the large number
of species present in the metagenomic sample and similar ge-
nomic regions with small sequence variations shared by different
individuals in the same or different species [27]. To address this
problem, known reference genomes of many microorganisms can
be used as a valuable guide to correctly capture these subtle se-
quence variations when generating pseudo–long read sequences
even though they cannot represent all microorganisms existing in
a metagenomic sample.

As an attempt to fully utilize known reference genomes of
many microbial species for metagenomic assembly, we present
a new method called PLR-GEN for the generation of pseudo–long
reads (PLRs) by using short reads of a metagenomic sample and
genome sequences of known microbial species as input. PLR-GEN
can capture subtle sequence variations originating from individ-
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ual genomes of the same or different species and generate PLRs
with small sequence variations. PLR-GEN was applied to short
paired-end reads (2 × 101 bp) in the mock community data set
in the Human Microbiome Project [28, 29], and the PLRs with N50
of 33 Kbp were generated with 0.4% error rate and 99.9% align-
ment rate against reference genomes in the above data set. When
applied to metagenomic assembly, PLRs resulted in increased as-
sembly contiguity without introducing assembly errors. They also
improved recovery of species and genes in a metagenomic sam-
ple. This result clearly shows that PLR-GEN can generate very use-
ful and accurate artificial long reads without spending extra se-
quencing cost. Thus, PLR-GEN can be successfully used for various
studies involving metagenomes.

Methods
Generation of pseudo–long reads
Our method, PLR-GEN, generates PLRs through the following six
steps (Fig. 1) based on next-generation sequencing short reads
(single-end or paired-end reads) of a metagenomic sample and
reference microbial genome sequences.

In the mapping and piling-up step, metagenomic short reads
are mapped to each reference genome separately using Bowtie2
[30] with default options. All aligned reads are filtered and piled
up on each reference genome using SAMtools mpileup [31] with
“-q 20 –ff UNMAP,QCFAIL,DUP,SECONDARY” options. The “-q 20”
option requires the use of alignments with a minimum mapping
quality 20, and the “–ff UNMAP,QCFAIL,DUP,SECONDARY” option
makes unmapped, low-quality, duplicated, and secondary-aligned
reads skipped. The mapping quality cutoff (-q) can be changed by
the user.

In the PLR container construction step, reference genomes are
broken at regions without having any mapped reads. Each of the
resulting sequence fragments is defined as the PLR container,
which is a template for generating PLRs. Among initially gener-
ated PLR containers, small PLR containers shorter than 100 bp in
length are discarded. The length cutoff can be changed by the user.
Mapped reads in each PLR container are then used to generate PLR
sequences in downstream steps.

In the PLR graph generation step, multiple read sequence align-
ment in each PLR container is converted to a graph, called a PLR
graph, which consists of two types of nodes (normal and bub-
ble) and directed edges representing the order of the nodes in the
alignment. Specifically, a normal node is created from contigu-
ous alignment columns where a single nucleotide occupies each
alignment column. If an alignment column has two or more dif-
ferent nucleotides, then the bubble node is created for each dif-
ferent nucleotide. If there are only alignment columns with an
identical base, then the PLR graph is generated with only normal
nodes and a single PLR sequence is created. In this step, some nu-
cleotides with very low frequency can be ignored based on the
relative frequency against the most frequent nucleotide in the
alignment column. By default, nucleotides with the relative fre-
quency smaller than 0.5, which means that their absolute fre-
quency is smaller than half of the most frequent one, are not
used for generating the bubble node. The PLR graph generation
panel in Fig. 1 shows an example of the PLR graph construction.
Below the sequence of a reference genome (thick black line at the
top) in one PLR container, multiple reads (thin lines with differ-
ent colors) are aligned. Here, there are four alignment columns

(B1 to B4 in Fig. 1) consisting of two different nucleotides. They
are shown with aligned nucleotides, assuming that each of all
other alignment columns is occupied by a single nucleotide. Two
bubble nodes indicating two different aligned nucleotides in each
alignment column are created. Five alignment regions flanking
the above alignment columns B1 to B4 are used to create five nor-
mal nodes (named N1 to N5).

One of the excellent features of PLR-GEN is its ability to distin-
guish genome fragments with only a very small number of nu-
cleotide differences from individuals of the same species or dif-
ferent species. This results in the generation of multiple PLR se-
quences with small variations in one PLR container if necessary.
Generation of PLR sequences is done by finding one or more paths
of nodes in the PLR graph. In the identified PLR path, only a single
bubble node can be included in the path at a specific alignment
position. In addition, bubble nodes at different alignment posi-
tions can be added together in the path in a dependent manner.
This constraint reflects the fact that only specific combinations
of variants at different alignment positions are possible, each of
which corresponds to a single sequenced DNA fragment. There-
fore, finding combinations of bubble nodes at different alignment
positions is the main problem in PLR sequence generation. For do-
ing that, special reads called bubble-linking reads that span two or
more bubble nodes in different alignment columns (yellow lines
in the PLR graph generation panel in Fig. 1) are identified, and the
information of linked bubbles is then collected from the bubble-
linking reads. The bubble linking information collected from one
of the bubble-linking reads ri is then represented as the vector of
bubble nodes with length of the number of alignment columns
with the bubble nodes B as follows:

Vi = (vi1, . . . , viB ) where vi j ∈ {
‘A’, ‘C’, ‘G’, ‘T’, ‘ − ’

}
In this equation, the “–” symbol is used to indicate the absence

of linking information of bubble nodes in that position. Vectors
obtained from bubble-linking reads in the example in Fig. 1 are
shown at the right-hand side of the PLR graph generation panel.
For example, the link from T in B1 to A in B2 is identified by the first
bubble-linking read r1 (the top-most yellow line in the PLR graph
generation panel in Fig. 1). However, this read cannot provide any
information for linking bubble nodes in the alignment column B3
or B4. Similarly, the link from T in B3 to T in B4 is discovered by
the last bubble-linking read r8 (the bottom-most yellow line in the
same panel in Fig. 1) without any information for bubble nodes
in B1 or B2. Note that Fig. 1 shows an example when single-end
reads are used. When paired-end reads are used, the whole DNA
fragment defined by the two paired reads is treated as a single unit
of the bubble-linking read.

In the bubble combination identification step, vectors of bub-
ble nodes created from each bubble-linking read in the previous
step are used to find different combinations of all bubble nodes
in the PLR graph (the bubble combination identification panel in
Fig. 1). The basic idea is to cluster vectors of bubble nodes based
on their consistency (the same nucleotide in the same vector ele-
ment) and use each resulting cluster to define a specific combina-
tion of bubble nodes. For this purpose, a hierarchical agglomera-
tive clustering algorithm, which iteratively clusters a pair of close
data (or intermediate clusters) in a hierarchical manner without
needing a prespecified number of clusters [32], is used. To perform
clustering, the measure of distance D(Vi, Vj ) between two vectors
of bubble nodes Vi and Vj for total B bubble nodes is defined as
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Figure 1: Workflow of pseudo–long read generation (PLR-GEN). Using next-generation sequencing (NGS) short reads of a metagenomic sample and
reference genomes as input, NGS reads are mapped to reference genomes. Mapped reads are piled up on aligned reference genome positions (the
mapping and piling-up step). Reference genome regions with continuously mapped reads are defined as PLR containers (the PLR container
construction step). The PLR graph is constructed using two types of nodes, normal nodes (N1 to N5) and bubble nodes (nodes corresponding to B1 to
B4), and directed edges representing the order of nodes in the PLR container (the PLR graph generation step). Vectors of bubble nodes are created and
grouped by the hierarchical clustering algorithm to identify various combinations of bubble nodes (the bubble combination identification step).
Together with normal nodes flanking bubble nodes, each of the different bubble node combinations is converted to a single PLR path (the PLR path
identification step). Finally, a PLR sequence is constructed by concatenating nucleotides in normal and bubble nodes in each PLR path (the PLR
sequence generation step).

follows:

D
(
Vi,Vj

) =
B∑

b = 1

db where db =

{
1, if vib �= vjb and vib �= ‘ − ’ and vjb �= ‘ − ’

0, otherwise

Note that the above distance can be defined only for two vec-
tors that share at least one vector element containing the same
or different nucleotide in each vector. For two vectors not satisfy-

ing such a condition, an arbitrary distance larger than 1 is used to
separate them to different clusters.

Based on calculated distances, hierarchical agglomerative clus-
tering is carried out and final clusters are defined using 0 as a
distance cutoff. For an example, at the bubble combination iden-
tification panel in Fig. 1, hierarchical clustering is performed for
eight vectors of bubble nodes, and two clusters are finally gener-
ated. All vectors in the same cluster have an identical nucleotide
at each bubble position or the “–” symbol if the bubble node at that
position cannot be linked with any other bubble nodes at different
positions. The latter case can happen when the distance between
alignment columns with bubble nodes is too large to be linked
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by paired-end (or single-end) reads. From each cluster, vectors of
bubble nodes are sorted by the position of the first bubble node
in the PLR container. After that, the combination of bubble nodes
is constructed by integrating bubble nodes at different alignment
positions. At the position of an unlinked bubble node as described
above, a “–” symbol is placed in the combination.

In the PLR path identification step, when all combinations of
bubble nodes are identified, final PLR paths are generated by as-
sembling flanking normal nodes and the identified consensus
bubble paths. The PLR path identification panel in Fig. 1 shows
two examples of PLR paths generated from two clusters obtained
in the previous step.

Finally, in the PLR sequence generation step, for each PLR path,
the final pseudo–long read sequence is constructed by concate-
nating nucleotides of normal and bubble nodes in the path. In this
step, the “N” symbol is used at the position of an unlinked bubble
node.

Generation and evaluation of PLRs using the
mock community data set in the Human
Microbiome Project
The mock community data set in the Human Microbiome Project
[15] (hereafter called the HMP data set) was downloaded and used
to generate PLRs. The quality and utility of these PLRs were then
evaluated. The HMP data set consists of Illumina paired-end reads
(2 × 101 bp; total 3.1 Gbp of 15,396,579 pairs of reads; NCBI acces-
sion number: SRR2822457) that were used to generate PLRs and
known reference genomes that were used for the true assemblies
in evaluation (Supplementary Table S1).

For generating PLRs from the short reads in the HMP data set,
the known reference genomes in the HMP data set were not used.
Instead, reference genomes were predicted using TAMA [33], a
metagenomic sequence classification tool, with default options.
This is an effort to mimic a real situation when reference genomes
in a metagenomic sample are not known. From a total of 5,167
reference genomes included in the reference genome database of
TAMA, a total of 615 different reference genomes were predicted.
They also exist in the HMP data set (Supplementary Table S2). Us-
ing these 615 microbial genomes, which covered 77% of species
in the known reference genomes, PLRs were generated by PLR-
GEN from the HMP data set with default options as described in
Supplementary Table S3. For comparison, PLRs were also gener-
ated by IDBA-UD [12] using the same short reads as input. Even
though IDBA-UD is an assembler, not the generator of PLRs, long
sequences are generated by local assembly in the middle of an
assembly process in IDBA-UD, which were treated as PLRs.

The quality of the generated PLRs was then assessed using
MetaQUAST [34] in terms of lengths of sequences, the number
of sequences, total sequence length, and the number and total
length of extremely long sequences (longer than 50 Kbp). In ad-
dition, MetaQUAST was used to evaluate the quality of PLRs in
comparison with the known reference genomes in the HMP data
set (NCBI accession numbers in Supplementary Table S1) in terms
of error rate and alignment lengths of PLRs against the known
reference genomes. The error rate of PLRs was calculated based
on the fraction of PLRs reported as “misassembled contigs” by
MetaQUAST.

The effect and usefulness of PLRs for small sequence varia-
tion were then assessed. Among 684,388 PLR containers generated
from the short reads in the HMP data set using the predicted refer-
ence genomes by TAMA, only 11,579 were used to generate more
than one PLR with different combinations of bubble nodes as de-

scribed in the previous subsection. From the above 11,579 PLR con-
tainers, a total of 29,291 PLRs were generated (hereafter V-PLRs).
Further evaluation was performed for them. For comparison, ad-
ditional PLRs, called N-PLRs, were created from V-PLRs by placing
“N” at all positions corresponding to bubble nodes. V-PLRs and N-
PLRs were compared by mapping them to the known reference
genomes in the HMP data set using minimap2 [35] with five dif-
ferent mismatch penalties (4, 6, 8, 10, and 12). Output alignments
were filtered by mapping quality (≥20). Reference genome cov-
erage was calculated and compared for both V-PLRs and N-PLRs
using BEDTools [36]. In addition, the read depth distribution was
calculated for both V-PLRs and N-PLRs and compared by aligning
them to the known reference genomes in the HMP data set us-
ing minimap2 with default options including mismatch penalty 4,
which filters out the alignments with more than four mismatches.

Evaluation of PLRs based on metagenomic
assembly
For checking the usefulness of PLRs for metagenomic assembly,
four different assemblers, LINKS [37], metaSPAdes [20], OPERA-MS
[19], and SSPACE-Longread [38], were used to generate metage-
nomic assemblies for the HMP data set. In this evaluation, two
versions of assemblies, a short read only assembly (SR assembly)
using only short reads in the HMP data set and a PLR assembly
using both short reads and PLRs, were generated and compared.
In the case of metaSPAdes, the SR assembly was generated with
default options, and the PLR assembly for both PLRs generated by
PLR-GEN and IDBA-UD was constructed with default options ex-
cept for “–nanopore.” OPERA-MS was first performed with default
options. A file of intermediately generated contigs from Megahit,
an embedded module in OPERA-MS, was used for the SR assembly.
Final contigs generated by OPERA-MS were used for the PLR as-
sembly with PLRs from PLR-GEN and IDBA-UD. In addition, using
the SR assembly of metaSPAdes and OPERA-MS, additional long
read scaffolding was carried out using LINKS [37] and SSPACE-
Longread [38] with default options.

The quality of metagenomic assemblies was assessed using
various statistics, including the number of sequences, assembly
contiguity, and the number of misassemblies, that were calcu-
lated by MetaQUAST [34] with default options after supplying the
above-known reference genomes present in the HMP data set.
For each known reference genome in the HMP data set, align-
ment blocks of the SR and PLR assembly were generated us-
ing minimap2 embedded in MetaQUAST with the options set by
MetaQUAST. Alignment blocks with a label “True” assigned by
MetaQUAST were plotted using the Circlize R package [39].

Evaluation of PLRs based on metagenomic
assembly binning
Each assembly generated in the previous subsection was binned
using MetaBAT2 (v 2.12.1) [40] with default options except for “–
minContig 1500.” Using alignments between assemblies and the
known reference genomes in the HMP data set prepared with
MetaQUAST as described in the previous subsection, a species la-
bel corresponding to the known reference genome was assigned
to each bin. In this step, if the sequence of a bin was aligned to
more than one reference genome, the reference genome with the
largest alignment coverage was chosen.

Additionally, the completeness (best: 100; worst: 0) and con-
tamination (best: 0; worst: no upper bound) of bins were measured
based on the single-copy marker gene content calculated with the
lineage workflow in CheckM (v.1.1.2) [41] using default options.
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Because each bin is labeled independently by CheckM, the same
species can be assigned to multiple bins. To compare the qual-
ity of bins at the species level, a single representative bin for each
species was chosen based on the completeness score as described
in a recent study [19]. All bins were categorized into four classes,
“Complete,” “High Quality,” “Moderate,” and “Incomplete,” based
on their quality of completeness and contamination. Specifically,
a bin with completeness ≥90 and 0 contamination was defined
as “Complete.” A bin with completeness ≥80 and contamination
<10 was defined as “High Quality.” A bind with completeness ≥50
and contamination <20 was defined as “Moderate.” All other bins
were defined as “Incomplete.” Genes in each bin were also pre-
dicted with Prodigal (v2.6.3) [42] using default options to examine
gene completeness (best: 100; worst: 0) of the bin. Gene complete-
ness was calculated based on the fraction of completely predicted
genes.

Results
PLRs provide valuable information for
metagenomic assembly in various aspects
Based on the predicted reference genomes and short paired-end
reads (2 × 101 bp) in the HMP data set (Methods), a total of 704,840
PLRs with a total length of 1,248 Mbp and N50 of 33 Kbp were
obtained using PLR-GEN (Table 1). Among them, 3,332 PLRs were
longer than 50 Kbp (more than 500-fold longer than the input
reads). Their total length was 501 Mbp. The maximum length
of PLRs was 1.2 Mbp (more than 12,000-fold longer than the in-
put reads). From the alignment of PLRs to the known reference
genomes in the HMP data set, 99.9% of bases in PLRs were suc-
cessfully aligned to 52% of reference genome bases. The error
rate was only 0.422% (Methods). Similar evaluation was also per-
formed for the PLRs generated by IDBA-UD (Methods, Table 1),
which indicates that the quality of PLRs produced by PLR-GEN
is higher than the ones by IDBA-UD in terms of all measures
examined.

In addition to its ability to elongate short reads with very
low error rate as shown above, PLR-GEN can also distinguish
genome fragments with only very small sequence variations,
which can originate from individual genomes of the same or
different species. PLR-GEN can generate multiple PLR sequences
(hereafter called V-PLRs) with small sequence variations in one
PLR container that represents such a genome fragment (Methods).
In the evaluation with the HMP data set, a total of 11,579 PLR
containers generated 29,291 V-PLRs, which were then compared
with 11,579 N-PLRs created by placing “N” at all positions of vari-
ation in V-PLRs (Methods). V-PLRs and N-PLRs were mapped to the
known reference genomes in the HMP data set with various mis-
match penalties, and V-PLRs could cover reference genomes more
than 32 Kbp on average in comparison with N-PLRs (Supplemen-
tary Table S4). For example, in Fig. 2a, two V-PLRs created from
the same PLR container having only three positions with differ-
ent nucleotides were mapped to two different genomes of species,
Streptococcus agalactiae and Streptococcus mutans. If a single N-PLR
is generated by placing “N” at the three positions with variation, it
cannot be mapped to the above two genomes unless at least three
mismatches are not allowed. Depths of mapped V-PLRs and N-
PLRs on all known reference genomes using the alignments with
less than four mismatches were then compared (Methods; Fig. 2b).
Whereas V-PLRs could be mapped with high depth up to 66×, N-
PLRs failed to map to the known reference genomes with a depth
larger than 31×. These experiments clearly show that PLR-GEN

can capture and use subtle sequence variations when generating
PLRs to cover more regions of reference genomes.

PLRs improve the quality of short read
metagenomic assembly
PLRs created from metagenomic short reads can be treated as
general long reads and used in any assembly approach relying on
long reads. This approach is particularly useful when only short
reads are available. Researchers can take advantage of long reads
for metagenomic assembly, which can be achieved by first gen-
erating PLRs from short reads by using PLR-GEN and then using
PLRs for the metagenomic assembly.

To examine whether PLRs can improve the quality of metage-
nomic assembly, short read–only metagenomic assemblies (SR as-
semblies) were constructed with metaSPAdes and OPERA-MS us-
ing short reads in the HMP data set. They were further assembled
to make PLR assemblies using PLRs generated by PLR-GEN (Meth-
ods). When the SR assembly was further assembled by metaS-
PAdes, the PLRs generated by PLR-GEN could (i) reduce the num-
ber of sequences (Fig. 3a), (ii) produce longer contigs consistent
with the known reference genomes in the HMP data set (Fig. 3b),
and (iii) increase assembly contiguity (Fig. 3c) compared with the
SR assembly. In addition, similar improvement was also observed
when the further assembly was done by OPERA-MS (Supplemen-
tary Table S5). For example, the number of sequences was reduced
by 10% when PLRs were used for the SR assembly with OPERA-
MS (Supplementary Table S5). About a two-fold increase of length
was observed for long contigs. In addition, in terms of NA50, the
corrected N50 calculated after breaking the SR assembly at mis-
assembled regions against the known reference genomes was in-
creased 44% and 41% using PLRs for SR assemblies with metaS-
PAdes and OPERA-MS, respectively (Fig. 3b and Supplementary Ta-
ble S5). This pattern was more prominent when additional long
read–based scaffolding tools, LINKS and SSPACE-Longread, were
used (Supplementary Fig. S1 and Table S5). These results clearly
demonstrate that PLRs can play an important role in increasing
the quality of metagenomic assembly without relying on real long
reads. The PLRs generated by IDBA-UD were also used to further
assemble the SR assembly by the same assembly programs used
above. Even though there was also a clear improvement from the
SR assembly, the quality of the resulting assemblies was worse
than the ones generated by the PLRs of PLR-GEN (Fig. 3 and Sup-
plementary Table S5).

PLRs improve reconstructing microbial genomes
and binning metagenomic assembly
Metagenomic assemblies can be used to reconstruct original mi-
crobial chromosome sequences, which can be further used for
various downstream analyses, including metagenomic assembly
binning and gene prediction. To evaluate the effect of improved
metagenomic assemblies with PLRs for recovering original micro-
bial chromosome sequences, the SR assembly and the PLR as-
sembly generated with metaSPAdes were aligned against each of
the known reference genomes in the HMP data set (Methods). In
most of those reference genomes, the PLR assembly could cover
more contiguous regions (outer rings in Supplementary Fig. S2)
than the SR assembly (inner rings in Supplementary Fig. S2). In
the case of S. mutans (Fig. 4a), 99.56% of its genome was cov-
ered by 21 alignment blocks created by the PLR assembly. How-
ever, 40 alignment blocks were used to cover similar genomic re-
gions with the SR assembly. Specifically, the longest alignment
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Table 1: Statistics: of pseudo–long reads generated from short paired-end reads (2 × 101 bp) using the mock community data set in the
Human Microbiome Project.

Tool for PLR generation PLR-GEN IDBA-UD

No. of sequence (sequence in length >50 Kbp) 704,840 (3,332) 15,231 (91)
Total length (sequence in length >50 Kbp) 1,248,362,272(501,383,852) 34,829,201 (9,667,428)
Min 100 201
Max 1,241,545 392,374
N50 32,996 15,775
Total aligned length (% of aligned bases)1 1,247,305,552 (99.915%) 34,757,930 (99.795%)
Genome fraction2 52.017% 41.793%
Error rate3 0.422% 3.664%

1Total length of aligned PLR bases to the known reference genomes in the mock community data set.
2Coverage of the known reference genomes in the mock community data set by aligned PLRs.
3The proportion of PLRs assigned as “misassembled contigs” by MetaQUAST.

a

b

Figure 2: Comparison of two types of PLRs generated from the mock community data set in the Human Microbiome Project. (a) Two different V-PLRs,
V-PLR1 and V-PLR2, generated from the same PLR container but with small sequence variations are mapped to two different reference genomes. (b)
After mapping all V-PLRs and N-PLRs to reference genomes, their read depth distributions are plotted.

block created by the PLR assembly was 524 Kbp, which was
more than two-fold longer than the longest one (237 Kbp) cre-
ated by the SR assembly. Similar pattern was observed in an-
other reference species of Rhodobacter sphaeroides (Fig. 4b). Specif-
ically, chromosome 2 of R. sphaeroides was covered by only three
alignment blocks of the PLR assembly, whereas 14 alignment
blocks of the SR assembly were needed to cover chromosome 2 of
R. sphaeroides.

To examine the usefulness of PLR-assisted metagenomic as-
semblies in other downstream analyses, both SR and PLR assem-
blies were binned, a species label was assigned to each bin, and
the quality of each resulting bin was then evaluated for the as-
signed 10 species (Methods). As shown in Fig. 4c and Supplemen-
tary Table S6, the PLR assembly increased the contiguity of binned
sequences (bars in the left panel in Fig. 4c) without sacrificing
bin completeness or contamination (Supplementary Table S6). In
the case of gene completeness (bars in the right panel in Fig. 4c),
the PLR assembly improved the quality of metagenomic bins in

comparison with the SR assembly (from 95.91% to 96.86%; Fig. 4c
and Supplementary Table S6). Specifically, for the R. sphaeroides
genome, N50 was increased more than fivefold when the PLR as-
sembly was used. In terms of bin completeness and contamina-
tion, the PLR assembly was effective in improving the bin qual-
ity of Staphylococcus epidermidis from “High Quality” to “Complete.”
Additionally, the gene completeness was increased with PLRs for
nine species-labeled bins. These findings indicate that the use of
metagenomic assemblies generated with PLRs from PLR-GEN is
useful for downstream analyses.

Discussion
In this study, we present a new method, called PLR-GEN, for gener-
ating pseudo–long reads (PLRs). PLRs are artificial long reads gen-
erated from next-generation sequencing short reads by utilizing
microbial reference genomes. Our method was successfully ap-
plied to short reads of 101 bp in length in the HMP data set by
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Figure 3: Comparison of assembly statistics generated by different assemblers for SR and PLR assemblies using the mock community data set in the
Human Microbiome Project. metaSPAdes was used to create (i) the SR assembly only using short reads and (ii) the PLR assembly by further assembling
it using PLRs generated by PLR-GEN and IDBA-UD. These assemblies were compared in terms of (a) the number of sequences, (b) NA50 and (c)
assembly contiguity.

Figure 4: Comparison of assemblies generated by metaSPAdes using the mock community data set in the Human Microbiome Project in terms of (a, b)
species genome reconstruction and (c) contig binning. SR and PLR assemblies were aligned and visualized using the Circlize R package [39] for (a) S.
mutans and (b) R. sphaeroides genomes. (c) After binning contigs and finding representative bins for 10 species, their quality was measured in terms of
N50 (bars in the left panel) and gene completeness (bars in the right panel).

creating PLRs with N50 of 33 Kbp that could be almost completely
aligned to the known reference genomes in the HMP data set with
a very low error rate (Fig. 2 and Table 1). For metagenomic as-
sembly, the SR assemblies created by metaSPAdes and OPERA-
MS were further assembled using PLRs, leading to dramatic im-
provement of resulting assemblies in terms of the number of se-
quences and assembly contiguity (Fig. 3). Assemblies improved by
PLRs were also very useful for assembly binning and reconstruc-
tion of species genome (Fig. 4). These improved species genomes

resulted in increased completeness of gene prediction (Fig. 4 and
Supplementary Tables S6).

Sequenced long reads can provide long-range information.
They are very helpful for metagenomic assembly. However, the
sequencing of long reads is more expensive and requires more
carefully handled and larger amount of DNA than generating
short reads. This prevents their widespread use for metage-
nomic assembly. Therefore, short reads are still being used for
metagenomic assembly and related studies [43–45]. In such situ-
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ations, it is very helpful to generate long reads by just using short
reads and reference genomes without needing extra sequencing
cost. PLRs generated by our method can be used in many studies
involving metagenomes, including studies based on assemblies,
as shown here by treating them as normal long reads such as
PacBio [46] and Nanopore [47] reads.

One of the excellent features of our method is its ability
to capture subtle sequence variations resulting from individual
genomes in the same or different species in a metagenomic sam-
ple. This was achieved by (i) carefully identifying mapping posi-
tions of short reads occupied by multiple different nucleotides,
(ii) representing them as vectors of sequence variations, and (iii)
grouping them using a hierarchical clustering algorithm based
on a newly designed distance measure. The effect of this feature
was confirmed in comparison with PLRs generated by turning this
feature off (Fig. 2). Therefore, PLRs generated by our method can
also be used to discover information of haplotypes inherent in a
metagenome [48].

One of the limitations of PLR-GEN is that because PLR-GEN cre-
ates PLRs by relying on given microbial reference genomes, the
quality of PLRs depends on the number and quality of microbial
reference genomes used. Therefore, to obtain high-quality PLRs,
the environment needs to be well studied and characterized with
many high-quality reference genomes. However, the improvement
of assemblies by our PLRs generated using the small number of
reference genomes was also observed from empirical experiments
using randomly sampled reference genomes from the full refer-
ence genomes used in our study (Supplementary Tables S7 and
S8). Another difficulty in metagenomic assembly is that there
are multiple unknown microorganisms in a metagenomic sam-
ple sharing similar genomic regions with low sequence varia-
tions. In this situation, one important preprocessing step is to pre-
pare the most appropriate reference genomes for a target metage-
nomic sample. This can be achieved by using recently developed
metagenomic classifiers [33, 49–52] and collecting genomes of pre-
dicted species using those metagenomic classifiers. To this end,
TAMA [33], one of the metagenomic sequence classifiers, was used
to prepare a set of reference genomes in the HMP data set for
making PLRs in this study. Another option is to use all micro-
bial genomes in a public database such as NCBI, but it will take
a lot of time and computer resources. However, continued accu-
mulation of high-quality genome sequences of many microorgan-
isms will make our method more valuable for studies involving
metagenomes.

Finally, many existing metagenomic assemblies generated
by only using short reads are good targets of PLR-GEN.
As a future direction, those assemblies will be further im-
proved by PLR-GEN and publicly released for being used by
many researchers. In addition, PLR-GEN will be more opti-
mized to more efficiently process a large number of reference
genomes.

Availability of supporting source code and
requirements
Project name: PLR-GEN
Project home page: https://github.com/jkimlab/PLR-GEN
Operating system: Linux
Programming language: Perl
Other requirements: TAMA
RRID:SCR_022264
License: MIT

Data Availability
The PLR-GEN package is available at https://github.com/jkimlab/P
LR-GEN. Snapshots of our code and other data further supporting
this work are openly available in the GigaScience repository, GigaDB
[53].

Additional Files
Supplementary Table S1. NCBI accession numbers of the known
reference genomes in the HMP data set.
Supplementary Table S2. List of predicted reference genomes.
Supplementary Table S3. List of parameters of PLR-GEN used for
evaluation.
Supplementary Table S4. Comparison of reference coverage be-
tween V-PLRs and N-PLRs.
Supplementary Table S5. Statistics of short read assemblies and
assemblies improved by PLRs.
Supplementary Table S6. Quality of each bin of the SR and PLR
assemblies.
Supplementary Table S7. Statistics of PLRs generated from short
reads in the mock community data set with different sets of ref-
erence genomes.
Supplementary Table S8. Statistics of short read assemblies and
assemblies improved by PLRs with different sets of reference
genomes.
Supplementary Fig. S1. metaSPAdes and OPERA-MS were sepa-
rately used to create (i) the SR assembly only using short reads
and (ii) the PLR assembly by further assembly with long read scaf-
folding tools using PLRs. These two types of assemblies were com-
pared in terms of (a) the number of sequences and (b) NA50.
Supplementary Fig. S2. Circos plots illustrating alignments of SR
and PLR assemblies for genomes of all species in the HMP data
set. Inner (green color) and outer (orange color) circles represent
SR and PLR assemblies, respectively.
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