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Background: The treatment and prognosis of breast ductal carcinoma in situ (DCIS) with and without 
microinvasion (MIC) are different. Ultrasound imaging shows that DCIS is a heterogeneous breast tumor 
with diverse manifestations. DCIS means that the cancer cells are confined in the duct without penetrating 
the basement membrane, MIC means that the cancer cells penetrate the basement membrane and the 
maximum diameter of any largest invasive lesion is less than or equal to 1 mm. This study was designed to 
evaluate how deep learning can be used to identify DCIS with MIC on ultrasound images.
Methods: The clinical and ultrasound data of 467 consecutive inpatients diagnosed with DCIS (213 with 
MIC) in West China Hospital of Sichuan University were collected from January 2013 to April 2019 and 
randomly apportioned to training and internal validation sets. An external validation set comprised data from 
Sichuan Provincial People's Hospital with 101 patients (33 with MIC) collected between January 2017 and 
December 2019. There were 2,492 original images; 66% of these were used to establish a model, and the 
remaining 34% were used to evaluate the model. Three experienced breast ultrasound clinicians analyzed the 
ultrasound images to establish a logistic regression model. Finally, the logistic regression model and five deep 
learning models (ResNet-50, ResNet-101, DenseNet-161, DenseNet-169, and Inception-v3) were compared 
and evaluated to assess their diagnostic efficiency when identifying MIC based on ultrasound image data.
Results: The characteristics of high nuclear grade (P<0.001), necrosis (P=0.006), estrogen receptor 
negative (ER−; P=0.003), progesterone receptor negative (PR−; P=0.001), human epidermal growth factor 
receptor 2 positive (HER2+; P=0.034), lymphatic metastasis (P=0.008), and calcification (P<0.001) all showed 
significant correlations with MIC. The Inception-v3 model achieved the best performance (P<0.05) in MIC 
identification. The area under the receiver operating curve (AUC) of the Inception-v3 model was 0.803 [95% 
confidence interval (CI): 0.709 to 0.878], with a classification accuracy of 0.766, a sensitivity of 0.767, and a 
specificity of 0.765.
Conclusions: Deep learning can be used to identify MIC of breast DCIS from ultrasound images. Models 
based on Inception-v3 can provide automated detection of DCIS with MIC from ultrasound images.
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Introduction

Ductal carcinoma in situ (DCIS) of the breast comprises 
abnormal proliferation of ductal endothelial cells without 
invasion of the basement membrane. Following a DCIS 
diagnosis, the 10-year breast cancer-specific mortality rate 
is 1.1% (1). However, some patients with breast DCIS 
also exhibit microinvasion (MIC) (2-5), where cancer cells 
within the duct break through the basement membrane 
and infiltrate the surrounding stroma with a diameter of 
no more than 1 mm (2-6). In the clinical and pathological 
anatomical stages, DCIS cases are given Tis (tumor in situ) 
classification (7). The invasive T1 tumors are subdivided 
into T1mi (invasive carcinoma of 1 mm or smaller), T1a 
(invasive carcinoma larger than 1 mm, up to and including 
5 mm), T1b (invasive carcinoma larger than 5 mm, up to 
and including 10 mm), or T1c (invasive carcinoma larger 
than 10 mm, up to and including 20 mm) (7,8). The DCIS 
(with or without MIC) are divided into low, intermediate, 
and high grades. After breast-conserving surgery, high-
risk DCIS patients (i.e., those with comedonecrosis or high 
nuclear grade) have a higher recurrence rate (9,10). High 
nuclear grade and comedonecrosis are more common in 
MIC patients (11-13). Overall, DCIS with MIC carries 
a nearly two-fold increase in mortality rate compared to 
DCIS without MIC (14). Patients with MIC are typically 
treated similarly to those with T1a breast cancer as 
recommended by current guidelines from the National 
Comprehensive Cancer Network (NCCN) (15).

The clinical diagnosis of breast tumors is based principally 
on imaging examination, including mammography, 
magnetic resonance imaging (MRI), and ultrasound. 
Mammography is an important method for breast cancer 
screening in developed countries. However, for dense breast 
tissue without calcification, mammography is only useful for 
identifying lesions (16-19). An auxiliary breast ultrasound 
screening can help detect mammographically-occult breast 
cancers, with typical detection rates of between 0.8 and 
10 cancers detected in every 1,000 women screened (20). 
Breast volumes in Chinese women are typically smaller and 
denser than the global average, making ultrasound a more 
suitable option for Chinese DCIS patients due to its higher 

sensitivity and specificity when used in dense breast tissue 
(21,22). Ultrasound provides higher sensitivity to MIC than 
mammography (23).

Although MRI also provides high sensitivity, it is 
expensive, and there is conflicting evidence as to whether 
preoperative MRI is beneficial to DCIS patients (24-28). 
A recent systematic review by Canelo-Aybar et al. (29) 
showed that preoperative MRI did not reduce the rate of 
repeat surgery or mastectomy. With increasing access to 
imaging technology and screening, patients with DCIS can 
be identified earlier. The provision of ultrasound imaging 
findings of MIC inpatients with DCIS provides surgeons 
with more information from which to make clinical 
decisions. Techniques such as sentinel lymph node biopsy 
(SLNB) may also be considered to determine axillary lymph 
node status (9).

Determining the contour of a DCIS lesion using 
traditional manual data-driven methods is challenging 
because the heterogeneity of DCIS makes the boundary 
contour between the tumor and normal tissue unclear. 
Contour extraction is often based on a single image, while 
the diagnosis is typically based on multiple images of a 
lesion, which is more consistent with clinical practice. Deep 
neural networks (DNNs) are the most widely used models in 
medical image recognition and provide obvious advantages 
in the diagnosis of breast cancers. Impressive achievements 
have been made in automating the prediction of benign and 
malignant breast cancers and lymph node metastasis, and in 
simulating human decision-making (30-33).

The objectives of this study were to investigate the 
feasibility of using DNN models to identify MIC on 
ultrasound images of patients with DCIS and to evaluate 
the classification efficiency of deep learning using external 
verification. We present the following article in accordance 
with the TRIPOD reporting checklist (available at https://
qims.amegroups.com/article/view/10.21037/qims-22-46/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
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approved by the Ethics Committee on Biomedical Research 
of West China Hospital, Sichuan University (No. 2020-
1219). The committee waived individual consent for this 
retrospective analysis because it only involved the use of 
ultrasound images and did not involve patients’ personal 
information.

Patient population

The medical records of consecutive patients with DCIS 
confirmed by surgical pathology were collected from 
January 2013 to April 2019 to form a training data set. The 
inclusion and exclusion criteria were based on the gold 
standard of pathology (Figure 1). The inclusion criteria 
were as follows: (I) the patient underwent an ultrasound 
examination in the 14 days before surgery; (II) the 
ultrasound images showed lesions that could be used for 
evaluation; (III) the patient underwent a simple mastectomy, 
and the lesions were completely removed for testing, after 
which the comprehensive pathological report confirmed 
either DCIS or DCIS MIC; (IV) if the patient had a multi-

center or multi-focus DCIS, only the largest lesion was 
included in the analysis; and (V) the image background was 
uniform, with appropriate gain, and the lesion was clearly 
visible. The exclusion criteria were as follows: (I) any patient 
with invasive carcinoma of T1a or above; (II) any patient 
with a pathological diagnosis of DCIS or DCIS MIC where 
the tumor could not be located using an ultrasound; and (III) 
the background quality of the ultrasound image was poor, 
such that the tumor could not be recognized. Subsequent 
comprehensive pathological reports indicated DCIS with 
and without MIC in 213 and 254 patients, respectively. 
External verification data were collected using the same 
methodology from Sichuan Provincial People’s Hospital , 
comprising 101 patients with DCIS (68 without MIC; 33 
with MIC).

Pathological assessment

The criteria for MIC were the presence of invasive foci 
on continuous sections of tumor tissue and a maximum 
diameter of the largest invasion less than or equal to 1 mm, 

Figure 1 A flow chart of data collection. DCIS, ductal carcinoma in situ; MIC, microinvasion; DNN, deep neural network.

Consecutive patients confirmed as DCIS by 
surgical pathology at the internal hospital between 

January 2013 and April 2019 
n=3,019

Patients meet all inclusion criteria
n=467

254 patients with 
DCIS

Study population
n=568:

68 patients with 
DCIS

Internal validation Set
n=94

213 patients with 
DCIS & MIC

Training Set
n=373

33 patients with 
DCIS & MIC

External validation Set
n=101

DNN model evaluation Specialized radiologists

Exclusion criteria:
1.	Patients with invasive carcinoma of T1a 

grade or above n=2,532
2.	Lesions not found using ultrasound n=12
3.	Poor ultrasound image quality n=8

Consecutive patients treated from external 
hospital between January 2017 and 
December 2019 who also met all the 

inclusion criteria
n=101
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according to the American Joint Committee on Cancer 
(AJCC) guidelines (6). The final surgical pathological report 
recorded the nuclear grade (low, medium, or high), the 
presence/absence of necrosis, and the expression statuses 
of estrogen receptor (ER), progesterone receptor (PR), 
human epidermal growth factor receptor 2 (HER2), and 
the nuclear protein Ki-67. For the classification criteria of 
molecular markers, see Appendix 1.

Ultrasound image acquisition and visual inspection

Ultrasound images were acquired using machines equipped 
with a linear array high-frequency probe with a frequency 
range of 4 to 15 MHz, including the Philips (HD11, IU22, 
EPIQ5; Philips, Amsterdam, Netherlands), GE Logic E9 
(GE Healthcare, Chicago, IL, USA), HI VISION Preirus 
(Hitachi Medical Corp., Tokyo, Japan), Esaote MyLab90 
(Esaote, Maastricht, Holland), Supersonic Imagine (Aix-
en-Province, France), and Siemens ACUSON OXANA 2 
(Siemens Healthineers, Erlangen, Germany). Ultrasound 
examination used a portable probe for radial scanning of 
the whole breast. The standard acquisition procedure for 
ultrasound images is to obtain longitudinal and transverse 
sections at the maximum diameter of the lesion with the 
lesion located in the middle of the image. Supplementary 
images are obtained that show any malignant signs of the 
lesion, such as calcification or structural distortion.

For both internal and external verification of ultrasound 
images, the reading was conducted blind and the clinician 
reading the image was unaware of the clinicopathological 
status of the patient. Ultrasound images were assessed by 
three experienced breast radiologists (with 10, 12, and  
30 years of experience), who reached a consensus through 
discussion. The clinicians read all acquired ultrasound 

images. Ultrasound characteristics were classified by 
gland background, phenotype, and calcification. The 
ultrasonic phenotype was summarized as either a mass or 
another type. A mass was defined as a lesion that could be 
recognized as a mass on the ultrasound images, including 
on the longitudinal and transverse sections. Depending 
on the mass composition, it was classified as either a solid 
texture mass or a cystic solid texture mass. Other types 
were characterized as having an indistinct hypoechoic area, 
dilated duct, architectural distortion, complicated cyst, or 
local thickening of the glands.

Image preprocessing

Only ultrasonographic images were input into the DNN. 
Data preprocessing included scaling, flipping, and rotating 
the original image to increase the datasets’ diversity and 
improve the model’s robustness (Figure 2). Images from 
the same patient showed similarities; therefore, lesions 
from the same patient were not divided into subsets. The 
DNN analysis was performed on the balanced data set. 
This comprised convolution feature extraction, nonlinear 
activation function mapping, pooling, and classification of 
full connection layers and the Softmax layer. The maximum 
characteristics of each image were recorded for each case. 
The results were obtained by combining four images.

The data collected from West China Hospital of Sichuan 
University (the internal dataset) were randomly divided into 
training and validation sets at a ratio of 8:2 (Figure S1) to 
test five different DNN models. The data collected from 
Sichuan Provincial People’s Hospital formed the external 
validation dataset. There were 2,492 original images from 
both hospitals (1474 for DCIS; 1018 for MIC). During the 
training and validation phases, the number of images per 

Figure 2 System overview. Multiple images of the lesion were first randomly flipped and rotated to augment the data, and then the deep 
features were extracted through the feature extraction network. Extracted high-level features were then characterized by the max-pooling 
operator. Finally, the merged features were classified by a classification network.
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case was set at four. For a case with fewer than four images, 
existing images were randomly chosen to be duplicated 
to make the total up to four. Otherwise, four images 
were randomly selected from each case. After the image 
preprocessing, only four images were included in each case, 
making the total number of images 2,272.

Deep learning

T h e  m o d e l  i n p u t  c o m p r i s e d  m u l t i p l e  b r e a s t 
ultrasonography images of the same lesion {Xn=x1, … xk, 
…, xK}. The output was the prediction Yn ∈ {MIC, non-
MIC}, where Xn denotes the n-th set of the same lesion 
containing K images, and xk indicates the kth image in the 
set. Breast ultrasonography images were in RGB (red-
green-blue) format with a size of 1,024×768×3 voxels. 
Original images were resized to 299×299×3 voxels using a 
bilinear interpolation algorithm from the Python Imaging 
Library (Secret Labs AB, Östergötland, Sweden) to save 
on computational resources without sacrificing model 
performance. Online data augmentation, including random 
horizontal flipping (probability 0.5) and random rotation 
by 0 to 180 degrees, was applied to resized images to 
augment the training data in real-time. The preprocessed 
image values were then divided by 255 to convert values 
into the range of 0.0 to 1.0.

Mult iple ImageNet pre-trained networks were 
explored and f ine-tuned on the  dataset ,  namely 
Inception-v3, ResNet-50, ResNet-101, DenseNet-161, 
and DenseNet-169, all of which were implemented using 
PyTorch version 0.4.1 (Meta AI, New York, NY, USA). Each 
DNN model was split into two parts, one for extracting 
features from input images and one for classification 
The extraction process comprised aggregating high-level 
features using max aggregation operators (Figure 2). The 
classification process comprised transforming aggregated 
features into the classification space, Y. The DNN models 
were trained using Adadelta as the optimizer, with a learning 
rate of 0.1 and a weight decay rate of 10−4 for 200 epochs (34). 
The mini-batch size was fixed at 8. Dropout was applied to 
the last fully connected layer of the second sub-network to 
reduce overfitting, with a drop probability of 0.7. Finally, 
Inception-v3 was the highest performing network and was 
used in the final analysis (35).

DNN performance evaluation and statistical analysis

From each sample in the evaluation set, the probability 

score of the Softmax function and corresponding tag value 
were recorded. The scores were sorted from high to low, 
and a threshold was set. If the probability that the sample 
belonged to the positive sample was greater than the 
threshold, it was considered a positive sample; otherwise, it 
was a negative sample. Each time a different threshold was 
selected, a set of true-positive and false-positive rates were 
obtained corresponding to points on the receiver operating 
characteristic (ROC) curve. A cut-off value for the median 
score of 0.5 was used. The ROC curve was plotted, and 
the area under the ROC curve (AUC) was calculated. The 
accuracy was then calculated.

Statistical analysis was performed in SPSS version 22.0 
(IBM Corp., Armonk, NY, USA). The characteristics of 
the training, internal, and external verification sets were 
compared using a t-test and the chi-square test/Fisher 
exact test. Continuous variables were described using 
mean ± standard deviation. Categorical variables were 
described using proportion (%). The clinical pathology and 
ultrasound characteristics were analyzed using univariate 
logistic regression to identify MIC. Statistical significance 
was considered at a threshold of P<0.05 (two-tailed).

Results

Clinical characteristics

Between January 2013 and April 2019, a total of 3,019 
patients underwent surgery with a pathological diagnosis of 
DCIS, and 2,532 patients were excluded from the study due 
to the presence of an invasive carcinoma of T1a grade or 
above. A total of 12 patients were excluded due to negative 
ultrasound findings, and 8 cases were excluded due to 
poor ultrasound image quality. Between January 2017 and 
December 2019, 101 patients with DCIS with or without 
MIC were finally reported by pathology after surgery in 
Sichuan Provincial People’s Hospital. All 568 patients 
included in the study were women, 322 (56.7%) without 
MIC, and 246 (43.3%) with MIC. The training, internal 
evaluation, and external verification sets consisted of 373, 
94, and 101 patients, respectively, with ages 48.79±11.12 
(range, 21 to 83) years, 46.64±10.71 (range, 21 to 81) years, 
and 45.41±8.85 (range 25 to 70) years, respectively.

The characteristics of the training, internal verification, 
and external verification datasets are shown in Table 1. Age 
(P=0.086), menstrual status (P=0.158), histology (P=0.977), 
gland background (P=0.949), phenotype (P=0.751), and 
calcification (P=0.407) did not differ between the three 
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Table 1 Patient demographic and ultrasonic visual characteristics

Characteristics Training (n=373), n (%) Internal validation (n=94), n (%) External validation (n=101), n (%) P value*

Age, mean ± SD [range] 48.79±11.12 [21–83] 46.64±10.71 [21–81] 45.41±8.85 [25–70] 0.086

Menstrual status 0.158

Premenopausal 216 (57.91) 62 (65.96) 71 (70.30)

Postmenopausal 157 (42.09) 32 (34.04) 30 (29.70)

Histology 0.977

DCIS 203 (54.42) 51 (54.26) 68 (67.33)

DCIS MIC 170 (45.58) 43 (45.74) 33 (32.67)

Nuclear grade 0.115

High 220 (58.98) 47 (50.00) NA

Low and medium 148 (39.70) 46 (48.94) NA

Null 5 (1.32) 1 (1.06) NA

Necrosis 0.930

Yes 123 (32.96) 32 (34.04) NA

No 245 (65.68) 61 (64.89) NA

Null 5 (1.36) 1 (1.07) NA

ER 0.233

Positive 174 (46.65) 45 (47.87) NA

Negative 115 (30.83) 33 (35.11) NA

Null 84 (22.52) 16 (17.02) NA

PR 0.316

Positive 155 (41.55) 42 (44.68) NA

Negative 133 (35.66) 36 (38.30) NA

Null 85 (22.79) 16 (17.02) NA

HER2 0.184

Negative 171 (45.84) 49 (52.13) NA

Positive 118 (31.64) 29 (30.85) NA

Null 84 (22.52) 16 (17.02) NA

Ki-67 0.103

Low expression 184 (49.33) 55 (58.51) NA

High expression 105 (28.15) 23 (24.47) NA

Null 84 (22.52) 16 (17.02) NA

Lymphatic metastasis 0.663

Yes 6 (1.60) 1 (1.11) NA

No 367 (98.40) 93 (98.89) NA

Table 1 (continued)
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Table 1 (continued)

Characteristics Training (n=373), n (%) Internal validation (n=94), n (%) External validation (n=101), n (%) P value*

Gland background 0.949

Homogeneous 201 (53.89) 51 (54.26) 46 (45.54)

Heterogeneous 172 (46.11) 43 (45.74) 55 (54.46)

Phenotype 0.751

Mass 148 (39.70) 39 (41.49) 51 (50.50)

Other type** 225 (60.30) 55 (58.51) 50 (49.50)

Calcification 0.407

Present 232 (62.20) 54 (57.45) 63 (62.38)

Absent 141 (37.80) 40 (42.55) 38 (37.62)

*, T-test between training and internal validation cohort. **, Other type includes indistinct hypoechoic area; dilated duct; architectural 
distortion; complicated cyst; and local thickening of glands. SD, standard deviation; DCIS, ductal carcinoma in situ; MIC, microinvasion; 
ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; NA, not available.

datasets. Nuclear grade (P=0.115), necrosis (P=0.930), ER 
(P=0.233), PR (P=0.316), HER2 (P=0.184), Ki-67 (P=0.103), 
and lymphatic metastasis (P=0.663) did not differ between 
the training and internal validation sets.

Univariate analysis of characteristics and ultrasound 
visual inspection

The clinicopathology of patients treated in the external 
hospital was not available; therefore, the univariate analysis 
was only performed on patients recruited through the 
internal hospital. High nuclear grade (P<0.001), necrosis 
(P=0.006), an ER negative result (P=0.003), a PR negative 
result (P=0.001), an HER2 positive result (P=0.034), 
lymphatic metastasis (P=0.008), and calcification (P<0.001) 
were found to be predictive of MIC (Table 2). Age (P=0.989), 
menstrual status (P=0.200), Ki-67 (P=0.091), gland 
background (P=0.096), and phenotype (P=0.050) were not 
found to have any predictive value.

Deep learning models

The network architecture of the Inception-v3 model is 
shown in Table S1. The AUCs, classification accuracy, 
sensitivity, and specificity of the DNN model performance 
are shown in Table 3. The ROC curves of the internal and 
external datasets using the subsets of the DNN models 
are shown in Figure 3. In the internal evaluation, the 5 
DNN models achieved classification results with AUCs 

ranging from 0.740 to 0.803. The Inception-v3 model 
showed the best classification performance with an AUC 
of 0.803 [95% confidence interval (CI): 0.709 to 0.878] 
and a higher classification accuracy than that of the other 
four deep learning models. The DenseNet-169 model 
had a higher sensitivity of 79.1%. The specificities of the 
ResNet-101, DenseNet-161, and Inception-v3 models 
reached 76.5%. The AUC of the logistic regression model 
in the internal test set was 0.740 (95% CI: 0.685 to 0.757). 
The classification ability of the logistic regression model 
was consistent with that of ResNet-50. The accuracy and 
specificity of the logistic regression model were lower than 
the other five deep learning models; however, the sensitivity 
was higher than that of ResNet-101 and DenseNet-161 
(72.5% vs. 67.4% vs. 67.4%). In the external test, the 
AUCs of the 5 DNN models ranged from 0.614 to 0.696. 
The DenseNet-161 model showed a better classification 
performance AUC of 0.696 (95% CI: 0.597–0.784). 
Inception-v3 had a classification accuracy of 74.3% and a 
sensitivity of 69.7%. Both ResNet-50 and DenseNet-161 
had a specificity of 79.4%.

The confusion matrices of the internal validation of 94 
patients from West China Hospital of Sichuan University 
and the external validation of 101 patients from Sichuan 
Provincial People’s Hospital are shown in Figure 4, 
including the correct classification and error classification 
numbers of each DNN model for DCIS with and without 
MIC. Inception-v3 showed the best performance in the 
internal test set. Of the 22 cases that were incorrectly 

https://cdn.amegroups.cn/static/public/QIMS-22-46-supplementary.pdf
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Table 2 Univariate analysis of demographic and ultrasonic visual characteristics

Characteristics Group DCIS (n=254), n (%) MIC (n=213), n (%) P value

Age (years) <40 44 (17.32) 37 (17.37) 0.989

≥40 210 (82.68) 176 (82.63)

Menstrual status Premenopausal 158 (62.20) 120 (56.34) 0.200

Postmenopausal 96 (37.80) 93 (43.66)

Nuclear grade Low and medium 145 (57.09) 49 (23.00) <0.001

High 103 (40.55) 164 (77.00)

Null 6 (2.36) 0 (0.00)

Necrosis No 184 (72.44) 122 (57.28) 0.006

Yes 64 (25.20) 91 (42.72)

Null 6 (2.36) 0 (0.00)

ER Negative 63 (24.80) 85 (39.91) 0.003

Positive 131 (51.57) 88 (41.31)

Null 60 (23.63) 40 (18.78)

PR Negative 70 (27.56) 99 (46.48) 0.001

Positive 123 (48.43) 74 (34.74)

Null 61 (24.01) 40 (18.78)

HER2 Negative 143 (56.30) 77 (36.15) 0.034

Positive 51 (20.08) 96 (45.07)

Null 60 (23.62) 40 (18.78)

Ki-67 level Low 150 (59.06) 89 (41.78) 0.091

High 44 (17.32) 84 (39.44)

Null 60 (23.62) 40 (18.78)

Lymphatic metastasis No 254 (100) 206 (96.71) 0.008

Yes 0 (0.00) 7 (3.29)

Gland background Homogeneous 146 (57.48) 106 (49.77) 0.096

Heterogeneous 108 (42.52) 107 (50.23)

Phenotype Mass 112 (44.09) 75 (35.21) 0.050

Other types 142 (55.91) 138 (64.79)

Calcification Absent 132 (51.97) 49 (23.00) <0.001

Present 122 (48.03) 164 (77.00)

DCIS, ductal carcinoma in situ; MIC, microinvasion; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth 
factor receptor 2.
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Table 3 Results of deep learning and logistic regression models

Models Accuracy Sensitivity Specificity F1 AUC

Internal validation

ResNet-50 0.713 0.767 0.667 0.769 0.740 (0.639–0.825)

ResNet-101 0.723 0.674 0.765 0.704 0.757 (0.657–0.839)

DenseNet-161 0.723 0.674 0.765 0.704 0.746 (0.646–0.830)

DenseNet-169 0.745 0.791 0.706 0.795 0.768 (0.669–0.849)

Inception-v3 0.766 0.767 0.765 0.781 0.803 (0.709–0.878)

Logistic regression 0.691 0.725 0.651 0.712 0.740 (0.685–0.757)

External validation

ResNet-50 0.713 0.545 0.794 0.642 0.670 (0.570–0.761)

ResNet-101 0.693 0.545 0.765 0.640 0.653 (0.551–0.745)

DenseNet-161 0.703 0.515 0.794 0.618 0.696 (0.597–0.784)

DenseNet-169 0.703 0.576 0.765 0.665 0.614 (0.512–0.709)

Inception-v3 0.743 0.697 0.765 0.761 0.685 (0.585–0.774)

AUC, the area under the curve.

Figure 3 ROC curves of the 5 DNN model subsets with AUCs: (A) Internal validation of 94 patients. AUCs for ResNet-50, ResNet-101, 
DenseNet-161, and DenseNet-169, and Inception-v3 were 0.740, 0.757, 0.746, 0.768, and 0.803, respectively. (B) External validation of 101 
patients. AUCs of ResNet-50, ResNet-101, DenseNet-161, DenseNet-169, and Inception-v3 were 0.670, 0.653, 0.696, 0.614, and 0.685, 
respectively. ROC, receiver operating characteristic; DNN, deep neural network; AUC, the area under the curve.
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classified by Inception-v3, 12 manifested hypoechoic 
areas, 10 manifested mass structures on the ultrasound 
images (8 solid; 2 cystic solid), and 3 MIC of those 10 had 
calcification. Figure 5 shows some examples of Inception-v3 
identifying the probability of MIC.

Discussion

This study established that a DNN model can be used 

to identify MIC in DCIS based on ultrasound images. 

The most accurate DNN model was Inception-v3, which 
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Figure 4 Confusion matrix for internal verification and external verification tests to determine the presence or absence of MIC using DNN 
models, including: (A,B) Inception-v3; (C,D) ResNet-50; (E,F) ResNet-101; (G,H) DenseNet-161; and (I,J) DenseNet-169. DCIS, ductal 
carcinoma in situ; MIC, microinvasion; DNN, deep neural network.
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Figure 5 Examples of patients with or without MIC correctly or incorrectly classified by Inception-v3. (A) A 46-year-old DCIS (without 
MIC) patient with a 24-mm diameter solid mass without calcification. The probability of this patient being correctly diagnosed is 93.95%. 
(B) A 42-year-old MIC patient with an irregular hypoechoic area with complex internal echo and some calcification foci. The probability 
of being correctly diagnosed as MIC is 100%. (C) A 50-year-old DCIS (without MIC) patient with an indistinct hypoechoic area. The 
boundary with the adjacent surrounding glandular tissue is unclear. The probability of this patient being correctly diagnosed is 5.95%. 
(D) A 44-year-old MIC patient with an irregular hypoechoic mass. The probability of being correctly diagnosed as MIC is 9.11%. MIC, 
microinvasion; DCIS, ductal carcinoma in situ.
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showed 76.6% accuracy and an AUC of 0.803. In the 
internal test, the AUC of Inception-v3 was higher than that 
of the logistic model (0.803 vs. 0.740). Internal validation 
showed the AUCs of the 5 DNN models to range from 
0.740 to 0.803, while the AUCs of the external validation 
ranged from 0.614 to 0.696. The best AUC in the external 
validation (0.696; DenseNet-161) was surpassed by that 
of Inception-v3 in the internal validation (0.803). The 
better performance of Inception-v3 was mainly because the 
multiple operations in the Inception block (e.g., convolution 
kernel sizes of 1×1, 3×3, and 5×5) facilitated the extraction 
of variable features on multiple scales.

Deep learning has been used to detect orthotopic cancer 
lesions, predict the risk of invasive cancer, and identify 
high-risk populations based on imaging features. Recently, 
deep learning has been used to differentiate atypical ductal 
hyperplasia from DCIS (36,37) with AUC values of 0.86 (using 
a total of 298 images from 149 patients) and 0.90 (a total of 
280 images from 140 patients). Mutasa et al. (38) predicted 
DCIS and invasive cancer with an AUC of 0.71 (246 images 
from 123 patients), and Shi et al. (39) predicted occult invasion 
from pure DCIS with an AUC of 0.70 (99 patients). These 
findings were based on mammography alone and have not 
been externally verified. The present study is the first to report 
the use of artificial intelligence, specifically deep learning, to 
identify MIC on ultrasound images. DNN models were found 
to have great potential for diagnostic utility.

The MIC type of cancer is a minimally invasive breast 
cancer representing approximately 0.9% of breast cancer 
diagnoses (40). Previous investigations identifying MIC 
have been based on clinicopathological factors or imaging 
characteristics. Overall, the histological grade of DCIS with 
MIC was higher than that of DCIS without MIC (13,22,41,42). 
Calcification on ultrasound images is more often seen in 
cases of MIC than in DCIS without MIC (22,41). The 
expression of molecular markers varies across different studies. 
Treatment modalities and prognoses of MIC patients were 
found to be similar to those in invasive breast cancer (42). In 
the present study, high nuclear grade, necrosis, ER negativity, 
PR negativity, HER2 positivity, lymph node metastasis, and 
calcification were all found to be more common in MIC 
patients (all P<0.05). We used a logistic model combined with 
clinicopathological factors and ultrasound features to identify 
MIC with an accuracy comparable to that of DNN and an 
AUC of 0.740 (95% CI: 0.685 to 0.757).

For invasive carcinoma or extensive DCIS patients, 
SLNB has been a standard surgical technique (43). Axillary 
lymph node positivity was found almost exclusively in 

patients with MIC (13,41,44). Based on a large dataset, 7.6% 
of MIC had lymph node metastases (45). In the present 
study, 7 of 213 MIC patients had lymph node metastasis, 
representing a rate of 3.3%. Future studies of surgical 
planning may assess the use of SLNB in MIC patients 
identified by DNN models.

As reported in this study, many DCIS patients exhibit a 
heterogeneous glandular background and diverse imaging 
manifestations, most of which are non-mass structures. If 
these features are extracted manually using conventional 
methods, it may be difficult to determine the tumor 
boundary and range; this decreases the accuracy of the 
extracted contour and the tumor size estimation. The DNN 
models perform reliably as they do not require artificial 
computing features. They can be used to objectively 
identify important tumor features while eliminating 
misinterpretation and human error, thereby reducing the 
clinical workload (46,47). The DNN algorithms are more 
robust and direct due to the omission of unnecessary steps 
during the learning period. Subsequent studies may use 
new algorithms and larger sample sizes to renew interest 
in machine learning (48). Further, an ultrasound is easy to 
operate, and images are easily acquired; therefore, it is vital 
that research can support the suitability of ultrasonography 
for applying a DNN system.

There are several limitations to this study. First, only 
ultrasound data were used, while mammography and MRI 
data were excluded. Second, the dataset was relatively small, 
and the classification performance of the experimental 
model did not achieve the expected effect (the classification 
accuracy was less than 80%). However, the DNN models 
benefit greatly from a large validation data set; more data 
from multiple hospitals may improve the performance of 
the deep learning model. Third, as this was a retrospective 
study, the number of ultrasound images was uneven. 
This study only selected four images of each patient as 
input, which cannot fully represent all the features of 
the tumor. Future studies can use full-automatic volume 
imaging and three-dimensional ultrasound to obtain 
more comprehensive characteristics. Finally, the external 
validation did not use a logistic regression model due to the 
unavailability of clinicopathological data.

Conclusions

We implemented deep learning to detect MIC on 
ultrasound images. The DNN models provided accurate 
and robust performance. These findings suggest that 
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DNN models may accurately identify MIC in DCIS using 
ultrasound images and have the potential to provide an 
objective auxiliary diagnostic method for clinicians. In 
particular, networks based on the Inception-v3 model may 
perform the best for these and similar applications.
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