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Abstract

Motivation: While it has been well established that drugs affect and help patients differently, personalized drug re-
sponse predictions remain challenging. Solutions based on single omics measurements have been proposed, and
networks provide means to incorporate molecular interactions into reasoning. However, how to integrate the wealth
of information contained in multiple omics layers still poses a complex problem.

Results: We present DrDimont, Drug response prediction from Differential analysis of multi-omics networks. It
allows for comparative conclusions between two conditions and translates them into differential drug response pre-
dictions. DrDimont focuses on molecular interactions. It establishes condition-specific networks from correlation
within an omics layer that are then reduced and combined into heterogeneous, multi-omics molecular networks. A
novel semi-local, path-based integration step ensures integrative conclusions. Differential predictions are derived
from comparing the condition-specific integrated networks. DrDimont’s predictions are explainable, i.e. molecular
differences that are the source of high differential drug scores can be retrieved. We predict differential drug response
in breast cancer using transcriptomics, proteomics, phosphosite and metabolomics measurements and contrast es-
trogen receptor positive and receptor negative patients. DrDimont performs better than drug prediction based on
differential protein expression or PageRank when evaluating it on ground truth data from cancer cell lines. We find

proteomic and phosphosite layers to carry most information for distinguishing drug response.
Availability and implementation: DrDimont is available on CRAN: https://cran.r-project.org/package=DrDimont.

Contact: katharina.baum@hpi.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Personalized prediction of suitable medication is still a key task for
computational approaches in clinical research. Meta-studies have
shown that many drugs only work effectively in a fraction of
patients (Leucht et al., 2015), and consequences of failing treatment
and adverse drug events can be severe. In recent years, more and
more multi-omics profiles have become available that characterize
disease phenotypes on a molecular level, especially in cancer, for ex-
ample via the TCGA consortium (Chang et al., 2013). Multiple
layers of molecular data provide different perspectives and a higher
resolution. Thus, a more fine-grained distinction between subgroups
of patients is possible. At the same time, these data present the chal-
lenge of how to integrate them in order to derive meaningful
predictions.

Different methods of omics integration have been proposed, dis-
tinguished frequently by when the omics layers are combined as well
as by the goal of the analysis—molecular mechanism, patient clus-
tering or other predictions such as drug response (Bersanelli et al.,
2016; Huang et al., 2017; Picard et al., 2021). Thereby, a genuine
joint integration of the different layers has been considered advanta-
geous (Cantini et al., 2021; Picard et al., 2021). Joint dimensionality
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reduction, e.g. via ICA or MOFA (Argelaguet et al., 2018;
Sompairac et al., 2019), has been proposed to find relevant features
from combined multi-omics data. They have been benchmarked for
use with cancer data (Cantini et al., 2021). However, the reduced
meta-genes are difficult to interpret and hinder direct conclusions on
drug action.

The fact that molecules do not act separately, but in their net-
work context led to an alternative joint integration strategy:
network-based approaches enable consideration of interactions be-
tween entities and have been specifically applied to multi-omics data
(Demirel et al., 2021; Lee et al., 2019; Recanatini and Cabrelle,
2020; Yugi et al., 2016). Networks other than purely molecular het-
erogeneous networks have been proposed, containing, e.g. diseases,
drugs or cell lines as nodes (Stanfield et al., 2017; Zhang et al.,
2018a), and patient similarity networks derived from molecular
data (Wang et al., 2014). A plethora of methods have been suggested
to establish and use molecular networks to find relevant disease
genes (Dimitrakopoulos et al., 2018; Ogris et al., 2021; Peng et al.,
2017; Schulte-Sasse et al., 2021). Moreover, interactions between
molecules are one of the key readouts of drug action: drugs interfere
most frequently with the function of the targets they bind to, ham-
pering their ability to interact with other molecular players instead
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of affecting their overall abundance (Pinto et al., 2014). Therefore,
considering interactions in molecular networks (Bartel et al., 2015;
Koh et al., 2019; Sambaturu et al., 2020) is highly promising for
drug response prediction.

Systematic drug response measurements are available, especially
for cancer cell lines (Barretina et al., 2012; Rees et al., 2016; Yang
et al., 2013), and therefore, drug response prediction has been per-
formed for this in vitro setting (Ding et al., 2018; Park et al., 2022;
Zhang et al., 2018a). The question remains how these results can be
transferred to clinically relevant predictions for patients. Some
transfer learning approaches have been proposed (Geeleher et al.,
2017; Webber ez al., 2018), but these still rely on prior systematic
measurements of drug response in conditions comparable to the con-
dition of interest. Methods of artificial intelligence are being
advanced (Azuaje, 2019), but the explanation of their results is fre-
quently challenging. A viable strategy is to assess differential re-
sponse to a baseline patient group phenotype. This technique has
been proposed to query differential co-expression (Bhuva et al.,
2019; Matsui et al., 2021), gene ranking (Richard et al., 2020) or
networks or paths (Ideker and Krogan, 2012; Sambaturu et al.,
2020), but not differential drug response yet.

Here, we present our new approach for Drug response prediction
from Differential analysis of multi-omics networks, DrDimont,
which unites the following key points: (i) multi-omics data are joint-
ly integrated, including data such as metabolomics, (ii) condition-
specific molecular networks are built, (iii) prior and domain-specific
knowledge on molecular interactions can be leveraged, (iv) the focus
is on interactions between molecules as the most common mode of
drug action, (v) differential analysis between conditions enables un-
supervised predictions in clinically relevant settings and (vi) the pre-
dictions are explainable as their underlying molecular characteristics
can be retrieved.

We describe DrDimont and apply it to a breast cancer dataset
combining transcriptomics, proteomics, phosphosite and metabolo-
mics measurements. We compare DrDimont’s differential drug re-
sponse predictions to ground truth from cell line measurements, and
to alternative approaches. We investigate the impact of different
measurement layers on the prediction quality. Finally, we showcase
an example of how DrDimont explains results down to the molecu-
lar level.

2 Materials and methods

2.1 Differential predictions with DrDimont

DrDimont provides a framework to leverage condition-specific,
weighted heterogeneous networks for differential analysis between
two conditions. It builds purely molecular networks with nodes
encoding entities within a cell, such as proteins, mRNAs, metabo-
lites and their interactions from both multi-omics data and prior in-
formation on interactions from databases.

An overview of the pipeline provided in the DrDimont framework
is shown in Figure 1. DrDimont requires quantified molecular data
such as RNAseq or protein data of several samples as input. For dif-
ferential analysis, data for two different groups of samples or patients
(‘conditions’) are needed. Each molecular data input layer is trans-
formed into condition-specific weighted, single-layer networks by cor-
relation of the molecular entities. Then, based on a user-defined
structural requirement (see Section 2.1.1), the networks are reduced
keeping edges with high weights only. As shown for an example in
Figure 1B, the single-layer networks are combined into multi-layer
networks based on user-defined inter-layer connections. Thereby,
prior knowledge on interactions from databases can be incorporated.
The two condition-specific multi-layer networks are further integrated
by computing integrated interaction scores, as shown in Figure 1C.
These propagate local neighborhood information to the edge weights
and thus avoid too strong of an impact of single edges. From the two
integrated networks a differential network is computed by contrasting
the edge weights of the condition-specific networks. The differential
network is employed to calculate differential drug response scores

based on the differential edges in vicinity to a drug’s targets. We will
describe details for each step in the following.

2.1.1 Single-layer network generation

For each data layer and each group, complete weighted networks
are generated where each node represents one type of molecule, e.g.
one specific mRNA or protein. The weight of an edge between any
two nodes of one layer is derived from the correlation between the
abundance measurements for the nodes over all samples in the
group, e.g. using Spearman’s or Pearson’s correlation. If not stated
otherwise, we employed Spearman’s correlation in order to avoid
strong impact of outliers and to account for non-linearity in abun-
dance relationships. In case of missing values, pairwise complete
observations were used for correlation.

The correlation-based networks are reduced and only the edges
with the largest absolute weights are kept. Reduction thresholds are
determined (i) by a desired average degree of the network nodes,
(ii) by a desired average network density or (iii) by maximizing the
scale-freeness of the network (WGCNA, pickHardthreshold func-
tion, Langfelder and Horvath, 2008). If not stated otherwise, we
used this latter topological criterion here and adapted the goodness
of fit to a scale-free network, R?, to have similar-sized networks for
the compared groups. See the Supplementary Material for the im-
pact of Alternative reduction methods.

2.1.2 Heterogeneous multi-layer network construction

DrDimont connects single-layer networks for each group separately
based on the node names (see Fig. 1B). First, nodes from different
layers with identical names can be connected with edges of the same
user-defined weight (e.g. of value one). This allows exploiting the
dogma of gene expression, i.e. connecting an mRNA to its corre-
sponding protein, or a protein to its corresponding phosphosites.
Representing further relationships is possible such as methylated
promoter regions on the DNA to the corresponding target genes or
mRNAs. Second, pairs of node names from two different layers can
be entered by the user. These nodes will then be connected. The edge
weights can be again fixed or derived from prior information, for ex-
ample, to connect the protein and the metabolite layer using data
from a database such as STITCH (Szklarczyk et al., 2016) (see
Supplementary Material, Metabolite-protein interactions from
STITCH for details).

2.1.3 Integrated interaction scores

DrDimont uses a novel, semi-local integration scheme to reduce the
impact of single edge weights in the condition-specific networks.
Thereby, the weights of alternative paths between nodes are taken
into account (see Fig. 1C). Edge weights in the heterogeneous multi-
layer network can be replaced by their integrated interaction scores,
that is, the average strength of these alternative paths. For an edge
connecting nodes #, v, we define this score, s,,, as the sum of
average strengths of alternative paths connecting # and v over the
considered path lengths, i.e.

L 1 .
Suv =Y 1 et > ecpathy HeE (eight(e). (1)

Thereby, pathy, , is the set of paths of length I between nodes u
and v, L is the maximal length of considered paths, and weight(e) is
the edge weight of an edge e. For a path k of length [ that is connect-
ing nodes xo, . . ., x; in this order, k is determined by its set of contri-
buting edges k = {(x0,x1), (x1,%2),...(x;_1,%/)}, and all their edge
weights are multiplied to determine the path strength of k. For edge
weights ranging from -1 to 1 as in usual correlation measures,
integrated interaction scores can range from —L to L. If not stated
otherwise, we used L = 3. In order to reduce DrDimont’s run time
for large networks, the integrated interaction scores are only com-
puted for edges incident to user-provided drug targets by default
(see also Section 2.1.5).
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Fig. 1. DrDimont’s pipeline for integrated, network-based analysis. (A) Multiple molecular data layers for two conditions are compared, e.g. cancer data (1). They are used to
derive condition-specific correlation-based single-layer networks (2) that are combined into integrated molecular networks using prior information (3). The differential
network is derived from the condition-specific networks (4) and captures altered interaction strengths. Differences, e.g. in drug response, are predicted from the differential net-
work (5). (B) Example for the generation of an integrated, multi-layer weighted network with the protein network as central layer. Within-layer interactions are correlation-
based from measurements. Different layers are connected by prior information, its type is encoded by the dashed lines. Edges can have negative as well as positive edge weights
(indicated by different line colors), thicker lines indicate larger edge weights. (C) Integrated interaction scores. Edge weights are replaced by the average over the strengths of al-
ternative paths, thus generating a local enhancement exploiting network structure (see Equation (1)). For example, for the edge connecting nodes # and v, a selection of alterna-
tive paths is marked by thicker edges: paths of length two (left), or paths of length three (right)

2.1.4 Differential network

DrDimont generates the differential network by computing the dif-
ference between integrated interaction scores of all edges of the
group-specific heterogeneous multi-layer networks. Edges that only
appear in one of the group’s networks are considered to have a
weight of zero in the other networks and will be part of the differen-
tial network. Nodes that are part of any of the two networks are
thus included in the differential network.

2.1.5 Differential drug response score
The differential network is used for DrDimont’s differential drug re-
sponse prediction. To derive a prediction for a drug, drug targets
have to be known. The drug targets are identified within the differ-
ential network. The absolute value of the mean (default, or the me-
dian) of the weights of all edges incident to the drug targets is used
as a drug’s differential drug response score. The differential drug re-
sponse score is the main output of DrDimont and provides a priori-
tization (ranking) of the drugs. If not stated otherwise, we used
proteins as drug targets. However, in principle, nodes from any in-
put molecular layer can be defined as drug targets.

DrDimont’s implementation details and its settings for heteroge-
neous network construction are provided in the Supplementary
Material.

2.2 Molecular breast cancer dataset preparation

We used a breast cancer dataset from patient tumors with mRNA
(measured via RNAseq) from TCGA, proteomics and phosphosites
(measured via mass spectrometry) from CPTAC (Mertins et al.,
2016). We combined these data with metabolite data from two
other studies (Budczies et al., 2013; Terunuma et al., 2014). The
mRNA data and clinical annotations were downloaded from TCGA
via RTCGA (Kosinski and Biecek, 2016). We obtained the estrogen
receptor status, negative (ER—) or positive (ER+), for each sample
from the clinical annotations (for sample counts, see Supplementary
Table S1).

We disregarded mRNAs with more than 90% of zero measure-
ments over the samples within a condition. Proteins and phospho-
sites with more than 20% of missing values over the samples of a
condition were removed. There were no missing values for the

metabolite data as imputation had been done by the respective
authors prior to publication of the data. If not stated otherwise, the
genetic features (MRNA, protein, phosphosites) were reduced to a
subset of 5579 known cancer-related genes (Repana et al., 2019)
and drug targets from DrugBank (Wishart et al., 2017).

2.3 Drug targets, drug response ground truth,

performance
We retrieved data for 40 breast cancer cell lines (26 ER—, 14 ER+)
from the Cancer Therapeutics Response Portal (CTRP) (Rees et al.,
2016), in particular drug sensitivity, compound data and drug target
information for 481 drugs. We used estrogen receptor status annota-
tion from the DepMap portal (DepMap, Broad, 2021). We
employed data for a drug if it was measured at least three times for
each condition. We determined the differential drug response be-
tween ER+ and ER— for each drug by Mann—-Whitney U tests com-
paring sensitivity in ER+ cell lines vs. sensitivity in ER— cell lines
obtaining ground truth for 477 drugs with the P-value as ranking
(see Supplementary Fig. S1 for the effect size instead of P-value). For
performance assessment, we report Spearman’s correlation between
predicted and ground truth drug ranking, and the P-value of the cor-
relation. Only drugs for that the analysis in question delivered a pre-
diction were used; their numbers are indicated accordingly. In
particular, drugs lacking known drug targets were disregarded.

Receiver operating characteristic (ROC) curves were generated
by comparing prediction-derived to ground-truth derived binary
drug classifications (see Supplementary Material for details). We in-
dicate which fixed ground-truth threshold was employed. We report
the area under the ROC curve (AUC). For partial AUC (pAUC), we
compute the AUC for false positive rates between 0 and 0.1. High
pAUC values signify enriched true predictions among the top ranked
drugs.

Data preparation, visualization and result analysis were performed
using R, version 4.1.0 (R Core Team, 2021).

2.4 Alternative prediction methods
To assess DrDimont’s performance, we implemented two alternative
differential drug response prediction approaches.
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2.4.1 PageRank of drug targets in the differential network

We used igraph (Csardi and Nepusz, 2006) to compute the weighted
PageRank (Brin and Page, 1998) of all potential drug targets in the
undirected differential network from DrDimont. Therein, we
employed the absolute differential edge weights (and not differential
integrated interactions scores). The mean weighted PageRank over
all drug targets generated the differential drug response ranking.

2.4.2 Differential protein expression

We employed the Differential Enrichment analysis of Proteomics
data (DEP) pipeline (Zhang et al., 2018b) to assess differential pro-
tein expression between ER+ and ER— conditions. Therein, after a
variance-stabilizing transformation, limma is applied. This single-
layer approach delivered a ranking of the drugs with respect to dif-
ferential drug prediction from differential protein expression of all
drug targets of a drug using the minimal multiple-testing adjusted P-
value.

3 Results

We will now showcase results of DrDimont for a multi-omics data-
set and assess its performance with measured ground truth. Then,
we will compare it to two alternative differential drug response pre-
diction approaches. Furthermore, we will describe the impact of
including different data layers in DrDimont’s analysis, and end with
an illustration of the level of explainability that DrDimont provides.

3.1 Evaluation of DrDimont on breast cancer stratified

by estrogen receptor status

We investigated molecular data of breast cancer patients stratified
by estrogen receptor status. The ER status is highly prognostic, with
ER+ patients having a better prognosis than ER— patients.

We first considered a multi-omics dataset that provides ER-
stratified patient data containing transcriptomics measurements via
RNAseq (from TCGA), and proteomics and phosphosite data from
mass spectrometry-based measurements (from CPTAC, Mertins
et al., 2016). We also included metabolomics data from other stud-
ies later (Budczies et al., 2013; Terunuma et al., 2014). We show the
properties of the differential integrated network generated with
DrDimont for this dataset (without metabolomics) in Figure 2A.
The differential integrated interaction scores are correlated with the
differential edge weights, but the former allow for broader distribu-
tions. They are taking alternative paths into account and thereby
propagate the information from the local neighborhood to the re-
spective edges. In particular, the edges derived from prior informa-
tion (mRNA-protein, protein—-phosphosite) benefit from this
procedure: Their edge weights are not condition-specific and there-
fore, their differential edge weights cluster around minus one, zero,
and one. In contrast, their differential integrated interaction scores
are spread out and differences between conditions are resolved in
greater detail.

For our dataset, DrDimont provides drug response scores for
275 drugs with drug targets from CTRP (Rees et al., 2016) (see
Fig. 2B), the majority were differentially predicted to some degree.
Only seven drugs have a drug response score of one or higher. Top
differentially predicted drugs were SB-743921, that is known to
have a stronger effect in ER— cell lines (Zhu et al., 2016), ibrutinib
and tamatinib.

We compared the results of DrDimont for our dataset to the
ground truth of the drugs from CTRP in a ROC performance ana-
lysis (see Fig. 3A). DrDimont’s drug response scores were used as
drug ranking for computation of true and false positive rates of the
prediction. The AUC for a ground truth threshold of 0.01 was 0.67
(see legend of Fig. 3A) which is considerably higher than for random
prediction (AUC 0.5). DrDimont’s multi-omics data-based drug re-
sponse scores showed a significant correlation to the CTRP-based
ground truth (Spearman’s p —0.19, P-value 0.001). The correlation
is negative since the ground truth is based on P-values, i.e. lower val-
ues correspond to a likelier differential response. What is more, the
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Fig. 2. DrDimont’s integrated interaction scores and differential drug response pre-
dictions for the breast cancer dataset. (A) Differential edge weights are compared to
the differential integrated interaction scores of DrDimont for each of the five edge
types (colored). We contrasted ER— versus ER+, i.e. negative scores correspond to
stronger inhibitory interactions or less strong positive interactions in ER— compared
to ER+. Integrated interaction scores enable distinguishing edges that have a zero
differential edge weight, but overall, they show a high correlation (Spearman’s p
0.967). (B) Histogram of DrDimont’s differential drug response scores of 275 drugs
for which drug targets occur in our multi-layer networks. Half of the drugs are
predicted with a differential response of varying value

pAUC that takes only highly ranked drugs into account gives values
decisively higher than expected from a random prediction (up to
0.014 compared to 0.005). Thus, we find DrDimont to be predictive
of differential drug response, and it especially enriches positive hits
among the top ranked results.

3.2 Comparison to alternative differential drug

prediction approaches

DrDimont’s approach focuses on differential interactions of drug
targets in the molecular network for differential drug response pre-
dictions. However, frequently, rather the node properties are consid-
ered for predictions. Therefore, we compare DrDimont’s
performance to two alternative approaches for deriving differential
drug response: (i) using the weighted PageRank algorithm in
DrDimont’s differential network to score drug targets, and (ii) dif-
ferential expression of drug targets. PageRank detects nodes with
high importance in a network (hubs) and could thus identify drug
targets that are particularly altered between conditions from the dif-
ferential network. Differential expression has been considered rele-
vant for drug action and has been used especially for predictions of
drug responsiveness of different tissues. We based our estimations
on the differential protein expression of a drug’s targets because
most frequently these are the drug’s binding partners rather than,
e.g. mRNA molecules.

For our breast cancer dataset, the weighted PageRank for drug
targets yielded predictions better than random, especially for strin-
gent ground-truth thresholds (AUCs > 0.5, Fig. 3B). Spearman’s
correlation with the ground-truth ranking was less pronounced than
for predictions with DrDimont and not significant (—0.06, P-value
0.27), and pAUCs were below random (pAUC < 0.005). The predic-
tions based on differential protein expression were close to random
classification (AUC < 0.5). Also the correlation between prediction
and ground truth ranking was small and insignificant (Spearman’s p
—0.03, P-value 0.5, see Fig. 3C). Thus, both the PageRank-based
and the differential expression-based drug response predictions per-
formed worse than DrDimont on the breast cancer dataset.
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Fig. 3. ROC curves for DrDimont’s and alternative methods’ prediction perform-
ance on the breast cancer dataset. (A) DrDimont’s differential drug response.
Different ground truth thresholds were used where drugs below the threshold were
considered as true positives and the others as true negatives. For 275 drugs,
DrDimont provided differential drug response scores that were used for drug rank-
ing and comparison to ground truth classification. (B) Weighted PageRank of drug
targets for differential drug response prediction, for 275 drugs, computed on
DrDimont’s differential network. (C) Differential expression of drug target proteins
for differential drug response prediction. The differential expression yielded predic-
tions for 274 drugs. In the legends, values in brackets denote AUCs, pAUCs at given
ground truth thresholds. The respective Spearman’s p and the P-value are given at
the top of each figure. Black dotted lines indicate theoretical ROC curves for ran-
dom predictions

3.3 Influence of different molecular layers

We analyzed which molecular layers are most relevant for
DrDimont’s drug response prediction performance. Therefore, we
considered mRNA, protein, phosphosite data as before, as well as
the two metabolomics datasets (see Table 1, and Supplementary
Fig. $4 for the ROC curves). DrDimont performed best according to

Table 1. Influence of different molecular data layers on DrDimont’s
drug response prediction performance

Included layers #drugs AUC  pAUC corr. P
mRNA, proteins, 275 0.670  0.010 —-0.193  0.001
phosphosites

+ metabolites B 275 0.634 0.009 —0.179 0.003
+ metabolites T 275 0.634 0.007 —-0.172 0.004
mRNA, proteins 275 0.552  0.008 —0.058 0.338
mRNA 216 0.574  0.001 —0.114  0.093
proteins, phosphosites 190 0.668 0.024 —0.188 0.009
+ metabolites B 213 0.626  0.008 —-0.156  0.023
+ metabolites T 194 0.643 0.007 —0.145 0.034
proteins 116 0.677 0.021 -0.253 0.006
+ metabolites B 178 0.479  0.008 —0.035 0.639
+ metabolites T 136 0.509 0.008 —0.058 0.439
phosphosites 115 0.585 0.017 -0.179 0.055

Note: T: Terunuma metabolomics, B: Budczies metabolomics. The respective
number of drugs with differential drug response predictions can change between
approaches because the established molecular networks differ and drugs without
any edges incident to their drug targets do not receive a differential drug response
score. We indicate the AUC and pAUC for a ground truth threshold of 0.01, and
Spearman’s correlation (corr.) and its P-value (P).

AUC and Spearman’s correlation when employing only the prote-
omic layer in the analysis. However, DrDimont could only provide
predictions for 116 drugs in this setting; the remaining drugs lacked
edges for all of their drug targets in the network thereby resulting in
no drug response score (see Supplementary Fig. S5 for a further
characterization). Compared to the default setting with all three
data layers (no metabolomics), using protein and phosphosite data
together resulted in only slight changes in AUC and correlation, but
more than doubled the pAUC from 0.01 to 0.024 (best value).
DrDimont performed worst in terms of AUC and correlation when
using only the mRNA and the protein layers together. Applying
DrDimont using only the phosphosite layer resulted in a relatively
high pAUC of 0.017. Surprisingly, adding the two different metabol-
ite datasets to the analysis with DrDimont showed consistently
worse results than without metabolites, but affected the results for
the setting containing all other three data layers least. We conclude
that the proteomic and phosphosite data layers contribute most to
DrDimont’s differential drug response prediction for this dataset.

3.4 Explainable results

An asset of DrDimont is that predictions can be directly associated
to molecular differences between subgroups. Given a specific drug
response score for a certain drug, it can be traced back which drug
target is especially different between the compared conditions, as
well as which connections of the drug targets are the cause of the
observed differences. We show this in an example for the drug dina-
ciclib, see Figure 4 (see Supplementary Fig. S7 for additional analy-
ses). Dinaciclib’s four reported drug targets CDK1, CDK2, CDKS,
CDK9 and their incident edges can be identified both in the differen-
tial network as well as in the network for each condition. We find
that CDK2 (and CDKS, not shown) has stronger interactions with
other proteins in ER— than in ER+, whereas the interactions be-
tween proteins and their phosphosites are equally strong or stronger
for CDK1 and CDK2 in the ER+ group. CDK9 shows no inter-
action differences between conditions. Specific differently interact-
ing proteins and phosphosites can be also retrieved. This allows a
deeper investigation by domain experts.

4 Discussion

We introduce DrDimont as a flexible framework for network-based
differential analysis and drug response prediction. It builds
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Fig. 4. DrDimont delivers explainable predictions. Given a drug (example: dinaci-
clib), the differential drug response score derived from DrDimont can be traced
back to the input layers. (A) Dinaciclib’s drug targets (CDK1, CDK2, CDKS,
CDKDY) are identified in the differential network. (B) The distribution of differential
integrated interaction scores of the drug targets’ incident edges can be retrieved
(stacked histogram). Many edges that are differential occur for CDK2 and CDKS.
(C) The differential integrated interaction score of an edge can be related to the
interaction strength in each condition (here: ER+ versus ER—, for CDK1 and
CDK2). Bars to the sides resolve edge counts. Boxes and arrows mark respective val-
ues in (B) and (C) for three selected edges incident to CDK1. Different edge types
are marked by colors

condition-specific molecular networks from multi- or single-omics,
and no matched samples are required. In addition, DrDimont out-
performs differential expression-based and PageRank-based
approaches for drug response prediction. It provides an explainable
framework to trace contributions of single molecular alterations.

We find the protein and phosphosite layers to be most inform-
ative for drug prediction, especially for identifying top ranked drugs.
Biologically, this seems reasonable because drugs mainly act on pro-
teins where they interfere with their cellular functions (Pinto et al.,
2014). Further, these functions are frequently modulated by post-
translational modifications such as phosphorylations (Dittmar et al.,
2019). Despite insights on the relevance of metabolomics in combin-
ation with other omics data for disease and in particular for cancer
(Ortmayr et al., 2019; Pinu et al., 2019), we do not find evidence
supporting that in our analyses. A possible reason could be that
while all other omics data are from the same study and experimental
conditions, the metabolomics measurements stem from different
studies possibly adding extra noise to the integrated results. In add-
ition, reliable measurement of metabolite abundances is more diffi-
cult in a patient treatment setting because metabolites are degraded
extremely rapidly also within extracted tumor biopsies. Further im-
provement may be achieved by reducing the number of the other
layers’ features (nodes) for better balance of their sizes.
Additionally, other intra- and inter-layer connection approaches,
such as derived from protein—protein interaction or metabolic net-
works, might be viable options to explore within the DrDimont
framework.

DrDimont’s combined molecular networks can be retrieved and
employed for the user’s own analysis approaches, for example using
network embedding (Pio-Lopez et al., 2021), exploration by random
walks (Valdeolivas et al., 2019) or diffusion-based methods (Di
Nanni et al., 2020). A strength of DrDimont is that its networks can
also be tracked to provide molecular explanations for the predic-
tions and thereby enable targeted biological follow-ups for in-depth
investigation. In addition, DrDimont allows the inclusion of

molecules with unknown function and low abundances. This makes
the approach particularly interesting also for less well characterized
organisms such as fungi.

Applying DrDimont to compare more refined subgroups would
be interesting, for example, resolving effects of other hormone
receptors in breast cancer such as progesterone or HER2. Other
groups to compare could be pre- and post-chemotherapeutic
patients (Park et al., 2020), or applying general sample classification
before analysis with DrDimont.

A limitation of our network-based drug response prediction is
that it relies on the quality of known drug targets. Some drugs are
less well characterized than others. Taking this uncertainty into ac-
count and increasing the resolution on the mode of action of drugs
for the input data (Parvizi et al., 2020) could be opportunities for
improving DrDimont’s prediction results. Moreover, real ground
truth for our case is difficult to obtain: applying different drugs to
patients and monitoring their outcome cannot be performed, of
course, due to ethical reasons and standard of care. Here, we use cell
line measurements as a surrogate that differ in quality, taking trade-
offs into account. Overall, differential drug response prediction is a
difficult problem that also results in contradicting ground truth
measurements (see Supplementary Fig. S6), and thus, comparably
low AUCs are not surprising. The pAUC that measures enrichment
of correct predictions in top-differential drugs achieves high values.
Other directions such as relying on extended patient-derived xeno-
graft-based drug response studies and analyses (Gao et al., 2015)
could be taken.

DrDimont is a flexible tool for subgroup-specific and compara-
tive predictions with an explainable framework, and we envision
that it contributes with its proof-of-principle to improving the clinic-
al decision process in the future.
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