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Abstract

Background: Transcriptional regulatory network inference (TRNI) from large compendia of DNA microarrays has
become a fundamental approach for discovering transcription factor (TF)-gene interactions at the genome-wide
level. In correlation-based TRNI, network edges can in principle be evaluated using standard statistical tests.
However, while such tests nominally assume independent microarray experiments, we expect dependency
between the experiments in microarray compendia, due to both project-specific factors (e.g., microarray
preparation, environmental effects) in the multi-project compendium setting and effective dependency induced by
gene-gene correlations. Herein, we characterize the nature of dependency in an Escherichia coli microarray
compendium and explore its consequences on the problem of determining which and how many arrays to use in
correlation-based TRNI.

Results: We present evidence of substantial effective dependency among microarrays in this compendium, and
characterize that dependency with respect to experimental condition factors. We then introduce a measure neff of
the effective number of experiments in a compendium, and find that corresponding to the dependency observed
in this particular compendium there is a huge reduction in effective sample size i.e., neff = 14.7 versus n = 376.
Furthermore, we found that the neff of select subsets of experiments actually exceeded neff of the full
compendium, suggesting that the adage ‘less is more’ applies here. Consistent with this latter result, we observed
improved performance in TRNI using subsets of the data compared to results using the full compendium. We
identified experimental condition factors that trend with changes in TRNI performance and neff , including growth
phase and media type. Finally, using the set of known E. coli genetic regulatory interactions from RegulonDB, we
demonstrated that false discovery rates (FDR) derived from neff -adjusted p-values were well-matched to FDR based
on the RegulonDB truth set.

Conclusions: These results support utilization of neff as a potent descriptor of microarray compendia. In addition,
they highlight a straightforward correlation-based method for TRNI with demonstrated meaningful statistical
testing for significant edges, readily applicable to compendia from any species, even when a truth set is not
available. This work facilitates a more refined approach to construction and utilization of mRNA expression
compendia in TRNI.

Background
With the availability of genome-wide mRNA expression
data from DNA microarray experiments, transcriptional
regulatory network inference (TRNI) from large com-
pendia of these microarrays has become a fundamental
task in computational systems biology. In this approach,
transcription factor (TF)-gene interactions are predicted

based on observed trends in mRNA expression across
many experimental conditions. Unsupervised pairwise
methods for TRNI, including relevance networks [1,2],
partial correlation methods [3,4], graphical Gaussian
models (GGM) [5], and context likelihood of relatedness
(CLR) [6], are attractive as they do not require prior
knowledge of the network and have been successfully
applied at the genome-wide scale, performing well rela-
tive to other unsupervised methods [6].
While many of these approaches have relied on user-

defined or truth set-based thresholds for determining
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the network, the correlation- and partial correlation-
based methods can in principle calibrate established
tests to a desired level of prediction accuracy via control
of the false discovery rate (FDR) alone. However, such
tests nominally assume independent and identically
distributed (i.i.d.) microarray experiments. Work in
differential gene expression analysis has demonstrated
the necessity in such testing procedures of accounting
for the correlation and consequent dependency inherent
in microarray data, e.g., [7-9]. Potential sources of
dependence between microarray experiments include
biases in microarray preparation and lab-specific envir-
onmental factors (studied in the context of microarray
reproducibility in e.g., [10,11]), and are particularly
pertinent in compendia comprised of data from multiple
labs. Moreover, recent work shows that the very gene-
gene correlations in question in TRNI can even induce
an effective dependency among seemingly homogeneous
and independent sets of experiments (e.g., from a single
project/lab). Thus, we expect such effective dependency
(if not also real dependency) between microarray experi-
ments, given that our approach to TRNI is based on the
expectation of meaningful gene-gene correlations across
the dataset. Such (effective) dependency invalidates the
assumption of i.i.d. experiments upon which the statisti-
cal tests are based, thereby complicating the calibration
of these tests.
To the best of our knowledge, the phenomenon of

dependency in microarray compendia and its implica-
tions for TRNI has been noted and addressed only
indirectly in the literature to date. In particular, it is
known that the actual null hypothesis model in TRNI
methods based on statistical testing typically will not
conform to the nominal null model (i.e., that model
suggested by standard theory), and that dependency is a
possible culprit [5,12]. Furthermore, methods have been
proposed to adaptively infer the form of that model
from the data using, for example, principles of empirical
null modeling (e.g., [12,13]). However, such methods do
not facilitate quantification and exploration of the nat-
ure of this dependency in and of itself.
Here in this paper, we sought to explicitly quantify

and characterize dependency, in the context of an
Escherichia coli microarray compendium, containing
both mRNA expression data and substantial information
on experimental conditions. Then, utilizing the large set
of known TF-gene interactions in E. coli from Regu-
lonDB [14] to evaluate performance, we explored the
implications of such dependency in TRNI using the
correlation relevance networks method [1]. In doing so,
we propose a new method of TRNI, which is simple but
effective. On a broader scale, our contributions are
aimed at lending a more quantitative structure to the

discussion of optimal construction of mRNA expression
compendia for TRNI.
Throughout this paper, as above, we refer to both

“effective dependency” and “dependency”. In seminal
work [7], Efron has shown both empirically and theoreti-
cally that it is possible for microarrays to be statistically
independent and yet, due to the very gene-gene correla-
tions that are of interest in TRNI, these same arrays are
effectively dependent, in the sense that empirical correla-
tions among experiments can be inflated. Efron’s focus in
[7] was on the implications of this effective dependency
on statistical tests for independence of a set of microarray
experiments from a single project/lab in the context of
differential expression analysis. He introduces an expres-
sion for the effective number of genes (which we denote
peff ) that plays a key role in that work. In contrast, we
focus here on the implications of dependency (effective
or otherwise) on the task of TRNI, based on a compen-
dium of microarray experiments, and introduce the
natural complementary notion of the effective number of
experiments (which we denote neff ).
Realistically, both types of dependency (i.e., effective

and real) need to be dealt with in analyzing microarray
compendia. The effective dependency is a given consid-
ering our expectation of gene-gene correlations, whether
the experiments in the compendia are dependent or not
[7]. But in fact, in addition, it is natural to expect that
there also be actual dependence among experiments,
whether due, say, to biases introduced by sample collec-
tion and/or microarray preparation, or to environmental
variables that can vary between different laboratories or
even projects within laboratories. Separation of effects of
true dependency from those of effective dependency is
complicated (e.g., see [7]) and is not our goal here.
Rather, we aim only to accurately quantify the aggregate
effects and, where necessary, adjust for them appropri-
ately in TRNI analysis.
For the work detailed below, we utilized the Affyme-

trix E. coli compendium available on M3D, with mRNA
expression data and corresponding experimental condi-
tion metadata for n = 376 experiments and p = 4298
“genes” (probe sets corresponding to coding sequences)
(E_coli_v4_Build_5, [15]). This compendium is com-
prised of many sets of related experiments. Here, we
define a “project” as a set of microarray experiments
conducted under the same principle investigator towards
investigation of related questions. In the majority of
cases, a publication defined a project, but in some
instances microarrays from multiple publications were
combined to form one project.
Applying a test proposed in [7], the null hypothesis of

i.i.d. experiments in the E. coli compendium was
rejected, with visually evident structure based on project
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membership. Upon regrouping the data, we observed
that experimental condition factors were a significant
driving force behind the observed structure. We found
that the vast majority of significantly correlated pairs of
experiments were between experiments in the same
project.
We explored the implications of this dependency

between experiments in TRNI. This exploration was
enabled by a summarization of the dependency in the
form of an estimate of the effective number of experi-
ments, neff. A greedy search for microarray experiments
that maximized neff revealed that a larger neff was
achieved with a subset of the compendium, with the
peak neff attained using less than one third of the experi-
ments. This surprising result suggested that subsets of
the data might effectively contain more information
than the full compendium. We used correlation as our
measure of gene-gene interaction for TRNI (after com-
paring to other standard methods like partial correlation
and CLR), and were able to evaluate performance in
TRNI using the large set of known regulatory interac-
tions in E. coli from RegulonDB [14]. Consistent with
the observed peak in neff , we found that subsets of the
compendium also performed better than the full com-
pendium in TRNI. Again, detailed examination of the
data suggested that experimental conditions were a driv-
ing force behind the observed changes in neff and TRNI
performance.
We then used neff to adjust p-values in tests for statis-

tically significant edges and demonstrated that FDR
levels using these values were within range of empirical
FDR levels (derived from RegulonDB), while this was
not the case when the actual number of experiments
was used. Accurate computation of FDR levels for TRNI
enables reliable predictions even when a truth set like
RegulonDB is not available. We found that our TRNI
method produced networks similar to those derived
from RegulonDB-based thresholds. Using recent experi-
mental findings, we confirmed the inferred topology of
known TF Lrp, and examined that of a predicted hub in
our network, putative TF YrbA.

Results
Structure and dependence in a compendium of
microarrays
We first performed permutation tests following methods
in [7] to determine whether experiments in the E. coli
Affymetrix microarray compendium were i.i.d. If the
microarray experiments were indeed i.i.d., we would
expect the components of the first eigenvector of the
experiment correlation matrix, v1, to be random with
respect to the experiment order. We plotted v1 against
the experiment index with experiments grouped by pro-
ject (Figure 1). Structure across these values was visually

evident: in many cases, they were grouped by project.
Results from permutation tests using a block statistic
(see Additional file 1), with blocks defined on projects,
strongly suggested the existence of structure within the
data set, with p-value = 0 for 5000 permutations.
In order to look at factors beyond project membership

that may be contributing to the observed structure, we
utilized the experimental condition data in M3D. We
define an experimental condition factor as any detail
about each microarray experiment that is part of the
curated metadata on M3D; this includes any experiment
variable that was reported for a microarray experiment
in its associated publication, e.g., growth phase, strain,
temperature, pH, culture type, etc. Assigning each
experiment the v1 value corresponding to its index in
the original order (as in Figure 1), we re-sorted the
experiments according to a given experimental condi-
tion factor. For example, experiments in which glucose
was present in the media were grouped together, and all
those without glucose formed a separate group. Results
for five experimental condition factors are shown in
Figure 2. Indeed, we observed structure in each of these
five cases across experiments from different projects,
and two-sample t-tests in each case were rejected with
p-values <1e-07. Note that in these tests, the antibiotic
and ccdB toxin experiments (Figure 2, top panel) were
grouped together, as ccdB is known to have a similar
mechanism of action. Similarly, experiments with cells
in late-log, stationary, or biofilm growth phase (Figure 2,
bottom panel) were grouped and compared to all other
experiments (whether growth phase was specified or
not). Multi-way ANOVA analysis (Additional file 1, Sup-
plementary Table S1) of the effect of these five experi-
mental condition factors on their corresponding v1
values revealed that three of the condition factors
(presence vs. absence of antibiotic/ccdB toxin, rich vs.
minimal media, and early stage (and unspecified) vs. late
stage growth phase) were likely influencing these values,
while the structure observed for the other two condition
factors (no glucose vs. glucose, aerobic vs. anaerobic)
could likely be explained by the other factors. These
results strongly indicate that the observed structure is
biologically driven by experimental condition factors.
From this perspective, with observation of structure due
to individual condition factors, it is not surprising that
we observe structure consistently at the project level
(Figure 1), as the effects of these condition factors are
undoubtedly confounded with project membership.
Correlated experiments
Given the structure observed in the data set above,
it was reasonable to ask which experiments in the
compendium were significantly correlated. We assessed
this following [7] using experiment-experiment correla-
tion. This is not straightforward in the presence of
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dependency, and accordingly, the author in [7] used an
estimate of the effective number of genes peff (Equation
2) in testing for significantly correlated experiments. We
found that peff = 14.66 for this compendium, a drastic
reduction compared to the number of genes p = 4298.
Following [7], we used peff as the sample size to calcu-
late p-values in testing for correlation between experi-
ments using Fisher transformed correlation coefficients
(Figure 3A). Using the Benjamini and Hochberg FDR
procedure (BH-FDR) [16] (Equation 10), we applied an
FDR threshold q = 0.1 to these p-values and identified
1251 pairs of significantly correlated experiments (Figure
3B), constituting 2% of all possible pairs. Consistent with
the trend observed in Figure 1, it is clear that a majority
of these were pairs of experiments from the same pro-
ject (in red boxes). We note that using the number of
genes p = 4298 as the sample size in these tests resulted
in 91% of all pairs significantly correlated at q = 0.1
(data not shown), a rather dubious value.
It is not surprising that the majority of correlated

experiment pairs were from the same project. Many fac-
tors could contribute to such correlation, including
similarity of experiments within the same project (i.e., a
large set of shared experimental conditions), biases
introduced by sample collection and/or microarray pre-
paration, and environmental variables that can vary
between different laboratories (and thus projects). We
quantified the correlated-ness of projects as the fraction
of correlated pairs (FCP) in each project. Considering
only projects with more than three experiments, we
observed that five of the six projects with the largest
FCP (projects 1, 2, 6, 12, and 20) were predominantly
comprised of genetic perturbation experiments, demon-
strating that this type of perturbation yields generally
less diverse expression profiles.

There were also several cases in which experiments
from different projects were correlated. A full list and
description of significant between-project correlations is
included in Additional file 1, Supplementary Table S4.
In some instances, these correlations would be expected
due to similarity of experimental conditions, as was the
case for the pairs in the green boxes (Figure 3B). How-
ever, pairs in the white boxes were not necessarily
expected. In box (i), we see several correlations between
experiments in projects 12 and 20, indicating that the
high cell density (O.D. 595 nm >11) late log conditions
in project 12 have similar expression profiles to several
biofilm conditions in project 20. In box (ii), treatment
with the antibiotic spectinomycin in project 17 corre-
lated with serine hydroxamate treatment in a relA
knockout in project 22. This indicates that serine hydro-
xamate treatment (used to induce stringent response) in
cells unable to undergo canonical stringent response
(due to deletion of relA) induces a similar transcrip-
tional response to treatment with spectinomycin, an
antibiotic known to act on the ribosome and inhibit
protein synthesis. Finally, we observed that many experi-
ments in which cells were sampled in the late-log,
stationary, and biofilm growth phases tended to corre-
late with one another irrespective of other factors,
including whether cells were grown in rich or minimal
media, suggesting that these low-to-no growth state
cells share similar expression patterns that don’t vary
significantly with perturbation. This is consistent with
the clear separation of values corresponding to these
later stages of growth (late-log through biofilm)
observed in Figure 2, bottom panel.
Figures 1, 2, and 3 provide stark visual evidence of the

dependency among experiments within the compendium.
This type of analysis can be used to guide experiment

Figure 1 Visualization of structure within the compendium. The values of the first eigenvector, v1, of the experiment correlation coefficient
matrix of the Affymetrix E. coli compendium plotted against their corresponding experiment index. Point color and gray numbers indicate
project index, and gray lines also delineate projects.
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Figure 2 Visualization of experimental condition-driven structure within the compendium. The values of the first eigenvector, v1, of the
experiment correlation coefficient matrix of the Affymetrix E. coli re-sorted according to experimental condition factors. Gray lines delineate
groups, and groups are labeled by their condition factor in gray text on the plots. Point color indicates project index (same project coloring as
in Figure 1).
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design by identifying conditions that correlate across
different projects (potentially indicating that surveying
only a subset of the correlated conditions is necessary),
and also highlighting projects with minimally correlated
experiments (as examples of perturbation types and com-
binations that yield diverse transcriptional responses).
Furthermore, unexpected correlations between well-stu-
died and less well-studied experimental conditions can be
used to gain insight into mechanisms of the resulting cel-
lular response.

Effective sample size and choice of experiments
We expected that the dependency between experiments
would lead to an effective reduction in the number of
experiments, just as [7] found that dependency between
genes led to an effective reduction in the number of
genes. Here, we were more naturally interested in the
effective number of experiments, both as a potential
measure of relative “usefulness” of experiments in the
compendium, and also as it is relevant in testing for sig-
nificant correlation between genes (e.g. in TRNI).
Accordingly, we defined an expression for the effective
number of experiments, neff (Equation 4), analogous to
that of peff in [7]. We found that neff was equal to peff ,
as can be predicted by Theorem 1 in [7] (see Methods
text and Equation 6), indicating that this quantity is
essentially representative of a certain notion of reduced
dimensionality for the entire data matrix.
Given the varying degrees of correlation between

experiments observed above, we expected some experi-
ments to be more informative than others. While it is
challenging to address the broad issue of choice of
experiments in its full generality, we propose here to
use neff as a metric of relative usefulness of experiments.
We conducted a greedy search for combinations of

experiments yielding maximum neff . Experiments in the
compendium were added one at a time until all experi-
ments were included, at each step adding that experi-
ment which maximized neff . Interestingly, we saw a
peak of neff = 28.87 using 104 experiments, and a
decrease in neff as the remaining experiments were
added (neff = 14.66 using all 376 experiments) (Figure 4).
As might be expected given the project-based structure
observed in Figures 1 and 3, the subset of 104 experi-
ments at the peak of this curve included experiments
from nearly all projects in the compendium (25 of 27
projects).
The peak in the neff curve indicates that adding

experiments can decrease neff . While at first glance this

Figure 3 Correlated experiments in the compendium. Heatmaps of (A) -log(p-value) for experiment correlation coefficients (colorbar) and (B)
significantly correlated experiments at FDR ≤ 0.1 (shown in gold). Red boxes delineate projects, with project index labeled below the boxes
(where space permitted). Green and white boxes are referenced within the text.

Figure 4 Greedy search for experiments to maximize neff. Plot
of effective number of experiments neff vs. number of experiments.
Experiments were added to the data set via a greedy search for
experiments yielding maximum neff .
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result may seem counter-intuitive, it is simple to con-
struct a small-scale example to illustrate this phenom-
enon. Consider the case where our samples take the
form of three scalar values x1, x2, and x3. Let corrij be
the correlation between samples i and j. If corr12 = 0.25,
and corr13 = corr23 = 0.75, we find that neff = 1.88 when
only samples 1 and 2 are included, but neff = 1.67 when
all three samples are included. Thus, adding a third
experiment with a strong enough correlation to both of
the first two experiments effectively reduces the sample
size. This is a toy illustration of the well-recognized role
that latent variables can have in correlation-based ana-
lyses, wherein a subset of more fundamental variables
can actually drive what appears to be more complex
behavior among an ostensibly larger number of variables
(e.g., [17]); sample 3 in this example clearly “drives”
much of what is in samples 1 and 2. The same phenom-
enon is occurring in the microarray compendium, but at
a much larger (and therefore more opaque) scale.
We also evaluated neff for subsets in which projects

were omitted from the data set, one at a time; i.e for
each project, we removed only that project from the full
compendium, computed neff , and looked at the change
in neff of the subset relative to neff when all data were
included. Similarly, we quantified the correlated-ness of
each project as the fraction of correlated pairs (FCP) in
that project (for FDR ≤ 0.1, as in Figure 3B). In Figure
5, we looked at FCP vs. change in neff for all projects
and found that projects with highly correlated experi-
ments (large FCP) generally contributed less to or even

decreased overall effective sample size. Omission of high
FCP projects 2, 12, and 20 actually increased effective
sample size; notably, all three of these projects were pre-
dominantly comprised of genetic perturbation experi-
ments, indicating that this type of perturbation is prone
to contributing redundant information to the data set.

Implications for transcriptional regulatory network
inference (TRNI)
We applied the concepts presented above 1) to evaluate
contributions of subsets of experiments to TRNI accu-
racy and 2) for edge selection in TRNI. We used the set
of known regulatory interactions in RegulonDB [14] to
evaluate performance in TRNI. We focused on TRNI
using correlation as our measure of interaction between
two genes for two principal reasons. First, statistical
testing of correlations is straightforward and well-estab-
lished, in the standard case of i.i.d. measurements, with
formulas for calibration of tests involving the sample
size n in a straightforward fashion. This latter aspect in
turn allows us to propose a rather simple and straight-
forward adjustment of the tests as applied for edge
selection in TRNI, substituting the estimated neff for n
in the standard formula to account for dependencies in
the data set. While analogous standard statistical tests
exist for partial correlation, this method requires specifi-
cation of the set of regressors; this can be nontrivial,
with performance in TRNI substantially affected by the
choice. (See Additional file 1 for an extended discussion
of partial correlation results.) Second, we found that
correlation performed similarly to partial correlation
algorithms [4,5] and the mutual information-based con-
text likelihood of relatedness (CLR) algorithm [6] for
this Affymetrix E. coli compendium (Figure 6 and Addi-
tional file 1, Supplementary Figure S1). We observed
that correlation performed as well or better than the
other methods at higher precision (e.g. >55% precision),
which is arguably of most interest given the goal of
identifying highly probable edges. We emphasize that
we do not adopt a correlation-based method because it
is better, but rather because it i) performs similarly to
arguably more sophisticated unsupervised pairwise infer-
ence methods (Figure 6), and ii) at the same time, is
more amenable to our study of n and neff .
Performance of subsets of the compendium in TRNI
Motivated by the observed peak in neff using a subset of
the compendium, we looked at the performance of sub-
sets of the compendium in TRNI. Subsets were selected
(i) randomly, (ii) based on the neff greedy search, or (iii)
via clustering as in [6] (one experiment from each clus-
ter). Performance was measured as AUC10, the area
under that part of the RegulonDB-based precision vs.
sensitivity curve (e.g. curves in Figure 6) above 10% pre-
cision. (Note, the area below 10% precision was

Figure 5 Within-project correlation plotted against per-project
contributions to neff. Fraction of correlated pairs (FCP) within a
project vs. change in neff when that project is omitted. Only projects
with three or more experiments were included in the analysis.
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excluded to avoid computation of the long tail of these
curves, which stretches out along the remaining range
of sensitivity at very low precision, an arguably irrelevant
precision range in our consideration of performance.)
The results for subsets including 20 to 360 experiments
are shown in Figure 7.
We found that subsets selected to maximize neff uni-

formly outperformed randomly selected subsets and, for
sufficiently many experiments (i.e., >150), outperformed
the full compendium. We also observed that subsets

selected to maximize neff generally included experiments
from more projects than random subsets at a given subset
size (Additional file 1, Supplementary Figure S3). Perfor-
mance using subsets selected via clustering was found to
be the best, uniformly outperforming both random and
neff selected subsets for most sample sizes (i.e., <250), and
outperforming the compendium with substantially fewer
experiments (i.e., <80) than neff selected subsets. This
improvement is to be expected, as clustering is making
more sophisticated use of the information in the data than
neff , with the former considering the distance (measured
as correlation in this case) between all experiments simul-
taneously, and the latter considering only one experiment
at a time and always searching for the experiment most
distant from the subset already selected. Regardless, we
believe these findings support the merit of neff as a quan-
tity relevant to the relative performance of subsets of
experiments in TRNI. The improved performance using
cluster-based subset selection is intriguing and may merit
further study, but is beyond the scope of this work. How-
ever, we also note that when this comparison was con-
ducted using alternative E. coli compendia, the outcome
was more nuanced, with the neff -based and cluster-based
subset selection methods each outperforming the other
over certain separate ranges of subset size (see [18], and
Additional file 1, Section 8).
We also evaluated per-project change in neff (as in

Figure 5) and TRNI performance; i.e for each project, we
removed only that project from the full compendium,
computed neff and AUC10 in TRNI, and looked at the
changes of these measures relative to their values when
all data were included. We found that changes in neff
roughly trended with changes in AUC10 (Figure 8A),
indicating that projects positively contributing to overall
neff were also some of the most informative projects in
overall performance in TRNI. Notably, project 16 con-
tributed the most positively to TRNI accuracy; this is the
largest project in the compendium, and includes time-
series experiments with antibiotic and toxin treatments,
all conducted in rich media. We found that two of the
three projects that decreased overall neff also decreased
TRNI accuracy (projects 12 and 20), while project 2
contributed positively to TRNI performance. This could
be attributed to the fact that project 2 is relatively large
(second largest in compendium, 45 experiments), or
possibly because the specific perturbations in this project
(over-expressions in presence of antibiotic) are pertinent
to regions of the transcriptional regulatory network that
are 1) well-sampled in this compendium (so that they
boost support for the edges that are inferable given the
data) and/or 2) better represented in RegulonDB.
We repeated the same analysis on a per-experiment

basis, where experiments were omitted one at a time
from the data set and neff and AUC10 were computed.

Figure 6 Comparison of the performance of three TRNI
algorithms. Plots of precision vs. sensitivity for three TRNI methods
applied to the E. coli compendium: correlation, CLR, and partial
correlation. The partial correlation result used the set of 179 known
TFs in RegulonDB as regressors. This was the best result observed
for partial correlation in Additional file 1, Supplementary Figure S1A.
AUC10 is the area under the precision vs. sensitivity curve but
above 10% precision. The dashed black line indicates 10% precision.

Figure 7 Performance of subsets of the compendium in TRNI.
Correlation-based TRNI AUC10 with varying experiment subset size
for three subset selection methods. The dashed black line marks the
AUC10 using the full compendium.
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We observed a moderate trend between per-experiment
change in AUC10 with change in neff (Figure 8B). This
trend was stronger among experiments with positive
change in neff, i.e. less informative experiments. The
weaker trend with AUC10 for experiments that were
informative to neff could reflect the fact that AUC10 is a
measure of performance in a specific task (TRNI), and it
is possible that certain experiments are informative gen-
erally but not necessarily informative in the specific task
of TRNI (or, at least not informative in the inference of
edges in RegulonDB, which we are using to assess per-
formance). We also observed that all but one of the
45 experiments in project 2 fell in the upper right

quadrant of this plot, in contrast to the overall positive
per-project contribution to AUC10 observed for this
project in Figure 8A, demonstrating that, while all of
these experiments might be similar to one another
(redundant to some degree), removing the entire project
from the data set is detrimental.
In order to investigate whether specific experimental

condition factors were more or less informative in these
measures, we replotted Figure 8B coloring points based
on their state in each of the five condition factor attri-
butes considered in Figure 2 (e.g. Figures 8C and 8D).
We then tested whether there was a relationship
between the distribution of points and each binary

Figure 8 Per-project and per-experiment contributions to neff and TRNI performance. (A) Change in AUC10 vs. change in neff when project
is omitted. Only projects with three or more experiments were included in the analysis. (B-D): Change in AUC10 vs. change in neff when
experiment is omitted, colored by (B) project ID, (C) growth phase stage state, or (D) media type state.
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condition factor (e.g. minimal media or rich media) by
binning points into four bins based on overall AUC10
and neff values (dashed black lines in Figures 8B, C, and
8D) and performing a chi-square test for independence
(with the null hypothesis that values are distributed
independent of the condition factor labels). Plots for the
two condition factors with the smallest p-values in this
test are presented here: growth phase stage (p-value
<7e-12) and media type (p-value <3e-04) (Figures 8C
and 8D, respectively). It is evident that experiments with
early stage growth phase labels (early log and log) were
generally more informative than those in the later stage
growth phases (late log, stationary, and biofilm) (Figure
8C). Additionally, in Figure 8D we see that experiments
conducted in minimal media were generally informative,
though rich media experiments were not necessarily less
informative (as we observed in the case of project 16,
the most informative project in Figure 8A, which was
conducted in rich media).
Edge selection for correlation-based TRNI using FDR
In E.coli, it is possible to evaluate TRNI performance
and guide desired edge selection thresholds using Regu-
lonDB, as we have done in our analysis above. However,
in general, this is not the case; for most other species, it
is necessary to select edges purely based on the data,
without aid from a truth set. Edge selection in this con-
text is increasingly important as transcription profiling
(via RNA-seq) experiments from species with no known
regulatory interactions accumulate in initiatives such as
the Human Microbiome Project [19] and the Ten Thou-
sand Microbial Genomes Project http://sz.genomics.org.
cn/en/. Controlling the FDR in multiple hypothesis test-
ing can be used to guide this process for TRNI [5]. FDR
estimates rely on correct computation of p-values,
which, in the case of the Fisher transformed correlation
coefficients we use, depend on sample size n (see Meth-
ods). Thus, the effective reduction in sample size from
n to neff has critical implications in testing for correla-
tions between genes in TRNI.
We computed gene-gene correlation z-values using

the full data set and calculated corresponding p-values
using two choices of sample size: i) the nominal number
of experiments n = 376, and ii) the effective number of
experiments neff = 14.66, the latter of which adjusts for
dependency among experiments (Equation 8). (Note
that this is in contrast to, for example, Figure 4, where
we were using neff to select subsets of experiments.) For
each set of p-values, we determined thresholds for
desired FDR levels using BH-FDR ("nominal FDR”), and
at these same thresholds, computed an “empirical FDR”
using RegulonDB. (Note, this “empirical FDR” is more
accurately described as the false discovery proportion
(FDP), but we’ve chosen to use “FDR” to simplify our
discussion.) Ideally, these two FDR values would be

equal at each threshold, indicating that the nominal
FDR levels accurately reflected the empirical FDR from
the known truth set. (Note that this ideal case also
depends on RegulonDB being a good representation of
the truth; we address this point in the Discussion sec-
tion.) The results are shown in Figure 9. There it can be
seen clearly that using the nominal number of experi-
ments n to compute p-values led to drastically inaccu-
rate thresholds, according to RegulonDB, while using
neff yielded results within acceptable range of the ideal
case (i.e., roughly along the 45 degree line). Results in
Figure 9 were corroborated by histograms of the
p-values for each case: p-values calculated using n were
far from the expected uniform distribution, with a
substantial majority of p-values near zero, while those
using neff were much closer to uniform (Additional file
1, Supplementary Figure S4).
Furthermore, and somewhat surprisingly, we observed

that using values for n even slightly higher (n = 16) or
lower (n = 13) than neff yielded noticeably worse results
(Figure 9), providing further evidence that these effective
sample size estimates are meaningful quantities. Note, in
particular, that a naive choice of sample size, such as the
number of projects (i.e., 27), while vastly less than
the nominal sample size, would still do little better than
the nominal sample size. Overall, these findings support
the use of BH-FDR for network edge selection when the
effective sample size of the data set is taken into
account. Additionally, the successful application of neff
in this setting substantiates the use of the equivalent peff

Figure 9 Evaluation of BH-FDR control for correlation-based
TRNI. Empirical vs. nominal FDR for correlation-based TRNI. In all
cases, correlation-based TRNI was applied to the full data set, with
edge selection using nominal n, neff , or other values for n (nest) to
compute p-values for the BH-FDR analysis. The ideal case of y = x
was included for comparison (dotted black line). Difference from
ideal (DFI) was quantified as the area under a plot of the absolute
difference between a given curve and the ideal case.
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for identification of correlated experiments in Figure 3,
where there was no truth set available for comparison.
Thus, in the combination of the correlation relevance

networks approach and edge selection via FDR (taking
neff into account), we propose a simple and general
method for TRNI (with steps enumerated below in the
Methods section). The association measure of our
method (i.e. correlation) performed comparably to other
methods tested herein, and our method has the distinct
advantage of providing meaningful estimates of the pre-
cision of predictions.
The most significant impact of using the corrected

p-values for FDR-based edge selection in TRNI is a dras-
tic reduction in the size of the inferred network. For
example, using BH-FDR without our correction and
setting FDR ≤ 20% (80% precision) leads to an over-
whelming 244,460 interactions for which the null hypoth-
esis is rejected (network edges), while, in stark contrast,
using our correction at this same precision yields a net-
work of 243 edges. Using RegulonDB-based empirical
estimates of the true FDR, these networks correspond to
98% and 33% FDR, respectively, demonstrating that our
correction yields a vast improvement. In Additional file
1, Supplementary Table S2, we summarized comparisons
between networks defined by controlling FDR using
either n or neff or empirically estimating FDR using Regu-
lonDB, with nominal or empirical FDR ≤ 20%, 40%, or
60%. Additionally, we looked at the inferred connectivity
for the well studied TF Lrp to illustrate the validity of our
approach at the gene level, using additional experimental
data from [6] to evaluate inferred edges (Additional file 1,
Supplementary Figure S5). Finally, we highlight a putative
TF, YrbA, that is predicted to be a large hub by our
approach, and present evidence that it is involved in
regulation of translation (Additional file 1 text and
Supplementary Figure S6).
On a final note, we point out that FDR analysis above

utilized BH-FDR to determine p-value thresholds. How-
ever, BH-FDR is just one of many approaches for con-
trolling/estimating FDR (summarized in [12]). Using the
FDR evaluation framework afforded by RegulonDB for
E. coli TRNI, we compared the performance of several
FDR estimation methods available in the R package
fdrtool[12] (Additional file 1, Supplementary Figure
S7). We found that the performance offered by our sim-
ple approach, based on neff, is comparable to the best
performance observed by other tools, and noticeably
better than some. See the Additional file 1 for details.

Application of analysis to an additional data set
To gain further insight into concepts explored through-
out this work, we compare and contrast our findings
above to those obtained by applying the same analyses
to an E. coli data set from Zare et al. [20]. These data

are complementary in certain useful ways to those in
the M3D compendium, in that they are small (only 46
conditions, rather than 376), from a single lab (rather
than from multiple labs), and range across an intention-
ally diverse set of experimental conditions (rather than
the often small variations across conditions of interest
explored within labs contributing to the M3D data).
This choice of data, and our findings, allow us to pro-
vide additional insight into how neff may relate to the
underlying biology in a data set.
The results of our analysis are presented in Additional

file 1, Section 8. We observed that nearly all experi-
ments in the compendium contributed positively to neff ,
and peak neff was very close to overall neff. This indicates
that when a compendium is designed in a more con-
trolled manner with a goal of surveying a broad and
diverse range of conditions, there is accordingly less
redundancy (correlation) across the data set, in contrast
to the M3D compendium analyzed herein. Congruous
with this finding, we did not observe that subsets of the
data consistently outperformed the full data set in the
TRNI task. Notably, however, BH-FDR control of neff -
adjusted p-values for edges in correlation-based TRNI
was not well-matched to empirical FDR estimates; we
believe this is largely attributable to an overall lesser
degree of informativeness of this compendium for corre-
lation-based TRNI (paralleling similar observations
made by Zare et al. [20]), and we discuss this further in
the Additional file 1. Finally, we conducted a compari-
son of our neff-maximizing selection of experiments to a
measure of median gene set activity per experiment
(proposed and computed for a subset of this compen-
dium in [21]), which we argue can be expected intui-
tively to bear a reasonably strong correlation to each
other, and found that this is indeed the case.

Discussion and Conclusions
Having more microarrays in TRNI is not necessarily
better. How many you have, and which you have, mat-
ters. While these statements arguably have been part of
the common wisdom in this area for some time, our
work here attempts to formalize and quantify relevant
aspects of the basic issue of which and how many
microarrays to use in TRNI. We have demonstrated the
presence of dependency among experiments within a
compendium of E. coli microarrays, and found that this
dependency can be well-characterized by a correspond-
ing effective sample size, neff . We found that subsets of
the compendium actually yielded larger neff than the full
data set, and correspondingly, these subsets performed
better in TRNI. Finally, we proposed a straightforward
method for TRNI that uses neff in an explicit fashion,
which performed comparably to competing methods
and produced meaningful estimates of the precision of
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predictions. We emphasize that the merit of neff derives
from the totality of its role in this work, rather than
from any single application. The fact that it can be seen
to be usefully interwoven through various applications
and quantitative summaries and analyses speaks strongly
to its relevance.
A major result of the dependency in our compendium

is a consequent sizable reduction of n to neff, which sug-
gests significant redundancy across the data set. Similar
redundancy was observed in [6], using cluster analysis
methods. There are many possible causes of this redun-
dancy, including: the structure of the compendium,
comprised of individual projects that often vary only
one or a few experimental variables while controlling all
others; the robust nature of the underlying biological
network, making it difficult to perturb the system; a
modular trend in transcriptional responses, resulting in
similar expression changes over a range of conditions;
or limitations of the microarray technology. Addition-
ally, this result may indicate that the in vitro conditions
that almost exclusively comprise this compendium only
perturb a fraction of the transcipritonal regulatory net-
work, promoting investigation of vastly different condi-
tions, including in vivo and multi-organism cultures, as
suggested in [6]. Apart from promoting exploration of
entirely new experimental space, the analysis herein pro-
vides insight into potential strategies for experimental
design, highlighting conditions that vary minimally
across the compendium (e.g. cultures in biofilm or sta-
tionary growth phase) and sets of conditions (projects)
yielding diverse expression responses (Figure 3).
Nonetheless, we note that while results presented in

Figures 2 and 3 are highly suggestive of a link between
experiment-experiment correlations and experimental
condition factors, additional work would need to be
done to establish this more rigorously. For example, one
could conduct a design-based study to test for and
quantify the effects of experiment-experiment interac-
tions. Our work here is meant to lay the motivation for
and suggest the need for additional work of this nature.
The TRNI approach proposed here follows a frame-

work with some similarities to the GGM method pro-
posed in [5], which also employed FDR estimation for
network selection (using fdrtool), but used partial cor-
relation instead of correlation. In our analysis, we found
that this GGM method did not perform as well in TRNI
on our data, and that corresponding FDR estimates
deviated significantly from RegulonDB-based FDR esti-
mates (see Additional file 1, Supplementary Figure S1).
As a peripheral benefit, our work demonstrated the

utility of the RegulonDB-based testing framework used
in [6] for evaluation of different methods of FDR esti-
mation designed for high-dimensional data. Neverthe-
less, while RegulonDB provides a useful framework for

evaluation of TRNI performance and FDR estimation
using experimental data, this is still not an ideal test set-
ting. RegulonDB is incomplete; the test set used for the
Affymetrix E. coli compendium included interactions
involving 1838 genes, less than half of the 4000+ genes
predicted in E. coli. This truth set also potentially
includes incorrect interactions, as it is manually curated
and derived from experiment-based conclusions. Thus,
these drawbacks should be considered when drawing
conclusions from such evaluations, cautioning distinc-
tions between methods that perform similarly. Nonethe-
less, we believe that this testing framework is valuable,
particularly given that generation of truly representative
simulated data sets is challenging due to the multi-level
nature of the underlying biological network. Addition-
ally, the accuracy of RegulonDB-based precision esti-
mates in TRNI was supported by experimental
validation carried out in [6].
The TRNI approach highlighted here provides a sim-

ple but general method for predicting highly probable
transcriptional regulatory interactions from large collec-
tions of microarray data. This generalized approach can
be readily applied to less well-studied organisms for
which large microarray compendia are available, such as
P. aeruginosa (348 samples for platform GPL84 in Gene
Expression Omnibus (GEO) database [22]), and S. onei-
densis (207 experiments in M3D [15]). Additionally, as
RNA-seq and other improved methodologies become
more widespread and begin to replace DNA microarray
experiments, observations from microarray compendia
can serve as useful tools, including guidance in experi-
mental design as noted above. Also, it is highly likely
that issues of dependency within novel-platform data
sets will persist given the nature of the underlying biolo-
gical network, so that considerations of such issues here
will be applicable in this new context.
The work in this paper, taken as a whole, is aimed at

the broader goal of providing a more quantitative frame-
work for the discussion of the construction of microar-
ray compendia for TRNI. We see the ultimate goal in
this context to be the development of a complete, uni-
fied methodology for the design and use of compendia
for TRNI - from choice of the experiments run, to
assembly of the compendia, to the actual network
inference.

Methods
Microarray compendium
Analysis was conducted using the RMA-normalized [23]
E_coli_v4_Build_5 compendium of Affymetrix E. coli
ASv2 microarrays available on M3D ([15], http://m3d.
bu.edu). This data set included p = 4298 genes and 725
microarrays surveying n = 376 experimental conditions
("experiments”) from 27 projects of microarray
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experiments, with projects defined as in the Background
(see Additional file 1, Supplementary Table S3for the
list of projects). Only the closest-to-average (CTA) repli-
cate from each experiment was included in analysis (see
Additional file 1 for details and comparison to other
treatments of replicates in Additional file 1, Supplemen-
tary Figure S2).

Double standardization of the data
All results presented in this work use double standar-
dized data, unless otherwise specified. Double standardi-
zation of the RMA-normalized gene-by-experiment data
matrix was carried out following [7]. The data were
iteratively centered and scaled resulting in rows and col-
umns with mean 0 and variance 1. First, the data were
demeaned by centering the columns and then the rows.
Second, the columns and then the rows were scaled.
Demeaning and scaling were repeated until the differ-
ence between each entry of the data matrix in consecu-
tive iterations was less than 0.01. This occurred in six
iterations for this compendium.
We note that this double standardization is impor-

tant, as we found that correlation-based TRNI per-
formed better using double standardized data (i.e.
double standardization applied to RMA-normalized
data) than non-standardized data (i.e. RMA-normalized
data) (see Additional file 1, Supplementary Figure S2).
In addition, the theory described below assumes this
double standardization, which simplifies the mathe-
matics considerably.

Calculation of effective sample size: peff and neff
Denote the doubly standardized data matrix by X, where
Xij is the value corresponding to the i-th gene in the j-
th experiment. Let Σ and Δ be the true gene-gene and
experiment-experiment correlation matrices, respec-

tively. Similarly, let Σ
^

and Δ
^

be the sample gene-gene

and experiment-experiment correlation matrices,
respectively.
Since the entries of X all have zero mean and unit var-

iance, we can calculate the matrix of gene-gene sample

correlations as Σ
^

/= ′XX n and similarly, the matrix of

experiment-experiment sample correlations as

Δ = ′
^

/X X p . The entries of these matrices are just

averages and, as averages, we would expect under stan-
dard i.i.d. assumptions that their variances would behave

like Var( )
^

Σ ii n′
−∝ 1 and Var( )

^

Δ ∝′
−

jj p 1 . When depen-

dency is present, however, this behavior will not hold.
The actual form of these variances will depend on the

full joint distribution of the values in X (of which, note,

Σ and Δ are only marginal correlation matrices). To
simplify calculations, Efron [7] assumes a matrix normal
distribution

X p n∼  , ( , ),0 Σ ⊗ Δ (1)

imposing a tensor-product form on the overall covar-
iance matrix, and shows that it then follows that
Var( )

^

Δ ∝′
−

jj effp 1 , where

p
p

p
eff =

+ −1 1 2( )
(2)

and a is the total correlation

 2 2

2
=

⎛

⎝
⎜

⎞

⎠
⎟′ ′ ′

< ′
∑( / ) / .Σ Σ Σii ii i i

i i

p
(3)

Following standard practice, the author interprets peff
as an effective sample size i.e., the effective number of
genes. Note that if there is no correlation among genes,
a would be zero, and peff = p, as is true in the classical
i.i.d. case. Otherwise, peff < p, indicating effectively fewer
genes than nominal. In our empirical work, we used the

sample correlation matrix Σ
^

as an estimate for Σ to cal-

culate the empirical estimate peff
^

of peff reported in our

analyses; we have dropped the ‘hat’ notation in the main
text for expository purposes.
Employing the same argument as above, but switching

the roles of genes and experiments, in this work we

argue analogously that Var( )
^

Σ ii effn′
−∝ 1 , where

n
n

n c
eff =

+ −1 1 2( )
(4)

with

c
n

jj jj j j

j j

2 2

2
= Δ Δ

⎛

⎝
⎜

⎞

⎠
⎟Δ′ ′ ′

< ′
∑( / ) / . (5)

The value neff is to be interpreted as a measure of
effective sample size i.e., in this case, the effective num-
ber of experiments. If there were no correlation among
experiments, c2 would be zero, and neff = n. Otherwise,
neff < n. We used the sample experiment covariance
matrix Δ

^

to estimate Δ in calculating the empirical

estimates neff
^

of neff reported in our analyses; again, we
have dropped the ‘hat’ notation in the main text for
expository purposes.
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We note that neither the definition of neff nor peff is
motivated by biology. Rather, they are mathematically
motivated and applied in order to quantify dependencies
between rows and columns of the data set. The definition
of effective sample size through the scaling of variances is
standard in statistics, particularly in topic areas involving
dependent data, such as time series analysis or spatial
data analysis. The nature of the effective sample sizes
given above derives in part from the model in Equation 1
and, in particular, the tensor form of its covariance. The
latter is an assumption that simplifies the mathematics
and yields a closed-form expression, which facilitates
interpretation (an important theme we emphasize
throughout). Of course, it is possible that for a particular
dataset the model assumptions used here may be too
simplified, in which case the accuracy of neff and peff as
effective sample sizes presumably will be affected. How-
ever, analyses like the FDR calibration study (summarized
in Figure 9) suggest that, for the data used here, these
definitions of effective sample size are largely on target.

Equality of peff
^

and neff
^

Theorem 1 of Efron [7] states that the empirical average

and variance of the gene-gene correlations in Σ
^

will be

equal to those of the experiment-experiment correla-

tions in Δ
^

. Because in calculating peff and neff on real

data, we substitute the sample correlation matrices Σ
^

and Δ
^

for the true correlation matrices Σ and Δ in

Equations 3 and 5, the implication of Efron’s theorem is
that necessarily

^
^

[ ( )]
( )

,
2 1

2
1

1
= + − −

−
p c n n

n p
(6)

where 
^ 2

and c^
2

are the empirical versions of a2

and c2, respectively. Plugging this value in for a2 in the
expression for peff in (2), we find that necessarily

p neff eff
^ ^

= .

Correlation-based TRNI using neff
Our algorithm for correlation-based TRNI using neff is a
variation on the correlation relevance networks
approach proposed in [1], in which the matrix of gene-
gene correlation coefficients is used as the measure of
interaction between genes, with a threshold applied to
define the inferred network.

1. Compute the double-standardized data matrix X

2. Compute the matrix Σ
^

/= ′XX n of gene-gene

correlation coefficients

3. Apply the Fisher transformation to Σ
^

i.e.,

z log ii

ii
ii′ = + ′

− ′

1
2

1

1

Σ

Σ

^

^
. (7)

4. Compute neff -adjusted p-values, by comparing the
zii’ to a  (0,(neff-3)

-1) distribution.
5. Determine the interaction network by threshold-
ing the p-values, using BH-FDR to control FDR at a
specified level, and then reporting only putative TF-
gene interactions

In the standard i.i.d. setting, the correlations Σ
^

ii′ ,
between genes i and i’ , would nominally have asympto-
tically normal distributions, with means Σii’ and var-

iances ( ) /1 2 2− ′Σ ii n . Fisher’s transform is a standard

normalizing and variance stabilizing transformation,
yielding values zii’ that are asymptotically normal with
means 0.5 log[(1 + Σii’)/(1 - Σii’)] and common variance
(n -3)-1. Under the null hypothesis of no correlation
between genes i and i’(i.e., Σii’ = 0), the relevant null dis-

tribution becomes simply a  (0,(n-3)-1) distribution.
In our setting, dependency in the data changes the

distribution theory. It is nontrivial to capture these
changes in closed-form, motivating an approximation
using lower order moments. The mean will remain
zero, under the null hypothesis, and empirical exami-
nation of our data suggests that the normal distribu-
tion is not an unreasonable approximation to the
shape of the null. Furthermore, in the spirit of empiri-
cal null modeling (e.g., [12,13]), we find that substitut-
ing neff for n in the nominal variance formula to be
quite effective. (This type of simple substitution was
also used in the test for experiment-experiment corre-
lations adopted from [7].) The resulting null distribu-
tion used is thus

 ( , ( ) ).0 3 1neff − − (8)

Two-sided p-values were calculated using this
distribution.
We used the approach in [16] (herein referred to as

BH-FDR) for controlling FDR in the simultaneous test-
ing across TF-gene pairs. In this approach, for m tests,
all m p-values are placed in ascending order,

p p pm1 2≤ ≤ … ≤ (9)

and for all tests with p-values for which

p q
k
mk ≤ (10)
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the null hypothesis was rejected, where k is the index
of the ordered p-value, and q is the desired FDR level.
Note, to evaluate FDR estimates for correlation-based

TRNI, we compared nominal FDR to empirical FDR.
The nominal FDR (based on BH-FDR) was used to
determine the threshold defining predicted edges, and
empirical FDR (the fraction of predicted edges that were
false, 1-precision) was subsequently computed using
RegulonDB ([14]; RegulonDB is described below).

Correlation-based TRNI, performance assessment, and
subset analysis
We compared correlation-based TRNI to partial correla-
tion methods (including the graphical Gaussian model
(GGM) method proposed in [5]) and the context likeli-
hood of relatedness (CLR) algorithm [6] as described in
Additional file 1.
Performance in TRNI was assessed using the set of

known genetic regulatory interactions in RegulonDB
version 6.2 [14]. When mapped to the genes in the
Affymetrix E. coli compendium, this version of Regu-
lonDB consisted of 5161 interactions involving 176
TFs and a total of 1838 genes. For all performance
assessment, we only considered the 1838 × 176
entries of the gene-gene interaction matrix (inferred
in each method) corresponding to the genes and TFs
in this version of RegulonDB (though note that the
full gene-gene interaction matrix was used to select
FDR-based thresholds). We used the precision vs. sen-
sitivity (recall) curve rather than the receiver operat-
ing characteristic (ROC) curve, as our focus was on
reliable prediction of (potentially new) edges rather
than recovery of known interactions. Precision was
computed as the fraction of predicted edges that were
true (1-FDR), and sensitivity as the fraction of true
edges that were correctly predicted. To summarize
performance of the methods in precision vs. sensitiv-
ity, we computed AUC10, defined as the area under
the precision vs. sensitivity curve but above 10%
precision.
We also assessed TRNI performance for subsets of the

compendium. These subsets were selected in three ways:
randomly, based on neff , or based on clustering. For neff,
multiple experiment orderings were determined by con-
ducting the greedy search to maximize neff starting from
different random seed sets of 10 experiments (as
opposed to the full greedy search conducted in Figure
4). An neff subset of size s was the first s experiments
from a given neff greedy search. Cluster-based subsets of
size s were selected as in [6], where experiments were
clustered into s clusters using correlation as the distance
measure, and one experiment was selected from each
cluster.

Additional material

Additional file 1: Supplementary Materials. Supplementary methods,
results, figures, and tables that augment the work presented here, as
referenced throughout this text.
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