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Abstract

During vertebrate mitosis, the centromere-associated kinesin CENP-E transports misaligned 

chromosomes to the plus ends of spindle microtubules. Subsequently, the kinetochores that form 

at the centromeres establish stable associations with microtubule ends, which assemble and 

disassemble dynamically. Here we provide evidence that after chromosomes have congressed and 

bi-oriented, the CENP-E motor continues to play an active role at kinetochores, enhancing their 

links with dynamic microtubule ends. Using a combination of single molecule approaches and 

laser trapping in vitro we demonstrate that once reaching microtubule ends, CENP-E converts 

from a lateral transporter into a microtubule tip-tracker which maintains association with both 

assembling and disassembling microtubule tips. Computational modeling of this behavior supports 

our proposal that CENP-E tip-tracks bi-directionally via a “tethered motor” mechanism, which 

relies on both the motor and tail domains of CENP-E. Our results provide a molecular framework 

for CENP-E's contribution to the stability of attachments between kinetochores and dynamic 

microtubule ends.
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INTRODUCTION

Accurate chromosome segregation depends on interactions between microtubules (MTs) and 

kinetochore, a protein structure localized at each centromere1. Initially, kinetochores often 

attach to the walls of MTs with the chromosomes then moving toward a spindle pole in a 

dynein-dependent manner2,3. The pole-proximal chromosomes then need to congress, i.e. 

move to the spindle midzone where MT plus ends are located. The centromere protein 

CENP-E, a MT-dependent plus-end directed motor of the kinesin-7 subfamily, is essential 

for congression of initially misaligned chromosomes4–8. Perturbation of CENP-E function 

using antibody injection9 or depletion10, gene inactivation11, siRNA depletion12, or 

inhibition with a small molecule inhibitor13 blocks MT plus-end-directed motion of pole-

proximal chromosomes, accompanied by a failure of both kinetochores to form stable MT 

attachments11.

Previous work has suggested that the role of CENP-E in mitosis is not limited to the 

transport of chromosomes during congression. First, CENP-E is detected at the kinetochores 

of already congressed chromosomes14,15. Second, depletion of CENP-E induces up to a 50% 

reduction in the number of MTs on congressed chromosomes11,16. Third, CENP-E gene 

deletion leads to an increased proportion of lagging chromosomes in anaphase in mouse 

liver cells and embryonic fibroblasts11,17. Fourth, after CENP-E-mediated congression, 

CENP-E-dependent localization of protein phosphatase 1 (PP1) to kinetochores is still 

required for stable microtubule capture by those kinetochores8. Furthermore, antibodies to 

CENP-E block the motions of isolated mammalian chromosomes at the ends of 

depolymerizing MTs in vitro18. Despite these observations, whether CENP-E plays a 

physiological role at the kinetochore-MT interface of congressed chromosomes and the 

possible underlying molecular mechanisms for these findings remain controversial.

Mechanochemical enzymes like kinesins transport intracellular cargos by walking along MT 

tracks. The well-studied kinesin-1, a plus-end-directed motor, carries axonal organelles 

towards MT ends, where the motor dissociates from the MT and unloads its cargo19. 

However, the chromosomal cargo carried by CENP-E kinesin is unusual; after the 

kinetochore has encountered the ends of the MT tracks, it does not detach but remains stably 

associated with the tips of MTs20,21. The nature of the connections that link the kinetochores 

of congressed chromosomes and MT ends is not well understood, but these links are known 

to permit exchange of tubulin dimers at the MT ends, implying that each kinetochore can 

processively track dynamic MT ends20,22. This is a remarkable property because the 

kinetochore maintains its attachment to the site where tubulin dimers are being added or lost 

on the MT polymer. Only two proteins that exhibit bi-directional tip-tacking in vitro have 

thus been identified23–25. Here we examine whether the CENP-E kinesin can facilitate such 

end-on MT attachments.

RESULTS

The CENP-E motor acts at kinetochores of congressed chromosomes

To investigate a possible contribution of CENP-E to linking MT plus ends to the 

kinetochores on congressed chromosomes we used a specific small molecule inhibitor 
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GSK-923295, which locks CENP-E in a “rigor” MT-bound state13. HeLa cells were arrested 

in metaphase with a proteasome inhibitor, which was then replaced with the CENP-E 

inhibitor or DMSO as a control (Fig. 1a). In control metaphase cells CENP-E was clearly 

visible at the kinetochores (Fig. 1b); chromosome alignment was maintained in all but 1 out 

of 50 cells and anaphase started ~30 min after removing the proteasome inhibitor (Fig.1c, d). 

Addition of GSK-923295 to metaphase cells caused a marked depletion of the kinetochore-

localized CENP-E (Fig. 1e), probably due to the passive transport of the rigor bound motor 

by poleward MT flux6. Importantly, in ~50% of CENP-E-inhibited cells there was a clear 

loss of chromosome alignment (3.6 chromosome pairs per cell). One of the sister 

kinetochores on such pairs appeared to assume MT-lateral binding, and moved toward the 

pole (Fig. 1e, lower inset). Subsequently, these chromosomes accumulated at the poles and 

anaphase was delayed (Video S1), the hallmark features of the loss of CENP-E 

function9,11,17. These results clearly demonstrate that CENP-E contributes not only to the 

congression of pole-proximal chromosomes5,7, but it also continues to be motor active at the 

kinetochores of congressed chromosomes.

Single molecules of full length and truncated CENP-E walk similarly along MT walls

The above finding prompted us to reconstitute CENP-E interactions with MTs in vitro using 

purified proteins. To examine transport properties of the previously uncharacterized wild 

type version of CENP-E, thereafter called full length (FL) CENP-E, we used total internal 

reflection fluorescence (TIRF) microscopy to visualize a C-terminal fusion of it to GFP (Fig. 

2a,b). Many encounters between single FL molecules and coverslip-attached, Taxol-

stabilized MTs led to short-lived diffusive motions, suggesting auto-inhibition of soluble FL 

CENP-E26,27 (Fig. 2c, S1a-d). However, some FL molecules in our preparations lacked such 

inhibition and moved unidirectionally and processively, similar to a truncated (TR) CENP-

E, in which the motor domains were dimerized with a shortened coiled-coil stalk6,28 (Fig. 

2a). These proteins were then conjugated by their C-termini to 0.5μm beads, and laser 

tweezers were used to launch these beads on MT walls (Figs. S1e-g, Video S2). A 

significantly larger fraction of processive motions was observed with beads coated with FL 

CENP-E vs. what was seen with the soluble bead-free molecules (Fig. S1h), suggesting that 

conjugating the tail of FL CENP-E to a bead cargo partially relieves the auto-inhibition, as 

in kinesin-129. Detailed quantification of the single molecule and bead motility in these 

assays revealed that the MT wall-dependent transport by FL motor is highly similar to that 

of TR CENP-E (Table S1)8,28,30.

Single molecules of FL but not TR CENP-E can processively track dynamic MT ends

We then analyzed what happens when CENP-E walks to the ends of MT tracks. Upon 

reaching the plus tips of stable MTs, both FL and TR CENP-E constructs paused at the tip 

for 2-4 sec before detaching8, significantly longer than 0.3±0.1sec (Mean±SEM, n=253) for 

kinesin-1 studied under identical conditions (Fig. S2a and Table S2). This finding may 

explain an increase in the rate of MT polymerization, which was observed previously with 

human truncated CENP-E motor in the presence of Taxol31. To examine how CENP-E 

interacts with the physiologically relevant, dynamic MT ends, we grew non-stabilized 

polymers from coverslip-attached MT seeds (Fig. 3a). Both FL and TR CENP-E proteins 

walked fast enough to catch up with the growing MT end. Interestingly, the TR molecules 
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detached from these ends more rapidly than from the tips of Taxol-stabilized MTs (Figs. 3b, 

S2; Video S3). However, a large fraction of FL CENP-E molecules did not dissociate from 

the polymerizing ends and continued to move with MT elongation, which was 15 times 

slower than the motor's walking rate (Figs. 3c,d, S3). This marked slowing is unlikely to 

result from the different nucleotide composition of the growing tip vs. MT wall because FL 

CENP-E moved only slightly slower on the GMPCPP vs. GDP-containing lattices (Fig. 

S3c). A slower motility on GMPCPP-containing segments was also observed for TR CENP-

E, yet it failed to track processively with the polymerizing tip (Fig. S2c).

About 70% of FL motors that walked into a disassembling MT tip also did not dissociate but 

moved backwards in the direction opposite to the motor-dependent motility, while following 

the rapidly disassembling MT (Fig. 3d; Videos S4, S5). By quantifying GFP intensity of the 

tip-tracking complexes we found that many contained only 2 GFP molecules and therefore 

were dimers of CENP-E (Figs. 3e, S3 e-g). The tip-tracking complexes sometimes appeared 

to diffuse near the tip. This behavior was more evident at polymerizing tips, presumably 

because polymerization is 10-times slower than depolymerization (Figs. 3d, Video S6). FL 

CENP-E dimers remained associated with growing and shortening tips for 17.9±1.3 and 

11.6±1.4 sec, respectively, resulting in the travel lengths of 0.3±0.1 and 2.1±0.3 μm (Fig. 

S4a-d; Table S2). Small teams of FL molecules tracked even better, sometimes remaining at 

the tip for several rounds of MT growth and shortening (Video S7). These brighter 

complexes tended to slow MT depolymerization (Fig. S3b), but single tip-tracking dimers 

did not affect significantly either the rates of growth and shortening, or catastrophe 

frequency (Fig. 3f). Thus, CENP-E has a capacity to track processively with both 

assembling and disassembling MTs at a single molecule level, a property not shared by 

previously studied kinesins.

CENP-E can couple MT disassembly to bead motion in vitro

CENP-E has been observed to localize to the plus ends of spindle MTs in human cells, 

consistent with its tip-tracking in vivo15. Furthermore, prior work implicated CENP-E in 

assisting motions of isolated mammalian chromosomes at the ends of depolymerizing MTs 

in vitro18. To test directly whether purified FL CENP-E can couple MT dynamics to cargo 

motion, we used segmented MTs, an in vitro approach we previously developed to study 

MT depolymerization-dependent motions32 (Fig. 4a). With laser tweezers, CENP-E-coated 

beads were brought to the walls of MTs, transiently stabilized by caps made from GMPCPP-

containing Rhodamine-labeled tubulin. These beads walked toward the capped plus-ends, 

mimicking chromosomal transport during congression. When MT depolymerization was 

triggered by photo-ablating the stabilizing caps, almost all FL CENP-E-coated beads 

followed the shortening MT ends (Fig. 3b-e), demonstrating the ability of CENP-E to couple 

beads motions with MT disassembly. Such coupling required the non-motor domains of 

CENP-E as TR CENP-E-coated beads failed to track (Videos S8, S9).

CENP-E contributes to stable association between depolymerizing MT ends and 
kinetochores

To test a possible role for CENP-E in linking kinetochores and dynamic MT ends, we 

designed an experiment to trigger chromosome transport by depolymerizing MTs in vivo33 
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(Fig. 5a). Monopolar spindles were induced in HeLa cells that expressed the kinetochore 

marker Mis12-GFP. After chromosomes assumed their positions at the plus tips of astral 

MTs, the CENP-E motor was inhibited with GSK-923295, after which MT 

depolymerization was triggered by nocodazole (Fig. 5b). Live imaging of control cells with 

no CENP-E inhibitor revealed that nocodazole-induced MT shortening produced 

chromosome motion toward the unseparated poles (Figs. 5c,d). Inhibiting CENP-E, 

however, greatly reduced the ability of chromosomes to move in conjunction with MT 

disassembly (Video S10).

To rule out that the CENP-E inhibitor directly affected the MT stability, cells were subjected 

to the same treatments (as in Fig. 5b), but their spindles were visualized with tubulin-EYFP. 

MT depolymerization commenced in <1 min in all cells treated with nocodazole, but adding 

GSK-923295 alone had no effect (Fig. S5). No gross changes in MT asters were seen in 

cells that were fixed and immunostained 25 min after adding GSK-923295, as judged by 

spindle tubulin intensity (Fig. S6). The diameters of MT asters were slightly larger in 

GSK-923295 treated cells, further indicating that this inhibitor did not induce MT 

disassembly (Fig. S6c). Next, cells were pretreated with GSK-923295 for 5 min to deplete 

CENP-E from the kinetochores, then additionally treated with nocodazole and cold to 

promote MT disassembly. In ~60% of these cells some chromosomes were left at the 

periphery with no attached cold-stable MT fibers (Figs. 5e,f; S7a). This is a significantly 

larger fraction than when nocodazole was used with no CENP-E inhibitor, consistent with 

live imaging results. Furthermore, the GSK-923295 pretreated cells had fewer tubulin-

containing MT remnants than the cells with CENP-E-depleted kinetochores (Fig. S6a,d). 

Similar results were also seen when CENP-E was disrupted by RNAi in another human cell 

line and similar experiments were done without GSK-923295 (Figs. 5g,h; S7b). We 

conclude that presence of CENP-E motor at the kinetochores promotes their ability to 

maintain stable connections with disassembling MT ends.

Tip-tracking of CENP-E is not caused by its high affinity to MT tips, but requires its motor 
and C-terminal tail

To dissect the molecular mechanisms underlying the processive tip-tracking we tested two 

specific hypotheses. First, we asked if tip-tracking could result from the increased affinity of 

CENP-E to MT tips vs. walls. With a fluorescence-based MT-pelleting assay we measured 

CENP-E binding to GDP- and GMPCPP-containing MTs, mimicking the growing MT tips: 

the apparent dissociation constants were 41±4 nM and 68±23 nM, respectively (Fig. 6a). 

Binding affinity to the depolymerizing MT tips, as measured with tubulin spirals that are 

similar in structure to the curved tubulin protofilaments34, was 133±22 nM. Thus, CENP-E 

shows no significant preference to the tip-mimicking structures, suggesting that its bi-

directional tip-tracking is unlikely to results from different affinities.

Since TR CENP-E was unable to track MT ends processively, we next investigated if the C-

terminal tail of CENP-E was involved (Fig. 2a). FL bound stronger to Taxol-stabilized MTs 

than the TR protein (144±54 nM; Fig. 6a), consistent with the presence of a MT-binding site 

in its tail26,35. We expressed and purified a C-terminal CENP-E fragment fused with GFP 

(Tail, Fig. 6b). This fragment lies distally to the kinetochore-targeting sequence of CENP-
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E26,36, so the tails of kinetochore-bound CENP-E molecules may be positioned to interact 

directly with kinetochore MTs in vivo. Purified Tail molecules bound and diffused rapidly 

on MTs but failed to follow the dynamic tips, indicating that tail was not the sole 

determinant of the bi-directional tip-tracking (Fig. 6c-f). Interestingly, statistical analysis of 

motions of the Tail at the dynamic MT ends has revealed that only 1 out of 10 encounters 

between the Tail and dynamic MT end resulted in Tail's detachment (see Materials and 

Methods), with the majority of Tail molecules bouncing back from the tip and continuing to 

diffuse along the MT wall, as if “reflected” by the tip (Fig. 6 g,h).

A “tethered motor” mechanism provides a quantitative fit for bi-directional MT tip-tracking 
by CENP-E

Based on the above results we then hypothesized that even though neither the tail nor the 

motor domain could track the dynamic MT ends on their own, a combination of their 

molecular properties produced a collective tip-tracking behavior. We tested this hypothesis 

in a mechanistic and quantitative way with a mathematical model based on the detailed 

kinetic schemes (Figs. 7a,b). The model describes molecular interactions between the MT 

wall, tip, and the motor and tail domains connected together via a worm-like tether (see 

Supplementary Note for detail description of model assumptions and Table S3 for parameter 

values). This quantitative model recapitulated the major results of our in vitro studies with 

TR and FL CENP-E, including rapid dissociation of the TR motor from dynamic MT ends 

and the ability of FL CENP-E to tip-track processively (Figs. 7c-f). It also provided a 

physical mechanism for the cooperative action of motor and tail domains by demonstrating 

that FL CENP-E can track bi-directionally by repeating the cycles of plus end-directed 

walking and the tail-mediated diffusion of the MT wall-tethered motor (Videos S11, S12). 

The tail-MT wall association, although transient, keeps the tail-tethered motor heads in the 

vicinity of MT. We estimate that tethered motor heads re-associate with the wall within a 

millisecond, so the tail serves as a safety leash for the motor heads, which dissociate rapidly 

and repeatedly from the tip. Remarkably, this behavior in silico does not rely on 

difference(s) between assembling and disassembling ends, explaining how CENP-E tracks 

with both types of ends.

The proposed “tethered motor” mechanism of tip-tracking is strongly supported by our 

experimental observations of diffusive motions of the tip-tracking FL molecules, as 

evidenced by the ragged appearance of kymographs (Fig. 8 a-c). Several examples of visible 

excursions at both elongating and shortening MT ends are shown in Fig. S3d, and the 

smaller diffusive motions at the tips were common (e.g. Video S6). We challenged our 

model by testing experimentally its two key predictions. First, we examined tip-tracking in 

the presence of the non-hydrolysable ATP analog, AMPPNP, which induces strong MT-

binding. Consistent with the model's prediction, the inhibited FL CENP-E failed to follow 

the disassembling MT tips (Fig. 8d), demonstrating that the motor's walking is required for 

processive tip-tracking. Second, we recapitulated the wild-type FL CENP-E motions by 

artificially joining the non-tracking TR CENP-E and Tail proteins. Qdots coated with the 

mixture of these proteins exhibited robust walking and also moved processively with both 

assembling and disassembling MT ends (Fig. 8e). Thus, tail and motor domains cooperate 

together to provide processive tip association.
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DISCUSSION

Here we describe the results of the integrated study of motility of CENP-E kinesin and its 

physiological implications using in vivo, in vitro and in silico approaches. Experiments in 

two human cell lines show that kinetochore-MT attachments in disassembling monopolar 

spindles are greatly destabilized when CENP-E function is perturbed with either a specific 

inhibitor or RNAi depletion. Furthermore, we establish a continuing in vivo requirement for 

CENP-E motor activity at the kinetochores of congressed and bi-oriented chromosomes. 

Together with our discovery of CENP-E's ability to associate with the ends of dynamic MTs 

in vitro, these findings suggest a previously unrecognized function for this essential kinesin 

in accurate chromosome segregation. We propose that in addition to its established role in 

transporting polar chromosomes, CENP-E also facilitates the association between 

kinetochore and dynamic MT ends. In vitro, CENP-E kinesin can convert from a lateral 

transporter into a MT tip-tracker, so a similar activity may contribute to the formation of 

end-on MT attachments for the chromosomes that congress via a kinetochore-fiber-

independent pathway7. Although a significant fraction of CENP-E protein leaves 

kinetochores after congression, CENP-E is clearly present at the kinetochores of bi-oriented 

chromosomes14,15, and our results in vivo establish the physiological role of this CENP-E 

population in maintaining end-on MT attachments. These findings are supported by previous 

studies in different cells systems including Drosophila37, mouse11 and human cells16, and 

they also provide a molecular mechanism to explain a reduced number of kinetochore MTs 

on congressed chromosomes in CENP-E depleted cells11,16.

Since we have shown that a single dimer of CENP-E can maintain long-lasting association 

with a dynamic MT end in vitro without significantly affecting MT dynamics, we also 

propose that a major component of the mechanism underlying CENP-E-mediated 

stabilization of kinetochore-MT attachments is a direct one, provided by its ability to serve 

as a “mobile” molecular bond between the kinetochore and dynamic kinetochore-MT tip. 

Future work, however, is required to examine whether the kinetochore-bound CENP-E can 

also affect dynamics of kinetochore MTs, since multiple CENP-E molecules may act in 

concert at kinetochores. Furthermore, in the context of live cells the tip-tracking by CENP-E 

may promote kinetochore-MT attachment not only directly but also in conjunction with 

additional activities from other associated proteins, such as CLASP1/238,39 or PP1 

phosphatase8.

Our work also provides a detailed molecular mechanism to explain how CENP-E can track 

MT tips processively and bi-directionally. The autonomous tip-tracking that we have 

uncovered for CENP-E is distinct from that of proteins like EB1. Despite being widely 

referred to as a plus-tip-tracking protein, the individual molecules of EB1 do not associate 

continuously with growing MTs and tip-tracking is not processive40. Only two proteins, 

XMAP21523 and Dam1 oligomers25,41,42, neither with motor activity, have previously been 

described to track dynamic MT tips processively and bi-directionally at a single molecule 

level. Members of the kinesin-8 family, the plus-end-directed Kif18A and Kip3, can 

associate processively with the growing MT tip in vitro, assisted by their C-terminal 

tails43–46. These motors, however, fail to track disassembling MTs. The molecular 

mechanism of their unidirectional plus-end-tracking is not known, so it may include the 
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affinity-based interactions specifically at the assembling tips. Alternatively, kinesin-8 may 

tip-track with the growing MTs by the mechanism we propose here for CENP-E. Our 

computational model provides insight into protein's ability to tip-track uni- vs. bi-

directionally by emphasizing a complex interrelationship between the rates of protein 

diffusion and MT dynamics47. The reported diffusion of the Kif18A tail is 100-times slower 

than that of the CENP-E tail43,45. In silico, motors with both tails can travel with the 

elongating MT end quite well because both tails diffuse rapidly relative to the slow rate of 

MT assembly (Fig. 8f). However, the slowly diffusing tail is predicted to dissociate sooner 

from the shortening MT ends because MT disassembly is rapid enough to catch up 

repeatedly with the molecule that diffuses slowly “in front” of the wave of tubulin 

depolymerization. Each of these encounters may cause a stochastic loss of the terminal 

tubulin dimer together with the bound tail molecule, so the slower diffusing Kif18A tail is 

not a good tether for the shortening MT end. It remains to be seen if the “tethered motor” 

mechanism that we propose is employed by other MT-dependent motors, or this 

specialization is unique to kinetochore-localized kinesin-7.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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D-tip depolymerizing microtubule tip

FL full length CENP-E

MT microtubule

TIRF total internal reflection fluorescence

TR truncated CENP-E

P-tip polymerizing microtubule tip
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Figure 1. Loss of chromosome alignment in metaphase cells with inhibited CENP-E kinesin
(a) Schematics of the assay with metaphase-arrested HeLa cells. (b) Immunostaining of a 

HeLa cell arrested at metaphase with the proteasome inhibitor Velcade, CENP-A is a 

centromere/kinetochore marker. (c) Percent of cells in which at least one chromosome lost 

its alignment (Mean ± SEM); based on n=3 independent experiments (50 cells total) for “no 

inhibitor” condition and n=4 independent experiments (70 cells total) for “CENP-E 

inhibitor” condition. Two-tailed unpaired t test indicates significant differences between 

these results. (d) Time-lapse images of HeLa cells treated with Velcade for 1 hour, then 
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released into medium containing DMSO or GSK-923295 (Video S1). Numbers are minutes 

after Velcade washout. Arrows point to chromosomes that lost alignment (yellow) or that 

are enlarged in the inset (pink). (e) Immunofluorescence images of a HeLa cell released 

from Velcade into CENP-E inhibitor for 15 min and stained for DNA, CENP-A, CENP-E 

and tubulin; 3 color overlays are shown in each row. Scale bars: 5 μm.
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Figure 2. Motility of single molecules of CENP-E on MT wall
(a) Domain structure of the Xenopus laevis CENP-E proteins used for in vitro experiments. 

These drawings are not to scale; FL CENP-E is almost 230 nm long6, but both proteins have 

C-terminal GFP fusions. (b) Schematics of the TIRF assay with stable MTs. (c) Typical 

kymographs of single molecule motions. Fewer FL CENP-E molecules show processive 

plus-end-directed walking but these motions are quantitatively similar to the walking of TR 

CENP-E motor.
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Figure 3. Single molecules of CENP-E visualized at dynamic MT tips
(a) Schematics of single molecule assay with dynamic MTs. (b) Kymographs of walking TR 

CENP-E molecules, which fall off the growing, then shrinking MT tip. (c) Percent of 

complexes tracking the polymerizing (P-tip) and depolymerizing (D-tip) MT from the total 

number of molecules that reached MT end (Mean ± SEM). n=8 independents experiments 

for FL CENP-E. Two experiments with TR CENP-E were analyzed by bootstrap analysis 

with n=1,000 samples. Complexes that were observed at the end of dynamic MT for at least 

4 sec were called “tip-tracking”. Table shows number of complexes analyzed for each 

group. (d) Kymographs of FL CENP-E tracking the tip of the growing (upper left panel) and 

shortening (bottom left panel) MTs. Right panel shows continuous motion with the end of 

one dynamic MT. (e) Histogram of the number of CENP-E dimers in the tip-tracking 

complexes, showing that a single FL CENP-E dimer, which contains two GFP fluorophores, 

can track MT tips (n=42 from 3 independent experiments). (f) MT velocities and catastrophe 

frequency in the presence or not of the tip-tracking FL CENP-E complexes (containing 1-2 

dimers); Mean±SEM, n=26 shortening MTs in each group and n=28 growing MTs in each 

group. Tip-tracking by small CENP-E complexes does not significantly affect the rate of 

growth (p=0.22) and shortening (p=0.89), based on the unpaired t-test. The catastrophe 

frequency (Mean±SEM) was determined from n=6 independent experiments. MT 

catastrophe frequency with and without the tracking FL CENP-E molecules is not 

significantly different (p=0.6, Mann-Whitney U-test).
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Figure 4. Motion of bead cargo in association with MT disassembly
(a) Schematics of the segmented MT assay in vitro using bead cargo. (b, c) A cartoon and 

still images from segmented MT assay with FL (panels b) and TR CENP-E-coated beads 

(panels c). Bead (yellow arrowhead) was placed on a capped MT grown from a coverslip-

attached axoneme, as drawn in the left panel. Fluorescently-labeled cap (white arrowhead) 

was photo-ablated via the Rhodamine excitation (red color). All other images were recorded 

with DIC illumination. Numbers above panels are seconds from the start of bead's walking. 

(d) Sample motions of the CENP-E-coated beads. Distance is from the minus MT end. 

Arrowheads indicate bead detachment from the MT. FL CENP-E-coated beads sometimes 

remained attached even after MT has stopped shortening. (e) Tip-tracking frequency of FL 
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(n=10) and TR CENP-E coated beads (n=18). Error bars are SEM estimated by 

bootstrapping (n=1,000 samples).
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Figure 5. Investigation of CENP-E's role in depolymerization-driven chromosome motions in 
vivo
(a) Schematics of the MT destabilization assay to study chromosome transport by shortening 

MTs and summary of the main results. (b) Timeline of the MT destabilization assay with 

monopolar spindles in HeLa cells expressing Mis12-GFP (live imaging). (c) Two frames of 

Mis12-GFP kinetochore markers from a time-lapse series for each indicated condition were 

overlaid to reveal a shift in kinetochore position following the nocodazole-induced MT 

depolymerization (kinetochores in green - prior to nocodazole treatment; in yellow - 5 min 

after. Grayscale images are the corresponding kymographs (Video S10); scans were made 

across chromosome rosettes. Bar 5μm. (d) Relative change in the position of kinetochores 

prior and 5 min after nocodazole addition (Mean ± SEM, n=10 cells for each group 

examined in 4 independent experiments; see Eq. 1 in Materials and Methods). One way 

ANOVA test indicates p<0.001, so the means are statistically different. (e) Timeline of MT 

destabilization assay in HeLa cells and representative images (from n=3 independent 

experiments). Insets show enlarged images of the kinetochores (green) and MTs (white) at 

the periphery of the chromosome sphere; note the absence of kinetochore-attached MTs on 

the lower right image. Red color shows DNA (Fig. S7a). Bar 5 μm. (f) Proportion of HeLa 

cells with MT-attached chromosomes before MT depolymerization (top graph) and cells 
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with “outlying unattached chromosomes” after MT depolymerization (bottom graph); 

chromosomes at the periphery of the chromosome sphere with no attached cold-stable MT 

fibers were scored as “outlying unattached chromosomes”. Mean ± SEM, n=3 independent 

experiments; p was determined from two-tailed unpaired t test; total of 87 cells for the 

inhibitor condition and 89 for control were examined. (g) Timeline of MT destabilization 

assay with DLD-1 cells and representative images (from n=3 independent experiments), see 

legend to panel e for details. (h) Quantification of kinetochore-MT attachment in DLD-1 

cells, see legend to panel f for details; Mean ± SEM, n=3 independent experiments. In total 

78 cells were analyzed with and 75 with no CENP-E rescue.
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Figure 6. Analysis of possible mechanisms of CENP-E tip-tracking
(a) Binding affinity of FL CENP-E to different tubulin structures. Affinity to the GDP-

containing MT walls was measured with Taxol-stabilized MTs; to the growing MT ends 

with GMPCPP-containing MTs, in which tubulin structure is likely to be similar to that at 

the polymerizing tips. To mimic curved protofilaments, which are normally seen at the 

shortening MT ends, we used tubulin spirals formed by polymerization in the presence of 

vinblastine. Points are from individual measurements for a given tubulin concentration; data 

were collected in n independent experiments, as indicated for each curve. Error bars for 

experiments with vinblastine spirals (Mean ± SEM) take into account that on average only 

82% of spirals pelleted, while other tubulin structures pelleted completely. (b) SDS PAGE 

of purified CENP-E Tail protein containing 199 amino-acids. (c) Kymograph of Tail 

diffusion. (d) Histogram of residence time of Tail on MT lattice shows that the characteristic 

residency time for Tail in vitro is ~0.5 sec (n=378 molecules). (e) Mean squared 

displacement (MSD) for Tail vs. time with a linear fit (red). Bars are SEM, n=433 

molecules. (f) Kymographs of Tails (green) on dynamic MTs (red); there is no processive 

association with growing or shortening MT ends. (g, h) Quantitative analysis of Tail 

behavior at MT tips. Upper kymographs on (g) show a Tail molecule diffusing near the 

shortening end. The intensity profiles along the colored lines are shown below. Tail and MT 

tip coordinates were determined as described in Materials and Methods. (h) Two-color 
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overlay (top panel) for the same molecule as in g but with reconstructed trajectories (bottom 

graph). Broken red line marks the distance from the MT tip Δx, which the Tail can travel 

during 60 msec, the acquisition time for one frame. Tail was scored as “reflected” from the 

tip when the Tail was found between two red lines and then moved away from the tip, as 

shown in this example.
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Figure 7. Mathematical model of CENP-E motility and comparison with the results of in vitro 
study
(a, b) Kinetic schemes for the in silico CENP-E motility on the MT lattice (panel a) and the 

MT tip (panel b). Arrows depict the transitions between different kinetic states with the rate 

constants p listed in Table S3. See legend on the right for more details. (c-f) Simulated 

motility kymographs of TR and FL CENP-E in silico and the representative kymographs for 

respective motions in vitro. Green lines in simulated kymographs are the CENP-E 

coordinates, red boundary is based on the coordinates of MT ends. Model predictions 

correspond well with experimental observations, see Supplementary Note for more details.
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Figure 8. “Tethered motor” mechanism for processive and bi-directional MT tip-tracking and 
the testing of its predictions
(a) Diagram for the “tethered motor” mechanism of bi-directional tip-tracking. Blue arrow 

shows unidirectional motor's walking, black arrows - tails’ diffusion and “reflection” from 

the tip. (b) Theoretical and (c) experimental kymographs of the FL CENP-E tracking of the 

growing tip. Insets show zooms of the ragged CENP-E tracings, with occasional large, 

minus-end-directed excursions. Such excursions are explained in the model by the tail-

mediated diffusion of the tethered-motor. (d) Theoretical and experimental kymographs of 

FL CENP-E on a shortening MT in 2mM AMPPNP, which blocks motor's walking. Model 

predicts that the stalled motor should detach when the wave of MT depolymerization 

reaches its attachment site, which is indeed observed in vitro. Similar results were seen with 

GSK-923295, as expected. (e) Theoretical and experimental kymographs of Qdot coated 

with a mixture of TR CENP-E and Tail proteins. Such dots exhibit same motile properties as 

the FL molecule – they walk on MT wall unidirectionally and convert into bi-directional tip-

trackers at the MT end. (f) Mean lattice and tip-association times for single molecules of FL 

CENP-E in the experiment (experimental data are from Tables S1 and S2) and as obtained in 

simulations (“Theory”). The diffusion coefficient of the “fast” tail in silico matches that of 

the CENP-E Tail protein in vitro (Fig. 6e). The “slow” diffusion coefficient is as reported 

for the tail of Kif18A43. In this range, tail's diffusion has a stronger effect on tracking the 

depolymerizing, but not polymerizing MT ends. Mean±S.E.M., based on 50 calculations for 

each motor. *- p<0.001; ns - p>0.05 (unpaired t-test).
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