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A B S T R A C T   

Objective: The predictive value of serum tumor markers (STMs) in assessing epidermal growth 
factor receptor (EGFR) mutations among patients with non-small cell lung cancer (NSCLC), 
particularly those with non-stage IA, remains poorly understood. The objective of this study is to 
construct a predictive model comprising STMs and additional clinical characteristics, aiming to 
achieve precise prediction of EGFR mutations through noninvasive means. 
Materials and methods: We retrospectively collected 6711 NSCLC patients who underwent EGFR 
gene testing. Ultimately, 3221 stage IA patients and 1442 non-stage IA patients were analyzed to 
evaluate the potential predictive value of several clinical characteristics and STMs for EGFR 
mutations. 
Results: EGFR mutations were detected in 3866 patients (57.9 %) of all NSCLC patients. None of 
the STMs emerged as significant predictor for predicting EGFR mutations in stage IA patients. 
Patients with non-stage IA were divided into the study group (n = 1043) and validation group (n 
= 399). In the study group, univariate analysis revealed significant associations between EGFR 
mutations and the STMs (carcinoembryonic antigen (CEA), squamous cell carcinoma antigen 
(SCC), and cytokeratin-19 fragment (CYFRA21-1)). The nomogram incorporating CEA, CYFRA 
21-1, pathology, gender, and smoking history for predicting EGFR mutations with non-stage IA 
was constructed using the results of multivariate analysis. The area under the curve (AUC =
0.780) and decision curve analysis demonstrated favorable predictive performance and clinical 
utility of nomogram. Additionally, the Random Forest model also demonstrated the highest 
average C-index of 0.793 among the eight machine learning algorithms, showcasing superior 
predictive efficiency. 
Conclusion: CYFRA21-1 and CEA have been identified as crucial factors for predicting EGFR 
mutations in non-stage IA NSCLC patients. The nomogram and 8 machine learning models that 
combined STMs with other clinical factors could effectively predict the probability of EGFR 
mutations.   
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Fig. 1. Flow chart of the study design and analysis.  
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1. Introduction 

Lung cancer is a prevalent malignant tumor and a leading cause of cancer-related mortality worldwide [1,2]. Non-small cell lung 
cancer (NSCLC) accounts for approximately 85 % of all lung cancer cases [3], with epidermal growth factor receptor (EGFR) mutations 
being the most common driver mutation in NSCLC [4]. These mutations occur in about 50 % of NSCLC patients in the Asia-Pacific 
region and 15 % of patients in Western countries [5,6]. Multiple clinical studies have unequivocally demonstrated that advanced 
NSCLC patients with EGFR mutations are more sensitive to treatment with EGFR tyrosine kinase inhibitors (EGFR-TKIs) as compared to 
traditional chemotherapy, especially those with advanced lung adenocarcinoma (ADC) [7–10]. EGFR-TKI monotherapy shows a 
higher overall response rate, longer median progression-free survival, and median overall survival. Furthermore, the incidence of 
treatment-related adverse events is significantly lower than that of chemotherapy [11]. 

However, due to the low detection rate of EGFR mutations in the real-world setting [12,13], many lung cancer patients are unable 
to benefit from this treatment approach, resulting in limited improvement in survival and quality of life. A systematic review of studies 
conducted worldwide to evaluate the utilization of EGFR mutation testing in routine care revealed that less than one-third of over 50, 
000 patients from 18 eligible studies were tested for EGFR mutations [14]. Despite advances in genetic mutation testing methods, the 
main reasons for the lower-than-expected EGFR mutation detection rate are the lack of tumor tissue and the high cost of EGFR testing 
[12,15]. Therefore, there is an urgent need to develop a simple and non-invasive testing method to predict the EGFR mutation status 
and improve the detection rate of EGFR mutations. 

Previous research has shown that serum tumor markers (STMs) can aid in the diagnosis of suspected clinical cancer and cancers of 
unknown primary origin. They may also play a significant role in cancer prognosis, treatment, and subsequent monitoring. The 
repertoire of currently employed biomarkers for primary lung cancer encompasses carcinoembryonic antigen (CEA), neuron-specific 
enolase (NSE), soluble fragment of cytokeratin 19 (CYFRA21-1), progastrin-releasing peptide (proGRP), squamous cell carcinoma 
antigen (SCC), and carbohydrate antigen 125 (CA125) [16–18]. Although the singular utility of individual tumor markers in terms of 
specificity and sensitivity remains somewhat limited, their combined application has emerged as a strategy to bolster diagnostic ac
curacy. Moreover, the association between lung cancer biomarkers and clinical staging is noteworthy, as lower levels or positive rates 
of SCC, CEA, NSE and CYFRA21-1 have been observed in patients diagnosed with early-stage NSCLC [19]. Previous studies have 
revealed the value of different serum markers in predicting the EGFR mutation status in NSCLC patients [20–25]. However, these 
research outcomes have exhibited inconsistencies and the impact of tumor staging has not been adequately addressed. The devel
opment of predictive models through traditional regression analysis or machine learning methods has enabled the integration of a 
multitude of parameters to provide individualized diagnostic predictions [26]. Limited reports exist regarding the prediction EGFR 
mutations in non-stage IA NSCLC patients using STMs. The model’s performance in predicting EGFR mutations is deemed unsatis
factory. Therefore, we retrospectively characterized STMs and other clinical factors of non-stage IA NSCLC patients and explored their 
combined utility in developing nomogram and 8 machine learning models for accurately predicting EGFR mutations. 

2. Materials and methods 

2.1. Study design and patient cohort 

We retrospectively collected a total of 6711 NSCLC patients who underwent EGFR gene testing at our institution between 
November 2016 and October 2020. Demographic information and clinical characteristics data were extracted and organized from 
electronic medical records of the patients. The inclusion criteria for this study were as follows: (1) patients must have undergone pre- 
treatment testing for six STMs, including CEA, SCC, CYFRA 21-1, NSE, proGRP, and CA125, (2) complete information on demographic 
and clinical characteristics including age, gender, smoking history, and pathology. Patients with a history of other malignancies were 
excluded from the study. Subsequently, NSCLC patients were categorized into stage IA and non-stage IA based on tumor staging [27]. 
The non-stage IA patients were further divided into a study group (with gene testing dates ranging from November 2016 to December 
2019) and a validation group (with gene testing dates from January 2020 to October 2020). Ultimately, the study group included 1043 
patients, while the validation group consisted of 399 patients (Fig. 1). This study was conducted in accordance with the principles 
outlined in the Helsinki Declaration. The Institutional Review Board of the Affiliated Hospital of Qingdao University approved this 
retrospective study with the ethical approval number: QYFY WZLL 27853. Informed consent was waived by the institutional review 
board due to the retrospective nature of the study. 

2.2. Histopathology examination 

Hematoxylin and eosin (HE)-stained tumor slides derived from formalin-fixed paraffin-embedded tissues of tumor specimens were 
subjected to microscopic examination and assessment by two pathologists. Any discrepancies were resolved through consensus. 
Pathological histological subtype of the tumor was documented. The tumor stage was determined using the tumor-node-metastasis 
(TNM) staging system based on the 8th edition of the International Union against Cancer staging system [27]. The histological sub
type was evaluated according to the 2015 World Health Organization (WHO) classification [28]. 

2.3. STMs measurement 

Peripheral venous blood samples (3 mL) were collected from each patient for the detection of lung cancer-associated tumor 
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markers. Serum was separated by centrifugation at 3000×g for 10 min. The serum concentrations of tumor markers were measured 
using a commercial chemiluminescent immunoassay kit (MAGLUMI 4000 Plus, China). Blood samples from all participants were 
obtained via peripheral venous puncture prior to any anticancer treatment. The positivity threshold of STMs were as follows: CEA: 5 
ng/mL, CA125: 35 U/mL, CYFRA21-1: 3.3 ng/mL, SCC: 2.5 ng/mL, NSE: 17 ng/mL, and ProGRP: 63 pg/mL. If the optimal cut-off 
(OCF) value based on the receiver operating characteristic (ROC) curve in the study exceeded the positivity threshold of the 
method, the OCF value was chosen as the final positivity threshold. 

2.4. EGFR mutation analysis 

Histological specimens of primary tumors, metastatic lymph nodes or organs, and cytological specimens of pleural or pericardial 
effusions were collected for EGFR gene testing. All samples were fixed in 10 % neutral buffered formalin and embedded in paraffin. 
Genomic DNA from tumor tissues or cells was extracted following the instructions of the Human EGFR Mutation Detection Kit (Amoy 
Diagnostics Co., Ltd., China). Polymerase chain reaction (PCR) was performed using the ABI 7500 fluorescence PCR system (Thermo 
Fisher Scientific, China). The amplification refractory mutation system (ARMS) of the Human EGFR Mutation Detection Kit was used to 
determine the EGFR mutation status. If any exon mutation was detected, the tumor was identified as “EGFR mutation”; otherwise, the 
tumor was identified as “EGFR wild-type". 

2.5. Statistical analysis 

Non-normally distributed continuous variables were represented using the median, and group comparisons were conducted using 
non-parametric tests. Categorical variables were expressed as proportions, and group comparisons were conducted using the chi- 
square test and Fisher’s exact test. Factors that showed statistical significance in the univariate analysis were further analyzed 
using multiple logistic regression analysis. The effect measure of each variable on EGFR mutations was presented as odds ratios (OR) 
and corresponding 95 % confidence intervals (CI). Subsequently, the nomogram prediction model was developed utilizing the results 
of the multivariable analysis. The area under the curve (AUC) was calculated to assess the predictive performance of the model. The 
comparison of ROC curves was performed using the DeLong test. The clinical utility of the model was evaluated using Decision Curve 
Analysis [29]. Internal and external validation of the model was conducted through measures such as the concordance index (C-index), 
calibration curve, and Hosmer-Lemeshow test. Bootstrap resampling (1000 iterations) was employed to generate the calibration curve. 
In order to enhance the accuracy of predicting EGFR mutations, we employed 8 machine learning algorithms, including Random Forest 
(RF), Gradient Boosting Machine (GBM), Neural Network (NNET), Support Vector Machines (SVM), Lasso Regression algorithm 
(LASSO), Generalized Linear Model (GLM), K-Nearest Neighbor (KNN), and Logistic Regression (LR). For each model, C-index was 
computed separately for the training and test cohorts, and the model with the highest average C-index was deemed optimal. All p 
values were two-sided, and a p value less than 0.05 was considered to be statistically significant. Statistical analyses were performed 
with IBM SPSS Statistics version 25.0 (IBM Corp. New York, USA) and R (version 4.2.2, R Development Core Team), including the 
“pROC”, “regplot”, “rms” and “ResourceSelection” packages. 

3. Results 

3.1. Patient clinical characteristics 

Among a total of 6,711 NSCLC patients who underwent EGFR gene testing, EGFR mutations were detected in 3,866 patients (57.9 
%) (Fig. 1). Among patients with EGFR mutations, common mutations were observed in 3,370 cases (87.1 %), rare mutations in 330 

Fig. 2. Distribution of EGFR mutation subtypes in all NSCLC patients.  
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cases (8.6 %), and complex mutations in 166 cases (4.3 %). The common mutations included exon 19 deletions and exon 21 L858R 
mutations, accounting for 40 % and 30 % of EGFR mutations, respectively. The most frequent rare mutation was exon 20 insertion 
mutations. Among complex mutations, those with co-occurring exon 20 T790 M and exon 18 G719X mutations were the most 
prevalent, representing 44.6 % and 44 % of complex mutations. The specific numbers and frequencies of each EGFR mutation subtype 
are presented in Fig. 2. 

A total of 3,221 NSCLC patients with stage IA were included in the analysis (Table 1). It is evident that patients with stage IA 
exhibited a relatively lower positivity rate of serum tumor markers, with CYFRA 21-1 having the highest positive rate at merely 20.9 %. 
EGFR mutations were more frequently detected in females (80 % vs. 57.6 %, p < 0.001), non-smokers (77.5 % vs. 53.6 %, p < 0.001), 
ADC (73.8 % vs. 10 %, p < 0.001), negative CEA (72.6 % vs. 66.9 %, p = 0.021), and negative SCC (72.5 % vs. 63.6 %, p = 0.011). In 
addition, out of 1442 patients with non-stage IA, 1043 patients were included in the study group. The OCF values for CEA and CYFRA 
21-1 in our research exceeded the assay kit’s positive thresholds. Therefore, for non-stage IA patients, CEA positivity was defined as 
CEA levels above 11.38 ng/mL, and CYFRA 21-1 positivity was defined as CYFRA 21-1 levels above 4.18 ng/mL when analyzing their 
relationship with EGFR mutations. Clinical characteristics of NSCLC patients, stratified by the EGFR mutation status in the study and 
validation cohorts, are summarized in Table 2. EGFR mutations were observed in 576 patients (55.2 %) in the study cohort and 206 
patients (51.6 %) in the validation cohort. In the study cohort, EGFR mutations were more commonly found in females (77.7 % vs. 
37.3 %, p < 0.001), non-smokers (69.7 % vs. 34.1 %, p < 0.001), ADC (62.2 % vs. 11.7 %, p < 0.001), positive CEA (65 % vs. 50.2 %, p 
= 0.01), negative CYFRA21-1 (62.5 % vs. 44.9 %, p < 0.001) and negative SCC (59.2 % vs. 28.4 %, p < 0.001). Furthermore, the 
validation group demonstrated clinical characteristics associated with EGFR mutations that were largely similar to those observed in 
the study group. 

3.2. Exploration of risk factors for EGFR mutation 

The results of both univariate and multivariate logistic regression analyses for predicting EGFR mutations in NSCLC patients with 
stage IA are presented in Table 3. In the multivariate analysis incorporating gender, smoking history, pathology, CEA, and SCC, female 
(OR, 2.001; p < 0.001), non-smoking (OR, 1.558; p < 0.001), and ADC (OR, 15.433; p < 0.001) were identified as independent risk 
factors for predicting EGFR mutations, while none of the STMs emerged as significant predictor. However, in the study cohort 
(Table 4), incorporating significant factors identified in the univariate analysis, including gender, smoking history, pathology, and 
STMs (CEA, SCC, and CYFRA 21-1), the multivariate analysis revealed that being female (OR, 3.318; p < 0.001), non-smoking (OR, 
1.770; p = 0.002), ADC (OR, 6.767; p < 0.001), positive CEA (OR, 1.709; p = 0.001), and negative CYFRA 21-1 (OR, 0.541; p < 0.001) 

Table 1 
Clinical characteristics according to EGFR mutation in NSCLC patients with stage IA.   

All Patients (n = 3221) EGFR Wild-type (n = 902) EGFR Mutation (n = 2319) P value 

Gender    <0.001 
Female 2069 (64.2) 413 (20) 1656 (80)  
Male 1152 (35.8) 489 (42.4) 663 (57.6)  

Age, year    0.159 
Median (IQR) 60 (54–66) 60 (53–65) 60 (54–66)  

Smoking history    <0.001 
Never 2476 (76.9) 556 (22.5) 1920 (77.5)  
Former/current 745 (23.1) 346 (46.4) 399 (53.6)  

CEA    0.021 
Negative 2862 (88.9) 783 (27.4) 2079 (72.6)  
Positive 359 (11.1) 119 (33.1) 240 (66.9)  

CYFRA 21–1    0.201 
Negative 2547 (79.1) 700 (27.5) 1847 (72.5)  
Positive 674 (20.9) 202 (30) 472 (70)  

SCC    0.011 
Negative 3048 (94.6) 839 (27.5) 2209 (72.5)  
Positive 173 (5.4) 63 (36.4) 110 (63.6)  

NSE    0.398 
Negative 2909 (90.3) 821 (28.2) 2088 (71.8)  
Positive 312 (9.7) 81 (26) 231 (74)  

ProGRP    0.484 
Negative 3132 (97.2) 880 (28.1) 2252 (71.9)  
Positive 89 (2.8) 22 (24.7) 67 (75.3)  

CA125    0.354 
Negative 3128 (97.1) 872 (27.9) 2256 (72.1)  
Positive 93 (2.9) 30 (32.3) 63 (67.7)  

Pathology    <0.001 
Non-ADC 90 (2.8) 81 (90) 9 (10)  
ADC 3131 (97.2) 821 (26.2) 2310 (73.8)  

Values presented are n (%) and the positive thresholds for serum tumor markers are provided by the assay kits unless otherwise noted. 
Abbreviations: IQR, interquartile range; CEA, Carcinoembryonic antigen; CYFRA21-1, Cytokeratin-19 fragment; SCC, Squamous cell carcinoma 
antigen; NSE, Neuron-specific enolase; proGRP, Progastrin-releasing peptide; CA125, Carbohydrate antigen 125; ADC, adenocarcinoma. 
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were independent risk factors for EGFR mutation, ultimately incorporated into the nomogram predictive model (Fig. 3A). Additionally, 
the predictive efficacy and clinical utility of these factors in predicting EGFR mutations were evaluated through ROC curve and de
cision curve analyses. The results revealed that the predictive model exhibited higher predictive efficacy for the EGFR mutations 

Table 2 
Clinical characteristics according to EGFR mutation in NSCLC patients with non-stage IA.  

Characteristics Study cohort Validation cohort 

All Patients 
(n = 1043) 

EGFR Wild-type 
(n = 467, 44.8 
%) 

EGFR Mutation (n 
= 576, 55.2 %) 

P value All Patients 
(n = 399) 

EGFR Wild-type 
(n = 193, 48.4 
%) 

EGFR Mutation (n 
= 206, 51.6 %) 

P value 

Gender    <0.001    <0.001 
Female 462 (44.3) 103 (22.3) 359 (77.7)  202 (50.6) 58 (28.7) 144 (71.3)  
Male 581 (55.7) 364 (62.7) 217 (37.3)  197 (49.4) 135 (68.5) 62 (31.5)  

Age, year    0.255    0.111 
Median 

(IQR) 
63 (55–68) 63 (56–68) 62 (55–67)  63 (55–68) 64 (57–68) 62 (53–68)    

Smoking 
history    

<0.001    <0.001 

Never 618 (59.3) 187 (30.3) 431 (69.7)  268 (67.2) 95 (35.4) 173 (64.6)  
Former/ 

current 
425 (40.7) 280 (65.9) 145 (34.1)  131 (32.8) 98 (74.8) 33 (25.2)  

CEA #    <0.001    0.027 
Negative 689 (66.1) 343 (49.8) 346 (50.2)  349 (87.5) 151 (51.7) 141 (48.3)  
Positive 354 (33.9) 124 (35) 230 (65)  292 (73.2) 42 (39.3) 65 (60.7)  

CYFRA 21–1 a    <0.001    0.002 
Negative 613 (58.8) 230 (37.5) 383 (62.5)  278 (69.7) 120 (43.2) 158 (56.8)  
Positive 430 (41.2) 237 (55.1) 193 (44.9)  121 (30.3) 73 (60.3) 48 (39.7)  

SCC    <0.001    0.003 
Negative 909 (87.2) 371 (40.8) 538 (59.2)  351 (88) 160 (45.6) 191 (54.4)  
Positive 134 (12.8) 96 (71.6) 38 (28.4)  48 (12) 33 (68.8) 15 (31.3)  

NSE    0.146    0.104 
Negative 758 (72.7) 329 (43.4) 429 (56.6)  331 (83) 154 (46.5) 177 (53.5)  
Positive 285 (27.3) 138 (48.4) 147 (51.6)  68 (17) 39 (57.4) 29 (42.6)  

ProGRP    0.557    0.629 
Negative 996 (95.5) 444 (44.6) 552 (55.4)  376 (94.2) 183 (48.7) 193 (51.3)  
Positive 47 (4.5) 23 (48.9) 24 (51.1)  23 (5.8) 10 (43.5) 13 (56.5)  

CA125    0.805    0.744 
Negative 724 (69.4) 326 (45) 398 (55)  319 (79.9) 153 (48) 166 (52)  
Positive 319 (30.6) 141 (44.2) 178 (55.8)  80 (20.1) 40 (50) 40 (50)  

Pathology    <0.001    <0.001 
Non-ADC 145 (13.9) 128 (88.3) 17 (11.7)  50 (12.5) 44 (88) 6 (12)  
ADC 898 (86.1) 339 (37.8) 559 (62.2)  349 (87.5) 149 (42.7) 200 (57.3)  

Values presented are n (%) and the positive thresholds for serum tumor markers are provided by the assay kits unless otherwise noted. 
Abbreviations: IQR, interquartile range; CEA, Carcinoembryonic antigen; CYFRA21-1, Cytokeratin-19 fragment; SCC, Squamous cell carcinoma 
antigen; NSE, Neuron-specific enolase; proGRP, Progastrin-releasing peptide; CA125, Carbohydrate antigen 125; ADC, adenocarcinoma. 

a The optimal cut-off values for CEA and CYFRA 21-1 were established at 11.38 ng/mL and 4.18 ng/mL, respectively, surpassing the positivity 
thresholds of the assay, and thus chosen as the ultimate positivity thresholds. 

Table 3 
Univariate and multivariate analyses of various predictive factors for EGFR mutation in NSCLC patients with stage IA.  

Characteristics, Factor Univariate analysis OR (95 % CI) P value Multivariate analysisaOR (95 % CI) P value 

Gender, Female 2.957 (2.523–3.467) <0.001 2.001 (1.612–2.484) <0.001 
Age, Years 1.009 (1.001–1.018) 0.159   
Smoking history, Never 2.995 (2.521–3.557) <0.001 1.558 (1.229–1.975) <0.001 
CEA, Positive 0.76 (0.601–0.96) 0.021 0.985 (0.765–1.268) 0.906 
CYFRA 21–1, Positive 0.886 (0.735–1.067) 0.201   
SCC, Positive 0.663 (0.482–0.913) 0.011 0.965 (0.676–1.377) 0.844 
NSE, Positive 1.121 (0.86–1.463) 0.398   
ProGRP, Positive 1.19 (0.731–1.938) 0.484   
CA125, Positive 0.812 (0.522–1.263) 0.354   
Pathology, ADC 25.323 (12.66–50.651) <0.001 15.433 (7.639–31.178) <0.001 

The positive thresholds for serum tumor markers are provided by the assay kits unless otherwise noted. 
Abbreviations: OR, odds ratio; 95 % CI, 95 % confidence interval; CEA, Carcinoembryonic antigen; CYFRA21-1, Cytokeratin-19 fragment; SCC, 
Squamous cell carcinoma antigen; NSE, Neuron-specific enolase; proGRP, Progastrin-releasing peptide; CA125, Carbohydrate antigen 125; ADC, 
adenocarcinoma. 

a Items were included in the multivariate analysis only when the P value is < 0.05 in univariate analysis. 
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compared to individual factors, with AUC values of 0.780 (Fig. 3B). Moreover, decision curve analysis demonstrated that the net 
benefit of predicting EGFR mutations with the model surpassed that of individual factors (Fig. 4C). The probability threshold ranged of 
the model was 0–83 %, indicating a wider range and better clinical utility. Furthermore, for common EGFR mutations subtypes, CEA 
positivity and CYFRA 21-1 negativity were independent risk factors for both exon 19 deletion and exon 21 L858R mutations, 
nevertheless, negative SCC (OR, 0.446; p = 0.044) was an independent predictor of the exon 19 deletion mutation, while it did not 
predict the L858R mutation (Table 5). 

3.3. Nomograms of the predictive model in the study cohort 

Nomograms of the model was established based on the results of a multivariate analysis for predicting EGFR mutations (Fig. 3A). 

Table 4 
Univariate and multivariate analyses of various predictive factors for EGFR mutation in the study cohort.  

Characteristics, Factor Univariate analysis OR (95 % CI) P value Multivariate analysisaOR (95 % CI) P value 

Gender, Female 5.847 (4.436–7.706) <0.001 3.318 (2.307–4.771) <0.001 
Age, Years 0.992 (0.979–1.006) 0.243   
Smoking history, Never 4.451 (3.418–5.795) <0.001 1.770 (1.238–2.531) 0.002 
CEA, Positive b 1.839 (1.411–2.396) <0.001 1.709 (1.244–2.346) 0.001 
CYFRA 21–1, Positive b 0.489 (0.381–0.628) <0.001 0.541 (0.398–0.736) <0.001 
SCC, Positive 0.273 (0.183–0.407) <0.001 0.792 (0.485–1.292) 0.35 
NSE, Positive 0.817 (0.622–1.073) 0.146   
ProGRP, Positive 0.839 (0.467–1.507) 0.557   
CA125, Positive 1.034 (0.793–1.348) 0.805   
Pathology, ADC 12.416 (7.355–20.959) <0.001 6.767 (3.812–12.013) <0.001 

The positive thresholds for serum tumor markers are provided by the assay kits unless otherwise noted. 
Abbreviations: OR, odds ratio; 95 % CI, 95 % confidence interval; CEA, Carcinoembryonic antigen; CYFRA21-1, Cytokeratin-19 fragment; SCC, 
Squamous cell carcinoma antigen; NSE, Neuron-specific enolase; proGRP, Progastrin-releasing peptide; CA125, Carbohydrate antigen 125; ADC, 
adenocarcinoma. 

a Items were included in the multivariate analysis only when the P value is < 0.05 in univariate analysis. 
b The optimal cut-off values for CEA and CYFRA 21-1 were established at 11.38 ng/mL and 4.18 ng/mL, respectively, surpassing the positivity 

thresholds of the assay, and thus chosen as the ultimate positivity thresholds. 

Fig. 3. Construction and validation of the nomogram predictive model. (A) The Nomogram model for predicting EGFR mutations in the study 
cohort. (B) ROC curves for the nomogram model in differentiating EGFR mutation status; (C) DCA curves to evaluate the clinical utility of the 
nomogram model for predicting EGFR mutations. (D) ROC curves for the discrimination of the nomogram; (E) The calibration plot in the study 
cohort; (F) The calibration plot in the validation cohort. Pr (EGFR): Probability of EGFR Mutation; ADC, adenocarcinoma; **means p < 0.01, 
***means p < 0.001, ROC, receiver operating characteristic; DCA, decision curve analysis; AUC, area under the curve. 
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The probability of EGFR mutation can be assessed by assigning “Points” to each variable and summing them to obtain the total points. 
This total is then plotted on the “Total Points” axis, and a vertical line is drawn from the total points axis to the “Pr (EGFR)” axis. For 
instance, the probability of EGFR mutation was predicted in a female patient with ADC, positive CYFRA 21-1, positive CEA and non- 
smoking. The prediction scores were as follows: ADC scored 100, positive CYFRA 21-1 scored 18, positive CEA scored 55, non-smoking 
scored 38, and female scored 38. Upon summing these scores, the total reached 249, indicating the probability about 0.8 (80 %) for the 
presence of the EGFR mutation. 

Fig. 4. ROC curves for 8 machine learning models in predicting EGFR mutations. (A) ROC curves in the study cohort; (B) ROC curves in the 
validation cohort; (C) A total of 8 kinds of prediction models and further calculated the C-index of each model. ROC, receiver operating charac
teristic; AUC, area under the curve; RF, Random Forest; GBM, Gradient Boosting Machine; NNET, Neural Network; SVM, Support Vector Machines; 
LASSO, Lasso Regression algorithm; GLM, Generalized Linear Model; KNN, K-Nearest Neighbor; LR, Logistic Regression. 

Table 5 
Multivariate analyses of various predictive factors for common EGFR mutation subtypes in the study cohort.  

Characteristics, Factor Exon 19 deletion mutation (n = 234) vs. EGFR Wild-type (n =
467) 

Exon 21 L858R mutation (n = 273) vs. EGFR Wild-type (n =
467) 

Multivariate analysisaOR (95 % CI) P value Multivariate analysisaOR (95 % CI) P value 

Gender, Female 3.021 (1.933–4.722) <0.001 3.476 (2.264–5.335) <0.001 
Smoking history, Never 2.16 (1.351–3.453) 0.001 1.751 (1.128–2.719) 0.013 
CEA, Positive b 1.799 (1.212–2.671) 0.004 1.687 (1.156–2.462) 0.007 
CYFRA 21–1, Positive b 0.55 (0.372–0.813) 0.003 0.606 (0.418–0.878) 0.008 
SCC, Positive 0.446 (0.203–0.978) 0.044 0.829 (0.452–1.522) 0.546 
Pathology, ADC 6.066 (2.508–14.675) <0.001 5.888 (2.784–12.455) <0.001 

The positive thresholds for serum tumor markers are provided by the assay kits unless otherwise noted. 
Abbreviations: OR, odds ratio; 95 % CI, 95 % confidence interval; CEA, Carcinoembryonic antigen; CYFRA21-1, Cytokeratin-19 fragment; SCC, 
Squamous cell carcinoma antigen; NSE, Neuron-specific enolase; proGRP, Progastrin-releasing peptide; CA125, Carbohydrate antigen 125; ADC, 
adenocarcinoma. 

a Items were included in the multivariate analysis only when the P value is < 0.05 in univariate analysis. 
b The optimal cut-off values for CEA and CYFRA 21-1 were established at 11.38 ng/mL and 4.18 ng/mL, respectively, surpassing the positivity 

thresholds of the assay, and thus chosen as the ultimate positivity thresholds. 

Table 6 
Performances of discrimination and calibration of models in the study and validation cohorts.  

Characteristics Study cohort Validation cohort 

ROC analysis 
AUC/C-index 0.780 0.774 
95 % CI 0.752–0.808 0.729–0.819 
Sensitivity (%) 70 70.4 
Specificity (%) 72.6 72.5 

Calibration curves 
Corrected C-index 0.777 0.766 
Mean absolute error 0.013 0.014 

Hosmer-Lemeshow test 
X squared 0.826 2.599 
P valuea 0.662 0.273 

Abbreviations: ROC, receiver operating characteristic; AUC, area under the curve; C-index, consistency 
index; 95 % CI, 95 % confidence interval. 

a P value of the Hosmer-Lemeshow test >0.05 indicates that a model has high goodness of fit. 
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3.4. Performances of discrimination and calibration 

The study and validation cohorts were utilized for the internal and external evaluation of model performance. The nomogram 
model achieved AUCs of 0.780 and 0.774 (P = 0.815) in the research and validation groups, respectively (Fig. 3D), indicating its 
favorable discrimination of EGFR mutations. The newly developed nomogram model was validated through internal (Fig. 3E) and 
external validation (Fig. 3F) using the bootstrap method with 1000-bootstrap repetitions, and the resulting calibration curves 
demonstrated strong consistency between the predicted values and the actual values. Furthermore, the calibrated C-index of 0.777 in 
the study cohort and 0.766 in the validation cohort, similar to the uncalibrated C-index (Table 6), indicated excellent predictive 
accuracy of the proposed nomogram model. Moreover, the Hosmer-Lemeshow goodness-of-fit test yielded non-significant results in 
both the study and validation groups, indicating no significant discrepancies between the predicted values and the actual values. 

3.5. Prediction of EGFR mutations using 8 machine learning algorithms 

The prediction of EGFR mutations in non-IA stage NSCLC patients was conducted using 8 machine learning algorithms, and C-index 
values were calculated for each model across the entire dataset. Results indicated that, irrespective of the training (Fig. 4A) or vali
dation cohort (Fig. 4B), the RF model consistently exhibited the highest C-index values at 0.838 and 0.749, respectively. The RF model 
also demonstrated the highest average C-index of 0.793 among the eight machine learning algorithms, showcasing superior predictive 
efficiency (Fig. 4C). When compared to the nomogram model, the RF model exhibited even better predictive performance, with C- 
index values of 0.838 and 0.780 in the training cohort. Furthermore, the LR model, with the lowest average C-index among the 
machine learning models, still surpassed 0.74. This suggests that the 8 machine learning models, leveraging serum tumor markers and 
other clinical features, exhibit robust predictive efficacy for predicting EGFR mutations. 

4. Discussion 

EGFR-TKIs have demonstrated superior efficacy in the treatment of advanced lung cancer compared to chemotherapy, accom
panied by a significant reduction in the incidence of treatment-related adverse reactions [4,30]. Biopsy-based EGFR gene testing 
currently serves as the gold standard for mutation detection. However, the low detection rate of EGFR mutations in real-world sce
narios has limited the benefits of this treatment approach for many NSCLC patients [14]. Hence, there is an urgent need to develop a 
simple and noninvasive testing method to predict the EGFR mutation. Primary healthcare facilities can generally perform low-cost, 
rapid, and accurate detection of STMs. Therefore, we constructed novel predictive models consisting of STMs and other clinical 
features to predict the EGFR mutation in non-stage IA NSCLC patients using non-invasive, cost-effective, and readily accessible in
dicators. Additionally, our preliminary research phase collected thousands of EGFR gene testing results and provided detailed de
scriptions of the incidence of EGFR mutations and their subtypes, serving as a basis for future clinical investigations. To our knowledge, 
this is the first study to integrate easily obtainable clinical factors into the nomogram model and 8 machine learning algorithms for 
predicting the EGFR mutation in non-stage IA NSCLC patients. 

Previous studies have revealed the value of different serum biomarkers in predicting the EGFR mutations in NSCLC patients. 
However, there are still some inconsistencies in the research findings. Arthur et al. [21] found no statistically significant differences in 
CEA, CYFRA21-1, or SCC levels between EGFR mutant and wild-type patients. Conversely, Jin et al. [20] reported an increase in the 
EGFR mutation rate with elevated CEA levels in non-smoking lung cancer patients. Wang et al. [24], in a study including 1089 patients, 
demonstrated an association between negative CYFRA21-1, negative SCC, negative CA125, and EGFR mutations in NSCLC patients. 
We thought that the discrepancies in these results could be attributed to the small sample sizes and the lack of consideration for the 
impact of tumor staging on STMs. Jiang et al. indicated an association between lung cancer biomarkers and tumor staging, with lower 
levels or positive rates of tumor markers observed in early-stage NSCLC patients [19]. Based on these considerations, our study 
collected a large amount of patient data and performed analyses based on whether the tumor staging was stage IA. The results revealed 
that the highest positive rate among the six STMs in stage IA NSCLC patients was only 20.9 %, most of which were below 10 %. In 
NSCLC patients with stage IA, multivariate analysis results showed that ADC, females, and non-smokers had a higher EGFR mutation 
rate, which is consistent with the non-stage IA patients in our study and the majority of research conclusions [31–33]. None of the six 
STMs was independent risk factor for predicting EGFR mutations, likely due to their low clinical value in the early stages of lung 
cancer. However, in patients beyond the stage IA, multivariate analysis results indicated that ADC, females, non-smokers, positive CEA 
and negative CYFRA21-1 were independent risk factors for predicting EGFR mutations. Subsequently, the predictive model was 
constructed using multivariate analysis results. ROC curves and decision curve analysis demonstrated that the model exhibited good 
predictive efficacy (AUC = 0.78) and clinical utility for predicting EGFR mutations. Furthermore, the predictive efficacy and clinical 
utility of the model were significantly superior to that of individual clinical features. Additionally, CEA positivity and CYFRA 21-1 
negativity were independent risk factors for both exon 19 deletion and exon 21 L858R mutations. Considering that common EGFR 
mutations account for over 85 % of EGFR mutations in clinical practice, it is understandable that the independent risk factors for 
predicting the exon 19 deletion mutation and the exon 21 L858R mutation are essentially the same as those for predicting EGFR 
mutations. Nevertheless, negative SCC was an independent predictor of the exon 19 deletion mutation, while it did not predict the 
L858R mutation, which is similar to the findings of Wang et al. [24]. In a nutshell, STMs can predict the EGFR mutations in non-stage 
IA NSCLC patients, and the combination of STMs with other clinical factors can enhance the predictive efficacy and clinical utility for 
predicting EGFR mutations. 

Therefore, we explored the development of the nomogram model combining STMs with other clinical features to provide 
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personalized risk assessment of EGFR mutations for non-IA NSCLC patients who were unable to undergo genetic testing. The nomo
gram model incorporating CEA, CYFRA21-1, pathology, gender, and smoking history for predicting EGFR mutations was constructed 
using the results of multivariate analysis. CYFRA 21-1 served as a tumor marker that exhibited enhanced sensitivity for NSCLC, 
particularly in squamous cell carcinoma [34]. CEA exhibits relatively high sensitivity in lung cancer, with the highest serum con
centrations observed in ADC and large cell carcinoma [35]. EGFR mutations predominantly occur in patients with ADC, and 
approximately 40 % of lung ADC patients demonstrate elevated levels of CEA. Conversely, positive CYFRA 21-1 results are frequently 
associated with the presence of squamous cell carcinoma. This observation offers a potential explanation for the independent risk 
factors of positive CEA and negative CYFRA 21-1 in predicting EGFR mutations. In both internal and external validations, the cali
bration curves of the nomogram model clearly demonstrated a high degree of consistency between the predictions and observations. 
Furthermore, the calibrated C-index of 0.777 in the study cohort and 0.766 in the validation cohort, similar to the uncalibrated 
C-index, indicated excellent predictive accuracy of the proposed nomogram model. The results of the Hosmer-Lemeshow good
ness-of-fit test were also non-significant (P > 0.05), indicating no significant differences between the predicted and actual values. 
Therefore, the use of nomogram is recommended. In other words, nomogram is almost accurate in predicting the probability of EGFR 
mutations in non-stage IA NSCLC patients. Furthermore, in our study, regardless of tumor stage, NSE, CA125, and proGRP showed no 
significant clinical significance in predicting EGFR mutations. 

Random Forest, as a component of machine learning algorithms, has been applied in clinical outcome predictions [36]. RF con
structs numerous decision trees through log-rank tests to identify different states and generates individual probabilities based on the 
average prediction results of all trees. Advantages of RF over traditional regression analysis include its unrestricted applicability and 
outstanding predictive performance. In our study, we tested eight machine learning models for predicting EGFR mutation occurrence, 
and RF demonstrated the optimal C-index, slightly surpassing the predictive efficacy of the nomogram model constructed through 
traditional regression analysis. Future endeavors will focus on leveraging artificial intelligence technologies to further enhance the 
clinical value of predictive models, facilitating non-invasive detection methods for predicting EGFR mutation occurrence and 
providing a basis for precision treatment for patients. 

Our study also has several limitations. Firstly, being a retrospective study, there may exist patient inclusion and sample selection 
biases. Secondly, EGFR mutations are more prevalent in early-stage lung adenocarcinoma patients, prompting clinical physicians to 
prioritize genetic testing. Despite a slightly lower real-world occurrence rate than the finding of the study, the substantial sample size 
of this study reinforces the confidence in its accurate findings. Thirdly, the variation in EGFR mutation incidence across different 
regions may impact the clinical applicability of our results [5,6]. Fourthly, we did not assess treatment response or conduct survival 
analysis based on clinical features, including STM levels. Further large-scale prospective studies are warranted to validate our findings 
and explore the significance of monitoring treatment efficacy. 

In conclusion, none of the STMs emerged as significant predictor for predicting EGFR mutations in stage IA NSCLC patients, while 
CYFRA21-1 and CEA have been identified as crucial factors for predicting EGFR mutations in non-stage IA patients. The nomogram and 
8 machine learning models that combined STMs with other clinical factors could effectively predict the probability of EGFR mutations, 
providing valuable insights for personalized treatment. 
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Abbreviations 

STMs Serum tumor markers 
EGFR Epidermal growth factor receptor 
NSCLC Non-small cell lung cancer 
CEA Carcinoembryonic antigen 
SCC Squamous cell carcinoma antigen 
CYFRA21-1 Cytokeratin-19 fragment 
AUC Area under the curve 
TKIs Tyrosine kinase inhibitors 
ADC Adenocarcinoma 
NSE Neuron-specific enolase 
proGRP Progastrin-releasing peptide 
CA125 Carbohydrate antigen 125 
TNM Tumor-node-metastasis 
WHO World Health Organization 
OCF Optimal cut-off 
ROC Receiver operating characteristic 
PCR Polymerase chain reaction 
ARMS Amplification refractory mutation system 
OR Odds ratios 
CI Confidence intervals 
C-index Concordance index 
RF Random Forest 
GBM Gradient Boosting Machine 
NNET Neural Network 
SVM Support Vector Machines 
LASSO Lasso Regression algorithm 
GLM Generalized Linear Model 
KNN K-Nearest Neighbor 
LR Logistic Regression 
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