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The development of an effective vaccine to control the global coronavirus disease-2019 (COVID-19) pan-
demic caused by the severe acute respiratory syndrome coronavirus- 2 (SARS-CoV-2) is of utmost impor-
tance. In this study, a synthetic DNA-based vaccine candidate, known as pSV10-SARS-CoV-2, expressing
the SARS-CoV-2 spike protein was designed and tested in 39 BALB/c mice with BCO1, an adjuvant derived
from unmethylated CpG motif-containing DNA fragments from the Bacillus Calmette-Guerin genome.
Mice vaccinated with pSV10-SARS-CoV-2 with BCO1 produced early neutralizing antibodies and devel-

Ig;;sg?crgs\;_z oped stronger humoral and cellular immune responses compared to mice that received the DNA vaccine
COVID-19 only. Moreover, sera from mice vaccinated with pSV10-SARS-CoV-2 with BCO1 can neutralize certain
DNA vaccine variants, including 614G, 614G + 472 V, 452R, 483A, 501Y.V2, and B.1.1.7. The results of this study

BCO1 adjuvant demonstrate that the addition of BCO1 to a DNA-vaccine for COVID-19 could elicit more effective neutral-

izing antibody titers for disease prevention.

© 2021 Published by Elsevier Ltd.

1. Introduction

Coronavirus disease 2019 (COVID-19) has emerged as a global
health crisis. As of November 17, 2020, >55 million people were
infected with the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), which has caused over one million deaths [1].
SARS-CoV-2 is a single, positive-strand ribonucleic acid (RNA) virus
with a spike protein that determines infectivity of the virus and
transmissibility in the host [2]. The spike (S) protein of the virus
is also quite unstable, with mutations potentially resulting in
increased infectivity of the virus [3-7]. With no effective treatment
currently available to the public, there is an urgent need for effec-
tive prevention methods, particularly a vaccine. Currently, 48 can-
didate vaccines are in clinical evaluation, and at least four of these
are deoxyribonucleic acid (DNA)-based vaccines (https://www.
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who.int/publications/m/item/draft-landscape-of-covid-19-candi-
date-vaccines).

DNA vaccines have previously been successful in preventing
various infectious diseases and are advantageous compared to con-
ventional vaccines, as their design is straightforward and only
requires one-step cloning into a plasmid vector [8]. Moreover,
the expression of an antigen gene in vivo can maintain native pro-
tein structures, ensuring appropriate processing and immune pre-
sentation. Unfortunately, eliciting adequate immunogenicity is still
the biggest challenge for practical DNA vaccine use. Many strate-
gies have been applied in preclinical models to solve this problem,
including formulation of DNA vaccines with molecular adjuvants
[9]. Adjuvants are immunomodulators, which have been used in
conjunction with vaccines to treat various clinical diseases for dec-
ades. The purpose of adding adjuvants to vaccines is to enhance,
accelerate and prolong antigen-specific immune responses. For
example, CpG-oligodeoxynucleotides (CpG-ODN) have been recog-
nized as an immune adjuvant for various vaccines, because it can
promote the activation of innate and adaptive immune responses
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in animals and humans [9]. CpG-ODN can also directly stimulate
monocytes, macrophages, and dendritic cells to secrete various
cytokines, such as TNF-oo and GM-CSF, which in turn stimulate
helper T cells to elicit immune responses [10,11]. BCO1 was derived
from the unmethylated CpG motif-containing DNA fragment from
the BCG genome, as it displays strong adjuvant properties [11].
In the present study, we constructed a DNA vaccine expressing
the SARS-Cov-2 S protein using BCO1 as an adjuvant. The DNA vac-
cine with BCO1 elicits effective neutralizing antibodies and cell-
mediated responses to protect against SARS-CoV-2 virus infection.

2. Materials and methods
2.1. DNA vaccine production

DNA vaccines were designed based on the SARS-CoV-2 S protein
sequence Wuhan-1 (GenBank: MN_908947). The full-length
sequence of the S protein was synthesized. Synthetic genes were
cloned into the mammalian expression plasmid pSV10, and the
DNA vaccine sequence was confirmed using Sanger sequencing.

2.2. Western blotting

The 6-well plates seeded with 293T cells at 70% confluency
were transfected with pSV10-SARS-CoV-2 plasmids (4 pg) using
Lipofectamine 3000 (Invitrogen). Cell lysates were harvested 48 h
post transfection, heated for five minutes at 95 °C, and run on a
precast 10% SDS-PAGE gel (Bio-Rad). Proteins were transferred to
a polyvinylidene difluoride (PVDF) membrane and membrane
blocking was performed overnight at 4 °C in a phosphate-
buffered saline T (PBST) containing 0.2% Tween 20 (Sigma) (V/V)
and 5% (W/V) non-fat milk powder. Following overnight blocking,
the PVDF membrane was incubated for 1 h in 5% milk PBST con-
taining a 1:1000 dilution of monoclonal mouse anti-SARS-CoV-2
S1 antibody. Then, the PVDF membrane was washed five times
with 5% milk PBST and subsequently incubated with 1:10,000 goat
anti-mouse secondary antibodies in 5% milk PBST. Thereafter, the
PVDF membrane was washed again five times with 5% milk PBST,
and protein expression was detected using a Touch Imager XLI sys-
tem (e-BLOT).

2.3. Animal specimens

Thirty-nine female mice, four to six weeks old, were classified
into four groups: (1) pSV10-SARS-CoV-2 with BCO1 (N = 10), (2)
pSV10-SARS-CoV-2 only (N = 10), (3) BCO1 only (N = 10), (4) PBS
only (N = 9). Each mouse was intramuscularly injected with
50 ug DNA vaccine and/or 10 pg BCO1, followed by CELLECTRA®
in vivo electroporation (EP) at week 0, week 2, and week 4. The
CELLECTRA® EP delivery consisted of two sets of pulses with 0.2
Amp constant current. Second pulse sets were delayed by 3 s.
Within each set there were two 52 ms pulses with a 198 ms delay
between the pulses. The serum was collected at four and six weeks
after immunization.

2.4. Production and titration of pseudotyped viruses

The production of SARS-CoV-2 pseudovirus was performed as
described previously [12]. Briefly, the plasmid expressing the
SARS-CoV-2 S protein was inserted into 293T cells, and the cells
were subsequently infected with G*AG-VSV (VSV G pseudotyped
virus) at a concentration of 7.0 x 10% TCID 50/ml. G*AG-VSV pack-
ages expression cassettes for firefly luciferase instead of VSV-G in
the VSV genome. Luciferin and luciferase, which are biolumines-
cent systems, can detect gene expression very sensitively and
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efficiently. Thereafter, the supernatant was discarded after cells
were incubated for six to eight hours at 37 °C, and 15 mL fresh cell
medium was added to the flask, followed by further culture for
24 h. Finally, culture supernatants containing SARS-CoV-2 pseudo-
typed viruses were harvested, filtered (0.45 mm pore size, Milli-
pore, Cat#SLHPO33RB), and stored at —80 °C. SARS-CoV-2
pseudotyped viruses were measured in titers and yielded more
than ten times the relative luminescence units (RLU) compared
to negative controls (cells only) after 24 h of infection.

2.5. Antigen binding enzyme-linked immunosorbent assay (ELISA)

ELISAs were performed to detect sera antibody binding titers.
ELISA plates were coated with 1 pg/ml SARS-CoV-2 S protein in
1 x DPBS overnight at 4 °C. Plates were washed thrice with wash
buffer and then blocked with 3% BSA in DPBS with 0.05% Tween
for two to three hours at room temperature. The blocking solution
was discarded, plates were washed and incubated with serial dilu-
tions of heat-inactivated mice serum for one hour at room temper-
ature. Plates were washed and incubated with a 1:4000 dilution of
anti-mouse IgG HRP-conjugated antibody in the dark for one hour
at room temperature. Plates were then washed five times with
wash buffer, and 100 pL TMB solution was added to each well.
The reaction was halted by the addition of 100 uL TMB Stop solu-
tion per well. The absorbance was recorded at 450 nm and 630 nm.

2.6. Pseudovirus neutralization assay

In addition, the neutralization level of the vaccine against the
currently prevalent pseudoviruses D614G, D614G + 1472V, L452R,
501Y.V2, B.1.1.7, and V483A were evaluated. The sera of five vacci-
nated mice from each group at week 6 were used for the neutral-
ization test. Mouse sera from different vaccinated groups were
heat inactivated for 30 min at 56 °C and serially diluted threefold,
starting at a 1:30 dilution for each assay. Sera were mixed with
50 uL of pseudovirus for 60 min. Huh-7 cells stably expressing
angiotensin-converting enzyme 2 (ACE2) were added after
60 min, followed by incubation at 37 °C for 24 h. Next, cells were
lysed using Britelite plus luminescence reporter gene assay system
(Perkin Elmer Catalog no. 6066769) and RLU values were mea-
sured. The Reed-Muench method was used to calculate the virus
neutralization titer (IDsg).

2.7. Enzyme-linked immune absorbent spot (ELISPOT) assay

Mice spleens were collected and ground into single cell suspen-
sions in RPMI1640 media supplemented with one percent peni-
cillin/streptomycin (RO). Cell pellets were resuspended in 5 mL
ACK lysis buffer for 5 min, thereafter 8 mL PBS was added to stop
the reaction. The samples were centrifuged at 1500g for 5 min, and
then cells were resuspended in RPMI1640 media containing 10%
FBS (R10). Mouse IFN-y ELISpotPLUS plates and Mouse IL-2 ELIS-
potPLUS plates (MABTECH) were activated using 200 pL R10/well
for 30 min. The 5 x 10° mouse splenocytes were seeded into each
well and stimulated with pools of 18-mer peptides overlapping by
nine amino acids from the SARS-CoV-2 Spike proteins. Addition-
ally, matrix mapping was performed using peptide pools in a
matrix designed to identify immunodominant responses. Mouse
splenocytes were stimulated with a final concentration of 5 ng/
ml of each peptide per well in R10. R10 and cell stimulation
PAM + ION (Invitrogen) were used for negative and positive con-
trols, respectively. Spots were counted using the ImmunoSpot
CTL reader.
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2.8. Cellular immune response

We used IFN-y ELISPOT to detect the cellular immune response.
We performed epitope mapping on splenocytes of BALB/c mice
receiving 50 g of the pSV-10-SARS-CoV-2 vaccine. The S protein
was covered with 20 peptide libraries. Each peptide library con-
tained seven peptides: each peptide had 18 amino acids, and the
adjacent peptide overlapped nine amino acids. Cellular immune
response was detected in multiple peptide pools, but the strongest
response was in peptide pool 5, located at 234-297 regions. Pep-
tide 5 was used as the peptide stimulant in subsequent cellular
immune experiments. BALB/c mice were sacrificed at week 4 and
week 6, and spleen cells were harvested. The single cell suspension
was stimulated by peptide 5 for 20 h. The IFN-y ELISPOT kit was
used for detection.

2.9. Statistical analyses

Analysis was performed using GraphPad Prism 8.4.2 (GraphPad
Software). Comparison of data between groups was performed
using One-way ANOVA and Holm-Sidak’s multiple comparisons
test. P-values < 0.05 were considered statistically significant.

3. Results
3.1. Construction of the DNA vaccine

We produced a prototype DNA vaccine expressing the SARS-
CoV-2 S protein (Fig. 1A). pSV10-SARS-CoV-2 recombinant plasmid
constructed by inserted the SARS-CoV-2 Spike protein (GenBank:
MN_908947) into pSV10. The molecular weight of the S protein
was 140-142 kDa, and its slight shift was due to 22 potential N-
linked glycans in the S protein (Fig. 1B). The spike protein could
be expressed after transfection of the vaccine vector.

A
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3.2. Humoral immune responses in mice

The 39 mice (aged 4-6 weeks) were immunized with the DNA
vaccine: pSV-10-SARS-CoV-2 vaccine (n = 10), pSV-10-SARS-CoV-
2 with BCO1 (n = 10), BCO1 (n = 10), and PBS (n = 9). A neutraliza-
tion IDsq average titer of 87 was observed in pSV-10-SARS-CoV-2
vaccinated mice, an IDsy average titer of 141 was detected in
pSV-10-SARS-CoV-2 with BCO1 vaccinated mice. No neutralizing
antibodies were detected in the BCO1 only and PBS only groups.
At week six, the average titer of neutralizing IDsq was 262 in the
pSV-10-SARS-CoV-2 group, 309 in the pSV-10-SARS-CoV-2 with
BCO1 group, and no neutralizing antibodies were detected in either
the BCO1 or PBS control groups (Fig. 2A). The pSV-10-SARS-CoV-2
with BCO1 vaccine induced the development of protective neutral-
izing antibodies in 80% of mice, which was significantly higher
than that of the pSV-10-SARS-CoV-2 group (50%). These results
indicate that BCO1 promotes the early production of neutralizing
antibodies in mice (Table 1).

At week 4, the binding antibody titer of the pSV-10-SARS-CoV-2
group was not significantly different from that of pSV-10-SARS-
CoV-2 with BCO1 group (p > 0.05). No binding antibody was
detected in the BCO1 and PBS only groups. At week 6, the binding
antibody titer of the DNA vaccine group was not significantly dif-
ferent from that of pSV-10-SARS-CoV-2 with BCO1 group
(p > 0.05). No binding antibody was detected in the BCO1 and
PBS only groups (Fig. 2B).

At week 6, most animals vaccinated with pSV-10-SARS-CoV-2
with BCO1 exhibited neutralization of D614G, D614G + 1472V,
L452R, V483A, 501Y.V2, and B.1.1.7 variants with average IDsq
titers of 74, 123, 96, 110, 125, and 203, respectively. The pSV-10-
SARS-CoV-2 group exhibited neutralization of D614G,
D614G + 1472V, V483A, and B.1.1.7 variants, but not of L452R
and 501Y.V2 variants. Those variant pseudoviruses neutralizing
activity with average IDsq titers of 112, 71, 86, 0, 0, and 68 were
detected in pSV-10-SARS-CoV-2 immunized mice, respectively.
The BCO1 and PBS only groups could not neutralize these variants
(Fig. 3A-F).

250 = Spike protein
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Fig. 1. Design and expression of the synthetic SARS-Cov-2 DNA vaccine constructs. (A) Schematic diagram of the synthetic DNA vaccine, pSV10-SARS-CoV-2 containing SARS-
CoV-2 Spike protein insert. (B) Western blot analyses indicating S protein expression in vitro after transfection of 293T cells with pSV10-SARS-CoV-2 or MOCK plasmid. The
293T cell lysates were collected and analyzed using an anti-SARS-CoV-2 Spike protein polyclonal antibody.
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Fig. 2. Humoral immune responses in vaccinated mice receiving different types of vaccines. (A) Neutralization 50 in different groups. (B) SARS-CoV-2 S1 + 2 protein antigen
binding of IgG in serial serum dilutions from mice at week 4 and week 6.

Table 1
Neutralizing activity of sera after pSV10-SARS-CoV-2 with BCO1 administration to mice.
Model Vaccine N Sample timepoint Serum ID50 (reciprocal dilution) Positive rate (ID50 > 40)
BALB/c pSV10-SARS-CoV-2 10 week 4 183,104,78,57,54,<40,<40,<40,<40,<40 50%
pSV10-SARS-CoV-2 + BCO1 10 302,66,81,147,215,65,165,84,<40,<40 80%
BCO1 10 <40,<40,<40,<40,<40,<40,<40,<40,<40,<40 0
NC 9 <40,<40,<40,<40,<40,<40,<40,<40,<40 0
pSV10-SARS-CoV-2 10 week 6 173,364,251,421,153,130,197,516,151,180 100%
pSV10-SARS-CoV-2 + BCO1 10 424,332,150,728,161,140,212,431,114,488 100%
BCO1 10 <40,<40,<40,<40,<40,<40,<40,<40,<40,<40 0
NC 9 <40,<40,<40,<40,<40,<40,<40,<40,<40 0

3.3. Cellular immune response induced by vaccine

We used IFN-y ELISPOT to detect the cellular immune response.
We performed epitope mapping on spleen cells of BALB/c mice
receiving 50 pug pSV-10-SARS-CoV-2 dose. The S protein was cov-
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tide overlapped 9 amino acids. Cellular immune response was
detected in multiple peptide pools, but the strongest response
was in peptide pool 5, located at the 234-297 region (Fig. 4).
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Fig. 3. Sera from mice vaccinated with pSV10-SARS-CoV-2 and BCO1 can neutralize variants. (A) Neutralization of D614G variant, (B) Neutralization of D614G + 1472V variant,
(C) Neutralization of L452R variant, (D) Neutralization of V483A variant, (E) Neutralization of 501Y.V2, and (F) Neutralization of B.1.1.7.
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Fig. 4. T cell epitope mapping after administering the pSV10-SARS-CoV-2 vaccine
to BALB/c mice.

Cellular immune response results at week 4 showed that IFN -y
levels per 5 x 10° splenocytes in the pSV-10-SARS-CoV-2 group
averaged 154 SFU, while the pSV-10-SARS-CoV-2 with BCO1 group
averaged 179.1 SFU. At week 6, IFN -y levels in the pSV-10-SARS-
CoV-2 group averaged 253 SFU per 5 x 10° splenocytes, and
389.9 SFU per 5 x 10° splenocytes in the pSV-10-SARS-CoV-2 with
BCO1 group (Fig. 5A). The pSV-10-SARS-CoV-2 with BCO1 enhanced
the cellular immune response and increased the number of IFN-y
spots.

The cellular immune response was also detected using an IL-2
ELISPOT. The average IL-2 spots were 29.3 SFU per 5 x 10° spleno-
cytes in the pSV-10-SARS-CoV-2 group and 37.7 in the pSV-10-

IFN-yElispot assay at week 4

IL-2 Elispot assay at week 4

100
80
60

40

SFC/5*10° splenocytos
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SARS-CoV-2 with BCO1 group. At week 6, the average IL-2 spots
were 39.4 SFU per 5 x 10° splenocytes in the pSV-10-SARS-CoV-
2 group and 60.4 SFU in the pSV-10-SARS-CoV-2 with BCO1 group
(Fig. 5B). There was no statistical difference in the number of IL-2
secreting cells between groups (p > 0.05) (Fig. 5C, D).

4. Discussion

COVID-19 has become a global pandemic with high morbidity
and mortality. At present, many vaccines are undergoing phase
III clinical trials, including four DNA vaccines. Additionally, studies
have shown that DNA vaccines for COVID-19 can produce antigen-
specific T cell responses and neutralizing antibodies [13,14]. Thus,
we synthesized a DNA vaccine based on the SARS-CoV-2 S protein
with the addition of BCO1 to induce a protective immune response.
The results of this study show that the DNA vaccine with BCO1 elic-
its a stronger specific T cell response and a higher titer of neutral-
izing antibodies than a vaccine without a BCO1 adjuvant. Moreover,
the vaccine with BCO1 can neutralize several popular SARS-CoV-2
mutant strains.

In this study, the DNA vaccine with BCO1 increased the number
of neutralizing antibodies earlier compared to the DNA vaccine
without adjuvant. Unmethylated CpG-ODN induces an innate
immune response by triggering cells expressing Toll-like receptor
9, which is characterized by the production of Th1 and pro-
inflammatory cytokines [15]. In mice, TLR-9 is expressed in multi-
ple cells of the myeloid lineage, including monocytes, macro-
phages, and dendritic cells [16-18]. B cells and plasmacytoid
dendritic cells are the main cell types that express TLR-9 in
humans [19-22]. Therefore, the BCO1 binds to these immune cells

IFN-yElispot assay at week 6

IL-2 Elispot assay at week 6

100
80

60

SFC/5*10° splenocytos

Fig. 5. Induction of T cell responses in mice after receiving the pSV10-SARS-CoV-2 with BCO1 vaccine. (A) IFN-y ELISPOT assay at week 4, (B) IFN-y ELISPOT assay at week 6,

(C) IL-2 ELISPOT assay at week 4, and (D) IL-2 ELISPOT assay at week 6.
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expressing TLR-9 and triggers a protective immune response,
enhancing the specific cellular and humoral immunity caused by
the DNA vaccine. The BCO1 used in this study also enhanced the
neutralizing antibody titer but did not increase the binding anti-
body. Therefore, we hypothesized that the neutralizing antibodies
and binding antibodies are evaluation indicators for the functional
activity and quality of vaccine-induced humoral immune
responses. Neutralizing antibodies can directly neutralize the
virus, causing the virus to lose its infectious activity, and then be
phagocytosed and cleared by macrophages. After the binding anti-
body binds to the virus, it mediates the virus to macrophages,
which in turn kills the virus, and may also cause immune damage.
Neutralizing antibody and binding antibody are induced by differ-
ent antigens. The results of this study revealed that the BCO1 adju-
vant promoted the increase of neutralizing antibody titer, but did
not increase the binding antibody titer. The reason towards the
expressed neutralizing antibody is higher than the immune
response towards the induced binding antibody, and the adjuvant
effect of BCO1 is mainly reflected in the improvement of the neu-
tralizing antibody titer. At the same time, it may also be the
immune stimulating effect of BCO1 itself, such as promoting the
release of antigen-specific Th1 cytokines (IFN-vy, IL-2), and biasing
the adaptive immune response to promote the production of neu-
tralizing antibodies. Moreover, it has been reported that neutraliz-
ing antibodies account for <1% of total antibodies, so an increase in
neutralizing antibodies may have no effect on the number of total
antibodies [23,24]. Otherwise, it may be the combination of the
two or other unknown reasons, but the current in vivo test results
exhibit that BCO1 promotes the vaccine to produce a protective
immune response. Several studies suggest that the affinity of anti-
body to antigen determines the protective effect of antibody, and
neutralization reaction is related to affinity. In this study, BCO1
can improve protective immune responses induced by DNA vac-
cine, so further investigations on whether BCO1 play a role in vac-
cines that cause higher affinity antibodies are imperative.

In order to evaluate the vaccine in this study, only detecting the
binding antibody may not accurately reflect the immunogenicity
induced by the vaccine. The pseudovirus-based neutralization anti-
body assay used in this study has been validated by previous stud-
ies [25-28], which correlates well with the live virus-based
neutralization assay, and can be used for neutralization antibody
evaluation.

SARS-CoV-2 is a single-stranded positive RNA virus, which has a
higher mutation rate than DNA viruses [29-31]. At present, studies
have found many mutations in the S protein gene of SARS-CoV-2,
of which D614G is the most important mutation along with com-
bined mutations, such as D614G + 1472V [32-34]. Other studies
have found that certain mutation sites can reduce the infectivity
of the virus, such as L452R and V483A, but these sites can tolerate
some neutralizing antibodies [34]. Furthermore, the B.1.1.7 variant
includes many genetic changes, and has been increasing rapidly in
the United Kingdom. This variant may be increasing human ACE2
binding due to an N501Y mutation [35]. The emergence of unique
South African lineages (501Y.V2) also include multiple non-
synonymous S protein mutations that may have functional signif-
icance, such as K417N, E484K, and N501Y in the S-receptor-
binding domain [36]. The pSV10-SARS-CoV2 vaccine used in this
study was found to neutralize some mutations, but not the
L452R and 501Y.V2 variants. However, the pSV10-SARS-CoV2 with
BCO1 vaccine can neutralize these mutant strains, as it induces
higher neutralizing antibody titers. Thus, DNA vaccines with
BCO1 can provide a more effective neutralizing activity to defend
against SARS-CoV-2 infection. However, further research is war-
ranted to determine whether the DNA vaccine can neutralize all
mutant strains.
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5. Conclusions

A DNA pSV10-SARS-CoV2 vaccine with the addition of a BCO1
adjuvant improves efficacy and increases the cellular and humoral
immune response in mice. Further research is needed to determine
how this adjuvant may impact human trials and if it can be incor-
porated into ongoing vaccine trials for the prevention of COVID
-19.
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