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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has becoming

globally public health threat. Recently studies were focus on SARS-CoV-2 RNA

to design vaccine and drugs. It was demonstrated that virus RNA could play as

sponge to host noncoding RNAs to regulate cellular processes. Bioinformatic

research predicted a series of motif on SARS-CoV-2 genome where are targets

of human miRNAs. In this study, we used dual-luciferase reporter assays to

validate the interaction between 3’UTR of SARS-CoV-2 S (S-3’UTR) gene and

bioinformatic predicted targeting miRNAs. The growth of 293T cells and

HUVECs with overexpressed S-3’UTR was determined, while miRNAs and IL6,

TNF-a levels were checked in this condition. Then, miR-296 and miR-602

mimic were introduced into 293T cells and HUVECs with overexpressed S-

3’UTR, respectively, to reveal the underlying regulation mechanism. In results,

we screened 19 miRNAs targeting the S-3’UTR, including miR-296 and miR-

602. In 293T cell, S-3’UTR could inhibit 293T cell growth through down-

regulation of miR-296. By reducing miR-602, S-3’UTR could induce HUVECs

cell proliferation, alter the cell cycle, reduce apoptosis, and enhanced IL6 and

TNF-alevel. In conclusion, SARS-CoV-2 RNA could play as sponge of host

miRNA to disturb cell growth and cytokine signaling. It suggests an important

clue for designing COVID-19 drug and vaccine.
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Introduction

Since the appearance of coronavirus disease 2019

(COVID-19) in December 2019, the disease has spread

globally, becoming the most significant public health threat

in the world today. COVID-19 is a novel coronavirus disease

caused by severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2). Currently, millions of people have been

diagnosed with SARS-CoV-2 worldwide (https://covid19.

who.int) and the growing number of individuals with

COVID-19 has placed a burden on the healthcare systems

of many countries. However, to date, no effective antiviral

drugs have been approved to treat COVID-19. The most

common initial symptoms of COVID-19 are fever and

respiratory symptoms such as cough, shortness of breath,

and sore throat. Furthermore, COVID-19 can also affect the

heart and blood vessels, promoting the development of

cardiovascular diseases such as myocardial damage,

arrhythmia, acute coronary syndrome (ACS), and venous

thromboembolism. At present, the pathogenic mechanism

of the new coronavirus epidemic has not fully been elucidated

and most people are still at risk of contracting COVID-19.

Further exploration of the pathogenic mechanism of COVID-

19 is therefore essential to control and treat this disease.

miRNA plays an important regulatory role in many

biological processes and is instrumental in the interaction

between viruses and hosts. Host miRNA can be used as a

“weapon” to interfere with virus replication. Conversely,

viruses can regulate host miRNA to suppress the host

immune sys tem. Prev ious s tudies have ident ified

differentially expressed miRNAs in COVID-19 patients

through transcriptome analysis (1–5). In particular, virus

RNA can play as sponge of host miRNA to regulate

immune processes. It was described hepatitis C virus RNA

sequesters host miR-122 to facilitate viral replication (6).

Recent study revealed the potential miRNA interacted with

SARS genomes in human cell (7). In another study, it was

demonstrated endogenous human micro and long non-

coding RNAs has potential binding site in the SARS-CoV-2

genome (8). These evidences are clue for RNA-base drugs and

understanding pathogen mechanism of COVID-19. However,

no experimental evidence proofed that SARS-CoV-2 RNA

could play as sponge of host miRNA involved in COVID-

19 disease.

Here, the current study screens some of the miRNAs that

3’UTR of SARS-CoV-2 S gene can target and further

investigates whether 3’UTR of SARS-CoV-2 S gene can affect

cell proliferation and expression levels of cytokines through

sponging to these miRNAs.
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Results

Screening for miRNAs targeting the
3’UTR of SARS-CoV-2 S gene

In the SARS-CoV-2 genome, two potential PolyA sites were

identified after the S gene by using bioinformatics web tools

(http://regrna2.mbc.nctu.edu.tw/) (Figure 1A). The polyA site

furthest from the stop code of the S gene was used to define the

3′-untranslated region (3′UTR). Subsequently, 19 miRNAs with

a predicted interaction site on the 3′UTR of the S gene (S-3′
UTR) were identified by screening a bioinformatic database

(Figure 1A; Supplemental Table 1).

Potential target genes of the 19 miRNAs were also predicted

using the same database. According to Gene Ontology (GO)

annotation, these target genes are involved in cardiovascular,

metabolic, and chemdependency disease pathways (Figure 1B).

Furthermore, these genes were suggested to be enriched in

biological pathways such as TGF-beta signaling, adherens

junction, and metabolism (Figure 1C).

Interactions between the miRNAs and S-3′UTR were

validated via a series of dual-luciferase reporter assays in 293T

cells. Eight miRNAs significantly reduced the S-3′UTR reporter

signal, including miR-1299, miR-23b, miR-214, miR-296, miR-

302c, miR-520h, miR-602, and miR-766. Luciferase activities

were decreased by about 20%–50% in the miRNA mimics group

compared with the control (NC) group (Figure 2A).

Mutant S-3′UTRs were generated to disrupt potential

interaction sites between miRNAs and S-3′UTR. Dual-

luciferase reporter assays were repeated with mutant S-3′
UTR controls and revealed that miR-1299, miR-23b, miR-

214, miR-296, miR-302c, miR-520h, miR-602, and miR-766

could reduce the S-3′UTR reporter signal but not that of the

mutant S-3′UTR (Figures 2B-H). Among these miRNAs,

miR-296 caused the largest reduction in the reporter

signal (Figure 2C).
S-3′UTR overexpression downregulated
miR-296 and inhibited growth of
293T cells

To study the biological cellular function of SARS-CoV-2 S-3′
UTR, a vector was constructed to overexpress this region in

293T cells. The expression levels of seven miRNAs that possess

the ability to bind S-3′UTR were then determined. Only miR-

296-3p was significantly downregulated in 293T cells after

overexpression of S-3′UTR, while expression of the other six

miRNAs did not change significantly (Figure 3A).
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The proliferation ability of 293T cells overexpressing S-3′
UTR was checked by CCK-8 assay and was significantly

reduced by approximately 33% compared with the control

(Figure 3B). Cell-cycle monitoring revealed that the number of

cells in S phase was increased by approximately 10% in the S-

3′UTR group compared with the control group (Figure 3C).

Flow cytometry demonstrated that the amount of apoptosis

in the S-3′UTR group was twice that of the control

group (Figure 3D).
Overexpression of miR-296 could
recover the 293T cells disturbed
by S-3’UTR

To further explore the functional mechanism of S-3′UTR

through miR-296, a microRNA mimic was used to restore the

level of miR-296 in 293T cells overexpressing S-3′UTR

(Figure 4A). Cell proliferation in the S-3′UTR group

without microRNA mimic was significantly reduced by
Frontiers in Immunology 03
approximately 40% compared with the control, while cells

overexpressing S-3′UTR plus miR-296 mimic exhibited

restored proliferation ability, at approximately 90% of the

control cells (Figure 4B). In addition, the miR-296 mimic

group without S-3′UTR increased the cell proliferation ability

by 20%. Cell-cycle analysis revealed that the S-3′UTR, miR-

296 mimic, and S-3′UTR plus miR-296 mimic groups all had

an increased percentage of cells in S phase and a decreased

percentage of cells in G2 phase compared with the control

(Figures 4C, D). Furthermore, the S-3′UTR group showed an

increased apoptosis ratio of three times that of the control

group, while the S-3′UTR plus miR-296 mimic group only

showed an increase of 1.5 times that of the control group. In

addition, the miR-296 mimic group exhibited a 50%

reduction in apoptosis ratio compared with control

(Figures 4E, F). The caspase assay checked the level of

caspase-3/8/9, results indicated the same pattern of

apoptosis (Figure 4G). This suggested that miR-296 could

recover the cell proliferation and reduce apoptosis in 293T

cells disturbed by S-3′UTR.
B C

A

FIGURE 1

Prediction of human miRNAs binding to SARS-CoV-2 RNA. (A) Genome map of SARS-CoV-2 (first line), potential PolyA sites (red block in the
second line), and potential miRNA binding sites (green blocks in the third line). (B) Gene classification. Genes are the predicted targets of
miRNAs that have a predicted interaction with SARS-CoV-2 RNA. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis.
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FIGURE 2

Dual-luciferase reporter assay showing interaction between human miRNAs and S-3′UTR of SARS-CoV-2. (A) Luciferase activity was detected
48 h after co-transfection of cells with S-3′UTR-WT reporter and miR-NC or miRNA mimics. (B-H) Normalized Luciferase activity was detected
48 h after co-transfection of cells with S-3′UTR-WT and S-3′UTR-MUTANT reporter and miR-NC or miRNA mimics. miRNAs include miR-214
(B), miR-296 (C), miR-302c (D), miR-1299 (E), miR-520h (F), miR-602 (G), and miR-766 (H). (*p < 0.05, **p < 0.01, ***p < 0.001).
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FIGURE 3

Overexpression of S-3′UTR downregulated miR-296 expression and disturbed 293T cell growth. (A) Expression levels of miRNAs following
overexpression of S-3′UTR in 293T cells. Note that only expression of miR-296 was reduced. (B) 293T cell proliferation was detected by CCK-8.
Note that overexpression of S-3′UTR decreased cell proliferation. (C) Distribution of 293T cell cycle. Note that overexpression of S-3′UTR
increased the proportion of cells in S phase. (D) Apoptotic rate was detected by flow cytometry in 293T cells. Overexpression of S-3′UTR
increased apoptosis of 293T cells. (*p < 0.05, **p < 0.01,***p < 0.001).
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S-3’UTR decreased expression of
miRNAs, increased cell proliferation,
altered the cell cycle, reduced apoptosis,
and enhanced cytokine expression
in HUVECs

SARS-CoV-2 can directly target endothelial cells.

Therefore, to further explore the effect of S-3′UTR on

endothelial cells , a viral vector was constructed to

overexpress S-3′UTR in HUVECs. Expression levels of
Frontiers in Immunology 06
miRNAs and cell phenotypes were then determined in these

cells. Among seven miRNAs targeted to S-3′UTR, expression
of miR-602, miR-1299, miR-296, miR-520h, and miR-573 was

significantly reduced in HUVECs overexpressing S-3′
UTR (Figure 5A).

Cell proliferation ability of HUVECs in the S-3’UTR group

was increased by approximately 40% compared with the control

group (Figure 5B). Furthermore, the proportion of cells in G1

phase increased approximately 10% in the S-3′UTR group

(Figure 5C), and the percentage of apoptotic cells in the S-
B

C

D E

F

A

G

FIGURE 4

S-3′UTR disturbed 293T cell growth though knock-down of miR-296. (A) Level of miR-296 expression in 293T cells. (B) Reduced 293T cell
proliferation induced by overexpression of S-3′UTR was partially recovered by miR-296 mimics. (C, D) Effects of S-3′UTR on 293T cell cycle
could not be recovered by miR-296 mimics. (E, F) Apoptosis of 293T cells induced by overexpression of S-3′UTR was partially reduced by miR-
296 mimics. (G) caspase-3/8/9 assay to check apoptosis. (*p < 0.05, **p < 0.01, ***p < 0.001).
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FIGURE 5

Overexpression of S-3′UTR downregulated miR-296 and disturbed 293T cell growth. (A) Expression levels of miRNAs following overexpression
of S-3′UTR in HUVECs. Note that miR-602 was the most significant. (B) Overexpression of S-3′UTR enhanced HUVEC proliferation.
(C) Overexpression of S-3′UTR increased the proportion HUVECs in G1 phase. (D) HUVEC apoptotic rate was reduced by overexpression of S-3′
UTR. (E) Level of IL-6, IL-6R and TNF-a was increased following overexpression of S-3′UTR. (*p < 0.05, **p < 0.01).
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3’UTR group was reduced to 10%, whereas it was approximately

17% in the control (Figure 5D). Moreover, levels of cell secreted

IL-6 and TNF-a and IL-6R in cell—important molecules in the

cytokine storm caused by SARS-CoV-2 infection—were

determined. IL-6 and TNF-a were significantly upregulated,

by approximately 12% and 40%, respectively, in S-3′UTR
group compared with the control group, IL-6R were also

increased in cells, other anti-inflammatory cytokines such as

IL-10 and IL-1Ra has no significant difference (Figure 5E).
Overexpression of miR-520h could
recover the HUVECs disturbed
by S-3′UTR

The role of miR-S-3’UTR interaction(s) was further clarified

by analyzing potential target genes of miRNAs that were

downregulated by S-3′UTR in HUEVCs. Among miR-602,

miR-1299, miR-296, miR-520h, and miR-573, only miR-520h

has predicted gene targets, which are IL-6R and HiF-a,
molecules involved in IL-6 and TNF-a signaling pathways.

Analysis of miR-520h expression revealed that miR-520h

was significantly downregulated following overexpression of 3′
UTR but markedly upregulated after transfection with the miR-

520h mimic (Figure 6A). Accordingly, S-3′UTR significantly

induced the cell proliferation ability and the miR-520h mimic

reduced the cell proliferation ability by approximately 30%,

while the S-3’UTR plus miR-520h mimic restored the cell

proliferation ability to that of the control group (Figure 6B).

Next, IL-6 concentrations were examined using an enzyme-

linked immunosorbent assay (ELISA). IL-6 was significantly

increased in the S-3′UTR group and restored to the control

level in the S-3′UTR plus miR-520h mimic group (Figure 6C).

Analysis of cell cycle distribution showed that the miR-520h

mimic group had a markedly reduced percentage of cells in S

phase and an increased number of cells in G2 phase. In contrast,

the S-3’UTR group and S-3’UTR plus miR-520h mimic group

had an increased number of cells in G1 phase (Figures 6D, E).

Furthermore, the amount of apoptosis in the S-3′UTR group was

reduced to 12.5%, while the S-3′UTR plus miR-520h mimic

group had 17.5% apoptotic cells (Figures 6F, G). The caspase

assay checked the level of caspase-3/8/9, results indicated the

same pattern of apoptosis (Figure 6H). These observations

indicate that miR-520h could recover the HUVECs disturbed

by S-3′UTR.
Discussion

SARS-CoV2 predominantly infects nasal and bronchial

epithelial cells, type I and type II alveolar pneumocytes, and

capillary endothelial cells via the viral structural spike (S) protein
Frontiers in Immunology 08
binding to the ACE2 receptor (9). In responding to infection, T

lymphocytes, monocytes, and neutrophils are recruited to

infection sites and secrete various cytokines, such as TNF-a,
IL-1, and IL-6. During the late stage of infection, hyper-

inflammation—also known as a “cytokine storm”—results in

alveolar interstitial thickening, pulmonary edema, and

compromised epithelial-endothelial barrier integrity,

collectively referred to as acute respiratory distress syndrome

(ARDS) (10). ARDS and multiorgan dysfunction are two leading

causes of death in severe cases of COVID-19 and are frequent

consequences of cytokine storm (11). Cytokines are an essential

part of the inflammatory response, participating in a wide range

of pathophysiological processes and assisting the host in

eliminating pathogens. However, inappropriate inflammatory

responses trigger over-production of cytokines, which causes

tissue damage. Cytokine storm is an umbrella term describing a

group of clinical manifestations caused by cytokine

dysregulation, such as systemic inflammation, constitutional

symptoms, and multiorgan dysfunction (12). An aggressive

inflammatory response, accompanied by high levels of

chemokines and cytokines, such as IL-2, IL-6, IL-7, IL-10,

TNF-a, IFN-g, IP10, and MCP1, was identified in patients

with COVID-19 (13–15). Patients requiring admission to

intensive care units (ICU) displayed higher levels of

proinflammatory cytokines including IL-6 and TNF-a (13, 15).

IL-6 is a cytokine that promotes inflammation, immune

reactions, and hematopoiesis (16), while TNF-a plays an

important role in cellular activation and recruitment of

leukocytes to inflammatory sites (17). IL-6 and TNF-a are two

crucial cytokines in the pathogenesis of the SARS-CoV-2-

induced cytokine storm and are probably responsible for

severe clinical presentation and poor prognosis (18). In the

current study, overexpression of S-3′UTR was observed to

significantly upregulate both IL-6 and TNF-a in HUVEC

cultures. The interaction between miR-520h and S-3′UTR was

likely responsible for this upregulation since overexpression of S-

3′UTR in HUVECs led to a significant decrease in expression of

miR-520h and this could be restored by inclusion of a miR-520h

mimic. Bioinformatic analysis identified that miR-520h could

downregulate IL-6R and HiF-a and might play a role in

regulating immune homeostasis and inflammation during

SARS-CoV-2 infection. IL-6 binds membrane-bound IL-6R

(mIL-6R), which induces homodimerization of membrane-

bound gp130 (mgp130), or alternatively, IL-6 can bind to

soluble IL-6R (sIL-6R), forming a complex of IL-6 and sIL-6R

to interact with mgp130, and then initiates downstream

signaling cascades (19). HiF-a is an important signaling

molecule contributing to pathological and physiological

changes of homoeostasis under hypoxia stress (20).

Downregulation of HiF-a was previously shown to inhibit the

expression of IL-6 and TNF-a (21). We hypothesize that miR-

520h was targeted by S-3′UTR and thus the biological functions
frontiersin.org
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FIGURE 6

S-3′UTR disturbed growth of HUVECs by knock-down of miR-520h. (A) Level of miR-520h in HUVECs. (B) HUVEC proliferation induced by
overexpression of S-3′UTR was reduced by miR-520h mimics. (C) Increased IL-6 level induced by overexpression S-3′UTR was reduced by miR-
520h mimics. (D-G) Effects of S-3′UTR on HUVECs cell cycle could not be recovered by miR-520h mimics. (E, F) Apoptosis of HUVECs induced
by overexpression of S-3′UTR was partially reduced by miR-520h mimics. (H) caspase-3/8/9 assay to check apoptosis. (*p < 0.05, **p < 0.01,
***p < 0.001).
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of miR-520h—including inhibition of IL-6R and HiF-a—were

silenced, leading to inappropriate secretion of IL-6 and TNF-a
and a severe inflammatory response.

Changes in the expression levels of miRNAs identified by

transcriptomic and bioinformatic analysis in SARS-CoV-2

infected patients have been reported and include the

upregulation of miR-2392 and miR-3605-3p, and the

downregulation of miR-146a-5p, miR-21-5p, and miR-142-3p

(22, 23). Furthermore, differentially expressed genes in SARS-

CoV-2-infected human lung epithelial cells were predicted to be

targeted by some miRNAs, such as hsa-miR-342-5p, hsa-miR-

432-5p, hsa-miR-98-5p, and hsa-miR-17-5p (24). These studies

indicate that miRNAs have a role in the pathogenesis of SARS-

CoV-2. miRNAs are a group of single-stranded, small (~21–22

nt), noncoding RNAs, which are known as negative regulators of

gene expression and essential biological processes predominantly

through binding to the 3′UTR of target mRNAs at post-

transcriptional levels (25). miRNAs can bind to a wide range of

RNA viruses, mostly in the 5′- and 3′-UTRs and regulate viral

pathogenesis in different ways (26, 27). For example, miR-323,

miR-491, and miR-654 could bind to the PB1 gene of H1N1

influenza A virus and subsequently suppress its replication (28),

while miR-28-5p, miR-150, miR-223, and miR-382 could decrease

HIV-1 translation but were pivotal in HIV-1 latency and reservoir

(29). In the current study, 19 miRNAs with a predicted interaction

site on the 3′UTR of the S gene of SARS-Cov-2 were identified by

screening a bioinformatic database and eight of these miRNAs

were subsequently proven to bind to S-3′UTR in a series of dual-

luciferase reporter assays. These eight miRNAs were miR-1299,

miR-23b, miR-214, miR-296, miR-302c, miR-520h, miR-602, and

miR-766. In addition to miR-602 described above, miR-766, miR-

214, miR-23b, miR-1299, miR-520h, and miR-302 were

previously reported to be highly expressed in tumor cells that

were frequently involved in the processes of carcinogenesis, tumor

progression, and metastasis (30–35). Expression levels of miR-296

were frequently associated with cardiovascular diseases. In the

current study, they could directly bind to the S-3′UTR of SARS-

CoV-2, while their mutant could not reduce the signal of S-3′
UTR. In addition, RNA viruses can induce changes in cellular

miRNA expression, which might help the viruses replicate and

avoid host immune responses. Influenza virus could downregulate

miR-24 levels in A549 cells to increase expression of furin protein

and allow the progeny virus numbers to increase (36).

Coronavirus OC43 nucleocapsid protein downregulated

expression of miR-9, which is a negative regulator of NF-kB,
leading to continual NF-kB translation (37). Decreased levels of

miR-221 were found in RSV-infected human bronchial epithelial

cells, and this could prevent cell apoptosis and boost viral

replication (38). In the present study, miR-296 was significantly

downregulated after overexpression of S-3′UTR in 293T cells,

while miR-602, miR-1299, miR-296, miR-520h, and miR-573

were significantly downregulated after overexpression of S-3′
Frontiers in Immunology 10
UTR in HUVECs. In 293T cells overexpressing S-3′UTR, only
miR-296-3p was significantly downregulated. Furthermore, cell

proliferation ability was suppressed approximately 33% compared

with the control, and from the cell-cycle analysis, more cells

(approximately 10% increase compared with control) were

trapped in S phase. miR-296 could regulate cellular proliferation

via several pathways.

First, the p53/p21 axis is a crucial mediator in cell cycle

control. Yoon et al. showed that overexpression of miR-296

could suppress the p53-p21 pathway and decrease mRNA

expression of p21 by targeting the 3′UTR of p21 (39). miR-

296-3p could also target phosphatase and tension homologue

(PTEN) and inhibit its downstream phosphoinositide 3-kinase

(PI3K)/Akt signaling pathway (40), which is involved in cell

proliferation, growth, cell size, metabolism, and motility (41). S-

3′UTR of SARS-CoV-2 probably disturbed the physiological

function of miR-296 and subsequently led to suppression of

proliferation. In addition, the S-3′UTR group displayed

enhanced apoptosis activities compared with the control

group. In HUVECs overexpressing S-3′UTR, downregulation
of miR-520h led to significant induction of cell proliferation and

reduction of apoptosis activity. The profile of the cell cycle also

changed, with the proportion of cells in G1 phase increasing by

approximately 10%. miR-520h has a negative effect on HUVECs

cell proliferation and other tumor cells including granulosa-like

tumor cell (35, 42–45). It was reported that miR-520h could

target on IL-6R to inhibit cell growth (42).In the current study,

an anti-proliferation property of miR-602 was revealed, we also

identified that IL-6R was turned downed by miR-602 and

induced by S-3′UTR. These indicate that this miRNA might

play the same biological functions in different cells. Overall, this

study demonstrated that S-3′UTR of SARS-CoV-2 could bind to

different miRNAs and alter the expression levels of these

miRNAs in different cells (293T and HUVECs), leading to

disturbances in cellular activity and various pathophysiological

processes of infected cells.

mRNA vaccines are an effective prophylaxis against SARS-

CoV-2 and help to prevent severe clinical presentations and poor

outcomes (46, 47). RNA therapy has always been considered a

promising therapeutic approach against a wide range of diseases.

Insights into the roles of miRNA in disease pathogenesis have

resulted in miRNAs becoming attractive targets for drug

development. Mirvirasen and RG-101 are two miRNA-based

medicines for acute and chronic hepatitis C, and target miR-122,

which is crucial for the stability and propagation of HCV RNA

(48, 49). RG-125/AZD4076, targeting miR-103/107, is

undergoing clinical trials for applications in patients with type

2 diabetes and non-alcoholic fatty liver diseases (50). Moreover,

MRX34, a miR-34 mimic, is used to treat multiple solid tumors

(51). In the current study, the miR-296 mimic and miR-602

mimic could rescue the disturbances in cell proliferation and

apoptosis induced by S-3′UTR in 293T cells and HUVECs,
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respectively. Therefore, development of therapeutics based on

miRNAs might be an alternative and promising approach for the

treatment of SARS-CoV-2 infection.
Methods and materials

Cell culture and transfection

293T cells and HUVECs were cultured, respectively,

supplemented with 10% FBS and 1% penicillin-streptomycin

(PS), at 37°C in a humidified environment with 5% CO2.

Transfection of 293T cells and HUVECs was performed 24 h

after cell seeding and used the transfection reagent

Lipofectamine™ 2000 according to the manufacturer’s

instructions. Briefly, 3′UTR overexpressing plasmid and miR-

486 mimic were mixed with Lipofectamine™ 2000 and the

mixture was added to the cell culture medium. The medium

was replaced with fresh medium after 6–10 h.
Quantitative real-time PCR and
miRNA RT-PCR

Total RNA was extracted from cells with TRIzol reagent

(Invitrogen, USA) following the manufacturer’s instructions, and

cDNA was synthesized using the GoScript™ Reverse Transcription

System (Promega) according to the manufacturer’s instructions.

The qPCR reactions were performed using standard mode on a

real-time PCR instrument with GoTaq® qPCR Master Mix kit

(Promega). Specific primers for the target miRNA and internal

control were designed as: miR-1299 forward 5′-CCGCGC
TTCTGGAATTCTGTGT-3′, and miR-1299 reverse 5′-
AGTGCAGGGTCCGAGGTATT-3′; miR-214 forward, and miR-

214 reverse; miR-296 forward 5′-CGAATATGAGGGTT
GGGTGGAGG-3′, and miR-296 reverse 5′-AGTGCAGGGT
CCGAGGTATT-3′; miR -302c forward, and miR -302c reverse;

miR-520h forward 5′-CCGCGACAAAGTGCTTCCCTT-3′, and
miR-520h reverse 5′-AGTGCAGGGTCCGAGGTATT-3′; miR-

602 forward 5′-AATGACACGGGCGACAGCTG-3′, and miR-

602 reverse 5′-AGTGCAGGGTCCGAGGTATT-3′; miR-766

forward 5′-CGAATACTCCAGCCCCACAGC-3′, and miR-766

reverse 5′-AGTGCAGGGTCCGAGGTATT-3′; and U6 forward,

and U6 reverse. Expression levels were normalized to internal

controls (U6) and results were shown in form of relative

expression calculated by the 2−DDCT method.
Adenoviral shuttle plasmid construction

Plasmid pDC316 (Microbix Biosystems Inc., Toronto, ON,

Canada) is an E1 shuttle plasmid derived from the left end of the
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adenovirus type 5 (Ad5) genome. The shuttle vector pDC316-

mCMV-EGFP and antisense fragment of the 3′UTR gene of

SARS-CoV-2 were restriction digested with NotI and EcoRV,

respectively. The digested products were purified and ligated

with T4 DNA ligase, and then co-transformed into Escherichia

coli DH-5a. Thus, the fragment of the 3′UTR gene was cloned

into the shuttle plasmid pDC316-mCMV-EGFP, and the

homologous recombinant adenoviral plasmid was generated.

The resulting pDC316-3′UTR-mCMV-EGFP plasmid was

restriction digested with NotI and EcoRV to validate

successful construction.
Cell proliferation assay

Cell Counting Kit‐8 (CCK‐8, Dojindo, Tokyo, Japan) was

used to detect cell proliferation according to the manufacturer’s

instructions. Cells (approximately 2,000 per well) were seeded

into 96‐well plates and cultured as previously described. Ten

microliters of CCK-8 solution mixed with serum‐free medium

were added every 24 h. After incubation for 2 h, the absorbance

of the wells was detected using a microplate reader at a test

wavelength of 450 nm.
Apoptosis assays

The apoptosis rate was evaluated using an Annexin V-FITC/

PI Apoptosis Detection kit according to the instructions from

the manufacturer. Cells were seeded in 6-well tissue culture

plates at 4×105 cells/well. Following treatment, the cells were

collected, washed with PBS, and resuspended in 500 mL binding

buffer. Next, 5 mL Annexin V-FITC and 5 mL propidium iodide

(PI) were added to the cell mixture and incubated at room

temperature for 15 min in the dark. Cells were analyzed by flow

cytometry (BD FACSCanto) within 1 h.
Cell-cycle analysis

Cells were seeded in a 6-well tissue culture plate at 4×105

cells/well. After treatment, the cells were collected, washed twice

with PBS, and then 100 mL RNase A solution was added and the

cells were incubated for 30 min at 37°C. Finally, 500 mL PI was

added and incubated for 15 min at room temperature. The cell

cycle was analyzed by flow cytometry, with data detection by Cell

Quest software (Becton Dickinson, Franklin Lakes, NJ, USA).

The percentage of cells in the G1, S, and G2 phases of the cell

cycle were analyzed.
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Enzyme-linked immunosorbent assay

Total proteins were extracted from the cells and ELISA kits

were employed to analyze the levels of TNF-a and IL-6 following

the manufacturer’s instructions (Sangon Biotch, China). The

absorbance at 450 nm was detected using a Power Wave

Microplate Reader.
Dual-luciferase reporter assay

The 3′-UTR of the SARS-CoV-2 fragment containing the

putative binding site of miRNAs was amplified and cloned

downstream of the luciferase gene in the pmirGlo vector

(Sangon Biotch, China). The mutant 3′-UTR was used to

construct the 3′-UTR-MUT plasmids. 293T cells, at 70–80%

confluency, were co-transfected with miRNA (miR-1299, miR-

214, miR-296, miR -302c, miR-520h, miR-602, and miR-766)

mimics and 3′-UTR-WT. Luciferase activities were assessed 48 h

post-transfection using the Dual-Luciferase Reporter Assay

System (Promega Biotech Co., Madison, USA).
Statistical analysis

All data in this study are shown as mean ± standard

deviation. Statistical significance was analyzed using a two-

tailed Student’s t-test to compare differences between two

groups or using one-way analysis of variance (ANOVA; SPSS

version 24.0, Chicago, IL, USA) to compare data among groups

when they had a normal distribution and homogeneous

variances. A p-value < 0.05 was considered statistically

significant; *p < 0.05, **p < 0.01, ***p < 0.001.
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