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Abstract

Some studies have indicated that a specific ‘social semantic network’ represents the social meanings of words. However,
studies of the comprehension of complex materials, such as sentences and narratives, have indicated that the same network
supports the online accumulation of connected semantic information. In this study, we examined the hypothesis that this
network does not simply represent the social meanings of words but also accumulates connected social meanings from texts.
We defined the social semantic network by conducting ameta-analysis of previous studies on social semantic processing and
then examined the effects of social semantic accumulation using a functional Magnetic Resonance Imaging (fMRI) experi-
ment. Two important findings were obtained. First, the social semantic network showed a stronger social semantic effect
in sentence and narrative reading than in word list reading, indicating the amplitude of social semantic activation can be
accumulated in the network. Second, the activation of the social semantic network in sentence and narrative reading can be
better explained by the holistic social-semantic-richness rating scores of the stimuli than by those of the constitutive words,
indicating the social semantic contents can be integrated in the network. These two findings convergently indicate that the
social semantic network supports the accumulation of connected social meanings.
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Introduction

An important finding of cognitive neuroscience is that the brain
network supporting semantic representation is partially orga-
nized according to information types (Martin, 2007; Mahon and
Caramazza, 2009; Binder et al., 2016). Sensory-motor semantic

information and social semantic information are the most

salient information types that constrain the organization of the

semantic system in brain, which are supported by two sepa-
rate semantic subsystems (Huth et al., 2016; Lin et al., 2018a).

The semantic subsystem that selectively supports social seman-
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tic representation is referred to as the social semantic network,
which includes the bilateral anterior temporal lobes (ATLs),
temporoparietal junction (TPJ)/angular gyrus, dorsomedial pre-
frontal cortex (DMPFC) and posterior cingulate (PC)/precuneus
(Lin et al., 2018a, 2020). They show strong activation during the
processing of words with rich social meanings (Lin et al., 2015,
2018a; Wang et al., 2019), and their activities can be used to
decode the social semantic contents being processed (Huth et al.,
2016; Thornton and Mitchell, 2018). It was proposed that these
areas represent the social concepts underlying word meanings,
which is a part of semantic memory (Binder et al., 2016; Lin et al.,
2019).

The neuroimaging studies on the comprehension of com-
plex materials, such as sentences and narratives, however, have
indicated that the brain areas of the social sematic network
may support the online accumulation of connected semantic
information. The effect of semantic accumulation on brain acti-
vation has been primarily revealed by studies that manipulated
the size of the semantically continuous structures embedded
in the stimuli. In an early study, Xu et al. (2005) compared the
brain activations evoked by the narratives, unconnected sen-
tences and word lists in a reading task and found that the ATL
showed stronger activation to unconnected sentences than to
word lists, and the DMPFC, precuneus and TPJ showed stronger
activation to narratives than to unconnected sentences. Lerner
et al. (2011) used a design similar to Xu et al. (2005) in a lis-
tening task, but focused on the intersubject correlation (ISC)
of the BOLD response time courses instead of the strength of
brain activity. They also found the effects of linguistic hierar-
chies in several brain areas: in the posterior superior temporal
gyrus, a significant ISC was observed when listening to sen-
tences, paragraphs and stories but not word lists; in the TPJ
and precuneus, a significant ISC was observed when listen-
ing to paragraphs and stories, but not to sentences or word
lists; and in the medial prefrontal cortex, a significant ISC was
observed only when listening to complete stories. Pallier et al.
(2011) demonstrated a more fine-grained semantic accumula-
tion effect by continuously manipulating the size of sentential
constituents (1 word, 2 words, 3 words, 4 words, 6 words and
12 words) embedded in a stream comprising 12 written words.
They found that the activation of the ATL and TPJ increased
parametrically with the constituent size in both amplitude and
phase. Importantly, the constituent-size effect in the ATL and
TPJ disappeared when the content words were replaced with
pseudowords of the same morphological endings, indicating
that the effect reflected semantic rather than syntactic accu-
mulation. Mellem et al. (2016) replicated the finding of Pallier
et al. (2011) and found an overlap between the constituent-size
effect and the effect of social–emotional semantic processing in
the left ATL. In addition to linguistic hierarchy and constituent
size, the brain areas associated with semantic accumulation are
also sensitive to factors that influence the holistic comprehen-
sion of stimuli, such as the powerfulness of a political speech
(Schmälzle et al., 2015) and subtle word changes that alter the
interpretation of a story (Yeshurun et al., 2017).

In the two aforementioned lines of studies, the two features
of the social semantic network, i.e. being sensitive to social
semantic information and being sensitive to connected seman-
tic information, were attributed to social concept representation
and domain-general semantic accumulation, respectively. Here
we propose that these two features may both be associated
with a single cognitive function, i.e. the accumulation of con-
nected social semantic information. We will refer to this func-
tion as social semantic accumulation for short. We assume that,

during text comprehension, social semantic accumulation
starts by representing the socialmeanings of the initial word and
then accumulates and integrates the connected social mean-
ings from the following texts. This hypothesis can explain
the findings of both aforementioned lines of studies: because
social semantic accumulation startswith representing the social
meanings of words, it can explain the sensitivity of the network
to social semantic information in word comprehension tasks;
because the previous studies of semantic accumulation typically
used stimuli containing rich social semantic information, the
existing evidence for semantic accumulation can also be viewed
as evidence for social semantic accumulation.

In this study, we examined two novel predictions of our
hypothesis of social semantic accumulation: first, in the social
semantic network, the amplitude of social semantic acti-
vation accumulates along with the processing of connected
social meanings, exhibiting linguistic hierarchical differences
(narrative> sentence>word); second, during text comprehen-
sion, the activation of the social semantic network can be better
explained by the holistic social meanings of the stimulus than
by the word-level social meanings. The confirmation of these
predictions would indicate that the social semantic processing
occurring in the social semantic network during text compre-
hension is not simply the retrieval of the social meanings of
words but rather involves social semantic accumulation.

Methods

Participants

In total, 36 healthy undergraduate and graduate students (22
females) participated in the functional Magnetic Resonance
Imaging (fMRI) experiment. The mean age of the participants
was 21.2 years (SD=2.5 years). All participants were right-
handed and native Chinese speakers. None of the participants
had suffered from psychiatric or neurological disorders or had
ever sustained a head injury. All protocols and procedures were
approved by the Institutional Review Board of the Magnetic Res-
onance Imaging Research Center of the Institute of Psychology
of the Chinese Academy of Sciences, and each participant read
and signed an informed consent form before the experiment.
In the data analysis, the data of three subjects (two females)
were discarded due to excessive head movement (>3.0 mm or
3.0◦ in any direction). Thus, the data analyses were based on
the remaining 33 participants.

Design and materials

In the fMRI experiment, we manipulated the social seman-
tic richness (high/low) and linguistic hierarchies (word/
sentence/narrative) of the stimuli. Therefore, the experiment
contained six conditions, namely, the high and low social-
semantic-richness word-list conditions, sentence conditions
and narrative conditions.

Both high and low social-semantic-richness narrative con-
ditions contained 42 narratives, with each narrative consisting
of four sentences. We obtained the social semantic richness
scores of these materials at the narrative, sentence and word
levels using three rating experiments (see Supplementary Mate-
rials for details). We carefully matched a series of variables
between the high and low social-semantic-richness narratives,
which include the sentence-level and narrative-level seman-
tic plausibility, the coherence of narratives, the number of
words per narrative and per sentence, the number of characters
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Table 1. Variables that were manipulated or controlled in the high and low social-semantic-richness narrative stimuli

High social- Low social- High social-
semantic- semantic- semantic-richness
richness richness vs low social-
narratives narratives semantic-richness

t P

Narrative-level variables
Social-semantic-richness 5.75±0.51 1.42±0.37 44.482 0.000
Coherence 6.68±0.27 6.71±0.25 0.393 0.695
Semantic plausibility 6.4±0.27 6.4±0.39 0.061 0.952
Number of sentences per narrative 4±0 4±0 – –
Number of words per narrative 28.71±1.2 28.79±1.26 0.267 0.790
Number of characters per narrative 48.43±1.7 48.31±1.49 0.342 0.734

Sentence-level variables
Social-semantic-richness 4.79±0.99 1.39±0.33 42.252 0.000
Semantic plausibility 6.78±0.2 6.77±0.42 0.311 0.756
Number of words per sentence 7.18±0.93 7.19±0.94 0.058 0.953
Number of characters per sentence 12.11±1.15 12.08±1.13 0.239 0.811

Word-level variables
Social-semantic-richness 2.97±1.69 1.69±0.7 48.166 0.000
Number of characters per word 1.69±0.52 1.68±0.55 0.383 0.702
Log (word frequency+1) 1.82±1.33 1.83±1.37 0.145 0.885

Notes: The word-level social-semantic-richness values of the high and low social-semantic-richness narratives shown in the table are the average social-semantic-
richness rating scores of all constitutive words of the two types of narratives. Although both types of narratives contain a considerable proportion of low
social-semantic-richness words (e.g. function words), the high social-semantic-richness narratives contain a much larger proportion of high social-semantic-richness
words (social-semantic-richness rating score≥5) than do the low social-semantic-richness narratives (proportion of high social-semantic-richness words: high
social-semantic-richness narratives: 226/1206 (18.74%); low social-semantic-richness narratives: 2/1209 (0.17%)).

per narrative, per sentence, and per word, and the word
frequency (Table 1). The high and low social-semantic-richness
narrative stimuli were both randomized into three sets, with
each set of stimuli containing 14 narratives. For each set
of narrative stimuli, corresponding sets of sentence stimuli
and word-list stimuli were constructed. Therefore, both the
high and low social-semantic-richness stimuli were separated
into three sets, with each set having three versions, i.e. the
narrative version (14 narratives), the sentence version (14 sen-
tence lists) and the word-list version (14 groups of word lists).
In the fMRI experiment, only one version of each set of stimuli
was presented to a participant, which corresponded to one of
the six experimental conditions. The uses of the three differ-
ent versions of the three sets of stimuli were counterbalanced
across participants. In the SupplementaryMaterials, we detailed
how the social semantic richness and control variables of the
stimuli were manipulated and controlled and how the sentence
and word-list stimuli were constructed based on the narrative
stimuli.

Procedures

The fMRI experiment employed a block design, containing three
runs of 10 min and 26 s each. Each run included 28 blocks,
with four or five blocks for each condition. In total, each con-
dition includes 14 blocks in the experiment. The numbers and
orders of the blocks for the six conditions were counterbalanced
across runs and participants. In the first 10 s of each run, par-
ticipants were shown a fixation. They then performed a silent
reading task in which they were shown a narrative, a sentence
list (four unconnected sentences) or a group of word lists (four
word-lists) in each block. In each block, each sentence or word
list appeared for 3 s. Each block lasted for 12 s, followed by a
10 s fixation.

To make sure the participants could pay attention to the
stimuli during the scanning, they were told to complete a recog-
nition test to evaluate their performance after scanning. The
stimuli of the recognition test included all stimuli that the par-
ticipants had seen in the scanner and an equal number of
stimuli that were never used in the fMRI experiment. All stim-
uli were presented in blocks as in the fMRI experiment, except
that the fixation between blocks was shortened to 0.5 s. Partici-
pants were asked to indicate whether they believed the block of
stimuli they saw had been presented in the fMRI experiment by
pressing buttons.

Image acquisition and preprocessing

Structural and functional data were collected using a GE
Discovery MR750 3 T scanner at the Magnetic Resonance Imag-
ing Research Center of the Institute of Psychology of the
Chinese Academy of Sciences. T1-weighted structural images
were obtained using a spoiled gradient-recalled pulse sequence
in 176 sagittal slices with 1.0 mm isotropic voxels. Functional
blood-oxygenation-level-dependent data were collected using a
gradient-echo echo-planar imaging sequence in 42 near-axial
slices with 3.0 mm isotropic voxels (matrix size= 64×64; rep-
etition time=2000 ms; echo time=30 ms).

The fMRI datawere preprocessed using Statistical Parametric
Mapping software (SPM8; http://www.fil.ion.ucl.ac.uk/spm/). For
the preprocessing of the task fMRI data, the first five volumes of
each functional run were discarded to reach signal equilibrium.
Slice timing and 3-D head motion correction were performed.
After that, a mean functional image was obtained for each
participant, and the structural image of each participant was
coregistered to the mean functional image. Then, the structural
image was segmented using the unified segmentation module

http://www.fil.ion.ucl.ac.uk/spm/
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(Ashburner and Friston, 2005). The parameters obtained during
segmentation were used to normalize the functional images of
each participant into the Montreal Neurological Institute space.
Functional images were subsequently spatially smoothed using
a 6 mm full-width-half-maximum Gaussian kernel.

Data analysis

Defining the social semantic network: a meta-analysis

We conducted an activation likelihood estimation (ALE) meta-
analysis to define the social semantic network. A liter-
ature search was conducted on the Web of Knowledge
(www.isiknowledge.com). The inclusion criteria are detailed
in the Supplementary Materials. In total, we collected 95
activity peaks from the 10 included studies (Table 2). We
then conducted ALE meta-analysis based on these data using
GingerALE 3.0.2 (Eickhoff et al., 2009). The coordinates reported
in the Talairach space were transformed into the Montreal Neu-
rological Institute (MNI) space using the Convert Foci function of
the GingerALE. The results of this ALEmeta-analysis then served
as the regions of interests (ROIs) of our data analysis.

One limitation of our ALE meta-analysis is that it included
only a small number of studies. To verify the results of the ALE
meta-analysis, we conducted a supplementary meta-analysis
using Neurosynth (neurosynth.org; Yarkoni et al., 2011), which
is based on a much larger data set. First, we conducted two sep-
arate Neurosynth meta-analyses using the terms ‘social’ and
‘semantic’ (using the default settings of the Neurosynth: asso-
ciation test; false discovery rate criterion of 0.01). These two
terms yielded 1302 and 1031 studies (47 083 and 40030 activa-
tions), respectively. We then computed the overlap of the brain
maps from the two results and using this overlap to reflect the
distribution of the social semantic network. This overlapping
analysis was based on two assumptions. First, the social seman-
tic network should be activated in most social tasks because
accessing social semantic knowledge is a fundamental compo-
nent of social cognition. Second, the social semantic network
should be activated in a considerable proportion of semantic
studies because social knowledge is a basic and broad type of
semantic information. However, this second assumption suffers
from a risk that the dataset of semantic studies may possibly
have a bias towards focusing on some non-social types of knowl-
edge, such as object knowledge. Therefore, this overlapping
analysis is not guaranteed to fully reveal the distributions of the
social semantic network and was only used as a supplementary
method.

Modelling the effects of social semantic accumulation

Statistical analyses of the fMRI data were performed according
to 2-level, mixed-effects models implemented in SPM8, focus-
ing on two predictions. First, in the social semantic network,
the amplitude of social semantic activation accumulates along
with the processing of connected social meanings, exhibiting
linguistic hierarchical differences (narrative> sentence>word).
Second, during text comprehension, the activation of the social
semantic network can be better explained by the holistic social
meanings of the stimulus than by the simple additivity of the
word-level social meanings. These two predictions were exam-
ined using two different modelling methods.

The first prediction was examined using the classic contrast-
based modelling analysis. In this analysis, we modelled the
social semantic activation as the additional activation evoked
by the high social-semantic-richness stimuli over that evoked

by the low social-semantic-richness stimuli. The social seman-
tic accumulation effect was reflected by the additional social
semantic activation in sentence and narrative conditions over
that in the word-list conditions and additional social semantic
activation in the narrative conditions over that in the sentence
conditions. The underlying logic of this method is derived from
the previous studies using the same or similar paradigm to study
the domain-general semantic accumulation effect, in which the
effect of semantic accumulation was modelled as the additional
activation evoked by sentences over word-lists and by narratives
over sentences (Xu et al., 2005; Pallier et al., 2011; Mellem et al.,
2016).

Specifically, at the first level, a general linear model was built
by including the six conditions as covariates of interest. Each
block of stimuli was modelled with a boxcar waveform lasting
12 s. Six head motion parameters obtained by the head motion
correction were included as nuisance regressors. A high-pass fil-
ter (128 s) was used to remove low-frequency signal drift. The
results of the first level analysis were then entered into the
second-level random-effects analysis. We primarily focused on
the data within the ROIs. For each participant and condition,
the voxel-based beta values obtained in the first-level analysis
were averaged within each ROI. The social semantic activations
in word, sentence and narrative reading were then modelled as
the beta differences between the high and low social-semantic-
richness conditions at each hierarchy. We examined the social
semantic activations in word, sentence and narrative reading
using a one-sample t-test against zero and examined the social
semantic accumulation effect by comparing the social semantic
activations in the word, sentence and narrative conditions using
paired t-test.

The second prediction was examined using the paramet-
ric modulation approach implemented in SPM8. At the first
level, we merged the high and low social-semantic-richness
conditions at each linguistic hierarchy into a single condition.
To better capture the continuous changes of the social seman-
tic richness within each block, we modelled the BOLD response
to the stimuli according to the presence of each sentence
and word list. For each condition, the presence of each sen-
tence or word list was modelled using a constant regressor
lasting 3 s, and the social semantic effects were modelled as
the interactions between the presence of a sentence/word list
and a number of parametric social-semantic-richness modu-
lators associated with it. The number of parametric social-
semantic-richness modulators varied across conditions. For the
narrative condition, three parametric social-semantic-richness
modulators were set, which are computed based on the
narrative-, sentence-, and word-level social-semantic-richness
scores obtained in the aforementioned rating experiments.
The narrative-level social-semantic-richness modulators of the
four sentences of a narrative were all set using the narrative-
level social-semantic-richness rating score of the narrative. The
sentence-level social-semantic-richness modulator of each sen-
tence was set using its sentence-level social-semantic-richness
rating score. The word-level social-semantic-richness modula-
tor of each sentence was set as the average word-level social-
semantic-richness rating score of all its constitutive words.
For the sentence condition, only the sentence- and word-level
social-semantic-richness modulators were set. For the word-list
condition, only the word-level social-semantic-richness modu-
lator was set.

We then analysed the social semantic effects using twomod-
els: in Model 1, the high-level social-semantic-richness modu-
lators were orthogonalized with respect to the low-level ones

www.isiknowledge.com
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Table 2. Studies and peak coordinates included in the ALE meta-analysis

Study Subject number Task Contrast MNI coordinates

x y z

Binney et al. (2016) 19 Semantic related-
ness judgment

Social > animal −48 9 −39

−57 9 −12
−39 3 −48
−15 −87 −9

3 −84 −6
−33 −72 −9
−12 −78 24
−27 −78 24
−15 −87 30
−54 −39 21
−48 −24 18
−60 −21 18

Contreras et al. (2012) 19 Categorical knowl-
edge judgment

Social >non-social −4 −58 28

−8 56 34
−4 48 −8

−50 −10 −22
60 −2 −22

−56 −60 24
56 −56 18

−12 −96 −4
−26 −74 −16
−10 38 50

Feature verification Person>object −2 58 22
−56 −4 −24
38 22 −22

−56 −64 26
54 −12 −32

−40 20 −16
−4 0 6
44 30 −8
62 18 16

Lin et al. (2015) 15 Semantic related-
ness judgment

Social >private −57 −10 −8

50 23 24
60 −31 −1

−45 21 −22
−5 55 31
−11 −44 35

4 47 −18
−18 −83 −2

Social >nonhuman 15 40 43
59 6 −18
8 −54 32

−51 2 −23
−41 −49 19
−41 25 −19

Lin et al. (2018a) 19 Semantic related-
ness judgment

High social-semantic-richness verb> low
social-semantic-richness verb

−42 12 −36

−9 51 36
−48 −60 21
45 21 −33
51 −57 21
−3 −51 21

Lin et al. (2019) 20 Semantic related-
ness judgment

High social-semantic-richness noun> low
social-semantic-richness noun

−57 −3 −24

High social-semantic-richness verb> low
social-semantic-richness verb

−57 0 −21

(continued)
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Table 2. (Continued)

Study Subject number Task Contrast MNI coordinates

x y z

54 0 −18
−51 −66 21

0 −57 21
−12 60 33
51 −54 15

Mason et al. (2004) 17 Feature verification Person>dog 38 42 30
30 23 43
12 56 28
8 27 37

Mitchell et al. (2002) 14 Feature verification Person>object 1 61 13
4 43 −9

14 40 −9
34 −53 −3
70 −30 34
66 −31 21
53 −64 14

−64 −5 −6
−64 −13 −16
−70 −26 −14
−70 −19 −18
−47 −21 69
−30 −34 67
−34 −30 76
−30 −20 75
−53 −76 27
−14 −102 29

Ross and Olson (2010) 15 Semantic related-
ness judgment

Social > animal 66 −10 −24

−51 16 −28
−32 −77 −15

Wang et al. (2019) 22 Semantic related-
ness judgment

Social >non-social −58 −4 −16

−44 −72 28
Zahn et al. (2007) 26 Semantic related-

ness judgment
Social > animal 48 21 −9

57 12 0
54 33 6
−6 21 54

−36 33 24
−48 15 9
−57 −45 30
−63 −39 −12
−42 −51 −30
−33 −84 12
−12 −15 −3

Note: The coordinates reported in the Talairach space were transformed into the MNI space using the Convert Foci function of the GingerALE.

so that the shared variability of the regressors was assigned to
the low-level social-semantic-richness modulators; in Model 2,
the low-level social-semantic-richnessmodulators were orthog-
onalized with respect to the high-level ones so that the shared
variability of the regressorswas assigned to the high-level social-
semantic-richness modulators. For both models, the modula-
tion effect of each parametric modulator was examined using
a one-sample t-test against zero in the second-level analysis.
The results of the two models indicate whether the high and
low levels of social-semantic-richness modulators can explain
additional variability of the activation over each other (see Sup-
plementary Materials for more details of this analysis).

One possible problem of the parametric modulation analysis
is that the social semantic richness of words varies systemati-
cally across grammatical categories so that when processing the
social meaning of words, people may selectively focus on par-
ticular grammatical categories and ignore others. In this case,
averaging the social-semantic-richness scores of all constitutive
words of a sentence may dilute the effect of word-level social
semantic richness. In literature, the word-level social seman-
tic effect has been observed in three grammatical categories of
words, which include adjectives (Mitchell et al., 2002; Zahn et al.,
2007), verbs (Lin et al., 2015, 2018a) and nouns (Lin et al., 2019;
Wang et al., 2019). Therefore, we conducted a second parametric
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modulation analysis in which we only included the social-
semantic-richness scores of these three categories of words
in the computation of the word-level social-semantic-richness
modulator, and ignored the other words. The classification of
the grammatical categories of words was mainly based on the
Language Corpus System of Modern Chinese Studies (Sun et al.,
1997). For the 159 low-frequency words that were not included
in the corpus, three authors (Guangyao Zhang, Meimei Zhang,
and Nan Lin) together decided their grammatical categories.
In total, the social-semantic-richness scores of 819 of the origi-
nal 962 non-repetitive words were included in the analysis.

In addition to the ROI-based analyses, we also conducted
whole-brain activation analysis. The major aim of the whole-
brain analysis was to enable us to compare the social seman-
tic effect and the sentence and narrative effects observed in
the present study with those observed in previous studies.
We also conducted a psychophysiological interaction (PPI) anal-
ysis to explore the task-modulated connectivity between the
areas of the social semantic network. Themethods of thewhole-
brain activation analysis and the PPI analysis are detailed in the
Supplementary Materials.

All brainmaps of our results were visualized using the Brain-
Net Viewer software (Xia et al., 2013).

Results

Behavioural results of the post-scan recognition test

The participants showed considerable recognition accuracy in
the post-scan recognition test (narratives: 81.8%; sentences:
78.5%; words: 66.2%), indicating that they had paid attention
to the reading task. The accuracy data showed a strong lin-
guistic hierarchical effect: the differences between each two
of the three linguistic hierarchies were all significant, with
the narrative stimuli being recognized best and the word stim-
uli being recognized worst (narrative vs sentence: t[32]=2.367,
P=0.024; sentence vs word: t[32]=7.885, P<0.001; narrative vs
word: t[32]=7.633, P<0.001). Because we did not manipulate
the social semantic richness of the unfamiliar stimuli, the anal-
ysis of the social semantic effect was conducted within the
familiar trials. A significant difference between high and low
social-semantic-richness conditions was found in the narra-
tive recognition (high social-semantic-richness condition vs low
social-semantic-richness condition: 85.9% vs 80.7%, t[32]=2.512,
P=0.017) but not in sentence or word recognition (ts<1). The
reaction time data showed no significant difference in any
analysis.

fMRI results

The results of the meta-analysis for defining the ROIs
of the social semantic network

As shown in Figure 1 and Table 3, the ALEmeta-analysis revealed
six significant clusters (thresholded at whole-brain cluster-level
permutation corrected P<0.05, voxel-wise P<0.001). The clus-
ters were located at the bilateral ATL, TPJ, PC and the left DMPFC.
These clusters were defined as the ROIs for the fMRI data anal-
ysis. The overlapping of the Neurosynth results of the social
and semantic networks revealed surprisingly similar results,
despite using highly different datasets and methods: five of
the six regions (the bilateral ATLs, left TPJ, left SFC and PC)
revealed by the ALE analysis were also revealed by the Neu-
rosynth overlapping analysis, confirming the reliability of the

Fig. 1. Results of the ALE meta-analysis and the overlapping analysis. Panel A:

the result of the ALE meta-analysis of 10 fMRI studies of social concept process-

ing. Panel B: the overlap of the results of the Neurosynth meta-analyses using

the terms ‘social’ and ‘semantic’.

ROIs and indicating that the social semantic network is located
at the junction of the semantic and social networks, serving as
a component of both of them.

The social semantic accumulation effect as reflected by
the contrast-based analysis of the ROI data

The results of the contrast-based analysis are shown in
Figure 2, Tables 4 and 5. In sentence and narrative reading,
social semantic activations (high social-semantic-richness> low
social-semantic-richness) were found in all ROIs, whereas in
word-list reading, social semantic activation was found only
in the bilateral ATL and the left DMPFC. The social semantic
activations in sentence reading were stronger than in word-
list reading in all ROIs except the right TPJ, and the social
semantic activations in narrative reading were stronger than
those in word-list reading in all ROIs except the left DMPFC.
These findings indicate that in the social semantic network, the
amplitude of the social semantic effect accumulates along with
sentence processing. No ROIs showed a significant difference
between the social semantic activations in sentence reading and
those in narrative reading. Therefore, the results of the
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Table 3. Results of the ALE meta-analysis

Cluster Volume (mm3) ALE Centre Maximum ALE value Anatomical label

x y z x y z

1 1600 0.018 −56.3 −2.8 −20.2 −56 −4 −24 LATL
2 1088 0.019 −8.4 55.5 33.5 −8 56 34 LDMPFC
3 976 0.017 52.9 −56.7 17.6 52 −56 18 RTPJ
4 832 0.013 −51.7 −63 22.4 −50 −62 22 LTPJ
5 600 0.012 57.5 0.8 −19.5 58 0 −20 RATL
6 576 0.012 −1.9 −55.4 22.8 −2 −54 22 PC

Note: Anatomical labels: LATL, left anterior temporal lobe; LDMPFC, left dorsal medial prefrontal cortex; RTPJ, right temporoparietal junction; LTPJ, left temporoparietal
junction; RATL, right anterior temporal lobe; PC, posterior cingulate.

Fig. 2. ROI results of the contrast-based analysis. The brain map shows the locations of the ROIs. The bar plot shows the social semantic effect at the three linguistic

hierarchies for each ROI; error bars represent the standard errors. Condition labels: HSN, high social-semantic-richness narrative; HSS, high social-semantic-richness

sentence; HSW, high social-semantic-richness word; LSN, low social-semantic-richness narrative; LSS, low social-semantic-richness sentence and LSW, low social-

semantic-richness word. ROI labels: LATL, left anterior temporal lobe; LDMPFC, left dorsal medial prefrontal cortex; RTPJ, right temporoparietal junction; LTPJ, left

temporoparietal junction; RATL, right anterior temporal lobe; PC, posterior cingulate.

contrast-based analysis provide no evidence that the social
semantic network supports the narrative-level social semantic
accumulation.

The social semantic accumulation effect as reflected by
the parametric modulation analysis of the ROI data

The parametric modelling analysis showed that, in sentence
and narrative reading, the social-semantic-richness modula-
tor at the holistic level performed better than at the consti-
tutive levels in explaining the activation of the social seman-
tic network. The results of the parametric modelling analysis
that considered all words in calculating the word-level social-
semantic-richness modulator are summarized in Table 6. In
word-list reading, theword-level social-semantic-richnessmod-
ulators explained the activation of four ROIs, which included

the left ATL, the right ATL the left TPJ and the left DMPFC. In
sentence reading, both word-level and sentence-level social-
semantic-richness modulators alone explained the activation of
all ROIs. The sentence-level social-semantic-richnessmodulator
explained the activation of all ROIs, even after being orthogo-
nalized with respect to the word-level social-semantic-richness
modulator (Model 1), whereas the word-level social-semantic-
richness modulator no longer explained the activation of any
ROI after being orthogonalized with respect to the sentence-
level social-semantic-richness modulator (Model 2). Similarly,
in narrative reading, both word-level and narrative-level social-
semantic-richness modulators alone explained the activation
of all ROIs. The narrative-level social-semantic-richness mod-
ulator explained the activation of three ROIs (the bilateral TPJ
and the right ATL), even after being orthogonalized with respect
to the word-level and sentence-level social-semantic-richness



G. Zhang et al. | 401

Table 4. ROI results of the contrast-based analysis: the social semantic activations in narrative reading, sentence reading and word-list reading

ROI Social semantic activation in narrative Social semantic activation in sentence Social semantic activation in word-list
reading: HSN and LSN reading: HSS and LSS reading: HSW and LSW

Beta SE t Beta SE t Beta SE t

LATL 0.907 0.089 10.150***+ 0.857 0.126 6.818***+ 0.500 0.104 4.816***+

LTPJ 1.062 0.228 4.665***+ 1.112 0.237 4.688***+ 0.351 0.204 1.721
RATL 0.875 0.113 7.733***+ 0.701 0.128 5.460***+ 0.323 0.115 2.819**+

RTPJ 0.820 0.154 5.322***+ 0.573 0.169 3.393**+ 0.239 0.165 1.453
PC 0.870 0.179 4.873***+ 1.032 0.191 5.392***+ 0.248 0.222 1.119
LDMPFC 0.607 0.141 4.303***+ 0.794 0.143 5.546***+ 0.426 0.133 3.215**+

Note: *P<0.05; **P<0.01; ***P<0.001; +t-values surviving the Bonferroni correction in which the significance level is divided by the number of ROIs (N= 6).
Condition labels: HSN, high social-semantic-richness narrative; HSS, high social-semantic-richness sentence; HSW, high social-semantic-richness word; LSN, low
social-semantic-richness narrative; LSS, low social-semantic-richness sentence; LSW, low social-semantic-richness word. ROI labels: LATL, left anterior temporal lobe;
LDMPFC, left dorsal medial prefrontal cortex; RTPJ, right temporoparietal junction; LTPJ, left temporoparietal junction; RATL, right anterior temporal lobe; PC, posterior
cingulate.

Table 5. ROI results of the contrast-based analysis: comparing the social semantic activations between different linguistic hierarchies

ROI Social semantic activation in narrative Social semantic activation in narrative Social semantic activation in sentence
reading vs social semantic activation reading vs social semantic activation reading vs social semantic activation
in sentence reading: in word reading: in word reading:
(HSN and LSN)—(HSS and LSS) (HSN and LSN)—(HSW and LSW) (HSS and LSS)—(HSW and LSW)

Beta SE t Beta SE t Beta SE t

LATL 0.050 0.119 0.421 0.407 0.116 3.519**+ 0.357 0.120 2.971**+

LTPJ −0.050 0.212 0.236 0.712 0.259 2.745** 0.762 0.257 2.967**+

RATL 0.174 0.159 1.093 0.552 0.144 3.839***+ 0.378 0.148 2.543*

RTPJ 0.247 0.191 1.295 0.580 0.215 2.703* 0.334 0.215 1.554
PC −0.161 0.236 0.684 0.622 0.285 2.185* 0.783 0.246 3.179**+

LDMPFC −0.187 0.186 1.009 0.181 0.181 0.997 0.368 0.140 2.624*

Note: *P<0.05; **P<0.01; ***P<0.001; +t-values surviving the Bonferroni correction in which the significance level is divided by the number of ROIs (N= 6).
Condition labels: HSN, high social-semantic-richness narrative; HSS, high social-semantic-richness sentence; HSW, high social-semantic-richness word; LSN, low
social-semantic-richness narrative; LSS, low social-semantic-richness sentence; LSW, low social-semantic-richness word. ROI labels: LATL, left anterior temporal lobe;
LDMPFC, left dorsal medial prefrontal cortex; RTPJ, right temporoparietal junction; LTPJ, left temporoparietal junction; RATL, right anterior temporal lobe; PC, posterior
cingulate.

modulators (Model 1), while the word-level social-semantic-
richness modulator no longer explained the activation of any
ROI after being orthogonalized with respect to the narrative-
level and sentence-level social-semantic-richness modulators
(Model 2). In addition, in narrative reading, the sentence-level
social-semantic-richness modulator explained the activation of
four ROIs (the bilateral ATL, the left TPJ, and the left DMPFC)
after being orthogonalized with respect to the word-level social-
semantic-richness modulator (Model 1) but no longer explained
the activation of any ROI after being orthogonalized with
respect to the narrative-level social-semantic-richness modula-
tor (Model 2). The results of the parametric modelling analysis
that only considered nouns, verbs and adjectives in calculat-
ing the word-level social-semantic-richness modulator are very
similar to those of the first parametricmodelling analysis, which
are shown in Table 7.

The results of the whole-brain activation analysis

The results of the whole-brain activation analysis are detailed in
the Supplementary Materials. To briefly summarize, the results
largely replicate the social-semantic-richness and linguistic
hierarchical effects reported in the literature (see Supplemen-
tary Tables S1 and S3, Supplementary Figures S1, and S3)
and indicate that these two effects interact with each other. The
social-semantic-richness effect in the sentence and narrative
conditions was observed in all areas of the social semantic net-
work, whereas the social-semantic-richness effect in word-list
conditions was only observed in the left ATL (Supplementary
Table S2 and Supplementary Figure S2). The sentential effect

(sentence>word-list) in the high social-semantic-richness
conditions was observed in most classic areas of the sen-
tence processing network (Fedorenko et al., 2010; Labache et al.,
2019), whereas the sentential effect in the low social-semantic-
richness conditions was observed in very few brain areas
(Supplementary Table S4 and Supplementary Figure S4). The
statistical comparisons of the social-semantic-richness effects
across different linguistic hierarchies revealed a significant clus-
ter in the right precuneus, where the social semantic activation
was stronger in the sentence conditions than in the word-list
conditions (see Supplementary Figure S5 and Supplementary
Table S5).

The results of the PPI analysis

The PPI analysis did not reveal any significant social-semantic-
richness effect or interaction between social semantic rich-
ness and linguistic hierarchy (see Supplementary Figure S6 and
Supplementary Table S6), possibly due to that the functional
coupling in the social semantic network is modulated not only
by social semantic processes but also by the intrinsic functional
antagonism between the default mode network and the multi-
ple demand network. The results are reported and discussed in
the Supplementary Materials.

Discussion

We investigated the effects of social semantic accumulation
using an fMRI experiment in which the social semantic richness
and linguistic hierarchies of stimuli were both manipulated.
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Table 6. Results of the parametric modulation analysis that considered all words in calculating the word-level social-semantic-richness
modulator

Stimuli ROI Word-level social- Sentence-level social- Narrative-level social-
semantic-richness semantic-richness semantic-richness
modulator modulator modulator

Beta SE t Beta SE t Beta SE t

Model 1: high-level social-semantic-richness modulators were orthogonalized with respect to the low-level ones
LATL 0.346 0.072 4.836***+ – – – – – –
LTPJ 0.369 0.151 2.449* – – – – – –
RATL 0.237 0.091 2.609* – – – – – –
RTPJ 0.156 0.136 1.150 – – – – – –
PC 0.210 0.171 1.229 – – – – – –

Word lists

LDMPFC 0.327 0.095 3.438**+ – – – – – –
LATL 0.515 0.085 6.046***+ 0.282 0.062 4.529***+ – – –
LTPJ 0.600 0.148 4.054***+ 0.461 0.121 3.817***+ – – –
RATL 0.413 0.083 4.958***+ 0.260 0.071 3.642***+ – – –
RTPJ 0.302 0.110 2.755** 0.284 0.107 2.664* – – –
PC 0.707 0.145 4.881***+ 0.255 0.121 2.104* – – –

Unconnected sentences

LDMPFC 0.445 0.105 4.250***+ 0.332 0.074 4.472***+ – – –
LATL 0.586 0.067 8.755***+ 0.264 0.094 2.809** 0.084 0.055 1.525
LTPJ 0.685 0.167 4.096***+ 0.412 0.148 2.787** 0.229 0.096 2.393*

RATL 0.549 0.085 6.469***+ 0.244 0.104 2.354* 0.141 0.066 2.131*

RTPJ 0.523 0.109 4.812***+ 0.214 0.126 1.698 0.239 0.100 2.406*

PC 0.553 0.124 4.452***+ 0.058 0.138 0.421 0.133 0.110 1.217

Narratives

LDMPFC 0.350 0.093 3.743***+ 0.332 0.117 2.836**+ 0.023 0.086 0.269

Model 2: low-level social-semantic-richness modulators were orthogonalized with respect to the high-level ones
LATL 0.346 0.072 4.836***+ – – – – – –
LTPJ 0.369 0.151 2.449* – – – – – –
RATL 0.237 0.091 2.609* – – – – – –
RTPJ 0.156 0.136 1.150 – – – – – –
PC 0.210 0.171 1.229 – – – – – –

Word lists

LDMPFC 0.327 0.095 3.438**+ – – – – – –
LATL −0.133 0.144 0.923 0.232 0.036 6.440***+ – – –
LTPJ −0.469 0.262 1.792 0.287 0.064 4.464***+ – – –
RATL −0.196 0.163 1.198 0.191 0.034 5.585***+ – – –
RTPJ −0.385 0.255 1.509 0.153 0.046 3.307**+ – – –
PC 0.101 0.316 0.3200 0.294 0.055 5.362***+ – – –

Unconnected sentences

LDMPFC −0.342 0.179 1.909 0.204 0.041 4.962***+ – – –
LATL 0.024 0.232 0.104 0.129 0.065 1.990 0.200 0.021 9.504***+

LTPJ −0.150 0.372 0.402 −0.002 0.102 0.024 0.246 0.055 4.460***+

RATL 0.073 0.288 0.255 0.059 0.077 0.762 0.192 0.026 7.503***+

RTPJ 0.186 0.348 0.535 −0.069 0.087 0.787 0.192 0.037 5.170***+

PC 0.573 0.371 1.543 0.107 0.125 0.859 0.182 0.043 4.241***+

Narratives

LDMPFC −0.333 0.259 1.283 0.067 0.092 0.729 0.131 0.035 3.759***+

Note: *P<0.05; **P<0.01; ***P<0.001; +t-values surviving the Bonferroni correction in which the significance level is divided by the number of ROIs (N= 6). ROI labels:
LATL, left anterior temporal lobe; LDMPFC, left dorsal medial prefrontal cortex; RTPJ, right temporoparietal junction; LTPJ, left temporoparietal junction; RATL, right
anterior temporal lobe; PC, posterior cingulate.

The social semantic network showed two aspects of social
semantic accumulation effects. In the contrast-based analysis,
the social semantic network showed stronger social semantic
activations in sentence and narrative reading than in word-
list reading, indicating that the amplitude of social seman-
tic activation accumulates along with sentence processing.
In the parametric modelling analysis, the activation of the
social semantic network in sentence and narrative reading can
be better explained by the holistic social-semantic-richness
rating scores of the stimuli than by the social-semantic-
richness rating scores of the constitutive words, regard-
less of whether all words or only nouns, verbs and adjec-
tives were considered, indicating the social semantic con-
tents can be integrated in the network. These two findings

convergently indicate that the social semantic network is
involved in social semantic accumulation during language
comprehension.

Our findings provide new insights into the function of the
social semantic network. Most previous studies of social seman-
tic processing focused on the representation of social concepts
underlying word meanings (Zahn et al., 2007; Lin et al., 2015,
2018a, 2019; Wang et al., 2019). Some studies have emphasized
the role of the ATL in social concept representation (Zahn et al.,
2007; Wang et al., 2017). The present study provided the first evi-
dence that all areas of the social semantic network, including
the ATL, were involved in not only social concept representa-
tion but also in social semantic accumulation. This important
function of the social semantic network should be considered in
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Table 7. Results of the parametric modulation analysis that only considered nouns, verbs and adjectives in calculating the word-level social-
semantic-richness modulator

Stimuli ROI Word-level social- Sentence-level social- Narrative-level social-
semantic-richness semantic-richness semantic-richness
modulator modulator modulator

Beta SE t Beta SE t Beta SE t

Model 1: high-level social-semantic-richness modulators were orthogonalized with respect to the low-level ones
LATL 0.269 0.056 4.766***+ – – – – – –
LTPJ 0.269 0.113 2.393* – – – – – –
RATL 0.168 0.073 2.319* – – – – – –
RTPJ 0.139 0.106 1.312 – – – – – –
PC 0.154 0.128 1.207 – – – – – –

Word lists

LDMPFC 0.243 0.075 3.257**+ – – – – – –
LATL 0.411 0.067 6.134***+ 0.233 0.065 3.574**+ – – –
LTPJ 0.486 0.115 4.215***+ 0.418 0.135 3.088**+ – – –
RATL 0.328 0.067 4.911***+ 0.260 0.063 4.095***+ – – –
RTPJ 0.247 0.086 2.867**+ 0.242 0.094 2.580* – – –
PC 0.497 0.108 4.624***+ 0.400 0.131 3.047**+ – – –

Unconnected sentences

LDMPFC 0.352 0.079 4.469***+ 0.256 0.083 3.091**+ – – –
LATL 0.439 0.049 9.048***+ 0.274 0.080 3.427**+ 0.080 0.055 1.447
LTPJ 0.535 0.121 4.407***+ 0.296 0.133 2.227* 0.226 0.096 2.365*

RATL 0.418 0.057 7.362***+ 0.278 0.091 3.064**+ 0.119 0.071 1.683
RTPJ 0.405 0.077 5.289***+ 0.216 0.122 1.777 0.246 0.098 2.519*

PC 0.400 0.091 4.394***+ 0.273 0.145 1.887 0.113 0.112 1.006

Narratives

LDMPFC 0.286 0.066 4.325***+ 0.217 0.126 1.727 0.058 0.079 0.743

Model 2: low-level social-semantic-richness modulators were orthogonalized with respect to the high-level ones
LATL 0.269 0.056 4.766***+ – – – – – –
LTPJ 0.269 0.113 2.393* – – – – – –
RATL 0.168 0.073 2.319* – – – – – –
RTPJ 0.139 0.106 1.312 – – – – – –
PC 0.154 0.128 1.207 – – – – – –

Word lists

LDMPFC 0.243 0.075 3.257**+ – – – – – –
LATL −0.014 0.119 0.118 0.228 0.036 6.36***+ – – –
LTPJ −0.289 0.233 1.239 0.283 0.064 4.425***+ – – –
RATL −0.155 0.113 1.372 0.187 0.034 5.436***+ – – –
RTPJ −0.213 0.182 1.168 0.148 0.047 3.188**+ – – –
PC −0.191 0.257 0.744 0.288 0.055 5.192***+ – – –

Unconnected sentences

LDMPFC −0.098 0.144 0.678 0.204 0.042 4.845***+ – – –
LATL −0.008 0.148 0.053 0.119 0.062 1.924 0.201 0.021 9.611***+

LTPJ 0.102 0.220 0.463 0.000 0.098 0.004 0.246 0.055 4.446***+

RATL −0.020 0.167 0.122 0.051 0.075 0.687 0.194 0.026 7.594***+

RTPJ 0.035 0.222 0.158 −0.074 0.082 0.903 0.193 0.037 5.206***+

PC −0.035 0.284 0.123 0.109 0.121 0.897 0.184 0.043 4.289***+

Narratives

LDMPFC −0.036 0.214 0.167 0.061 0.090 0.679 0.129 0.035 3.725***+

Note: *P<0.05; **P<0.01; ***P<0.001; +t-values surviving the Bonferroni correction in which the significance level is divided by the number of ROIs (N= 6). ROI labels:
LATL, left anterior temporal lobe; LDMPFC, left dorsal medial prefrontal cortex; RTPJ, right temporoparietal junction; LTPJ, left temporoparietal junction; RATL, right
anterior temporal lobe; PC, posterior cingulate.

future studies, especially those investigating the social semantic
processing of complex materials, such as sentences, narratives
and movies.

Our findings also shed new light on how semantic accumu-
lation may occur in the brain. In previous studies, the effect
of semantic accumulation has only been associated with the
size and processing time scale of the semantically connected
units (Lerner et al., 2011; Pallier et al., 2011). Our finding indi-
cates that the type of semantic information being processed
also modulates the effect of semantic accumulation on brain
activation. Therefore, future studies on semantic accumulation
should consider not only the domain-general factors influencing
semantic accumulation but also the types of semantic contents
being processed.

One advantage of the current study is that the use of the para-
metric modulation analysis has compensated for the shortness
of the traditional methods for analysing the semantic accu-
mulation effect. Comparing sentence processing with word-list
processing is a frequently used paradigm to reflect the neural
correlates of semantic accumulation (Xu et al., 2005; Humphries
et al., 2006; Lerner et al., 2011). However, one may argue that the
difference between sentence and word-list processing is con-
founded by the effect of processing depth (Craik and Lockhart,
1972): word-list processing is a relatively shallow type of pro-
cessing, in which people may tend to encode the orthographical
and phonological information of stimuli; in contrast, sentence
processing enables the chunking of meanings, making seman-
tic encoding dominant. Similarly, the effects of the constituent
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size (Pallier et al., 2011; Mellem et al., 2016) on the brain activa-
tion properties (locations, amplitudes and phases) may also be
explained by processing depth due to the fact that the process-
ing depth could parametrically vary along with the constituent
size. The parametric modulation analysis used in the present
study overcomes this problem by focusing only on sentence
and narrative processing and using the regression approach to
dissociate the sentence and narrative levels of social semantic
effect from the word-level social semantic effect. This approach
has revealed a new aspect of semantic accumulation effect that
cannot be confounded by processing depth.

An important question that remains to be explored is
whether the social semantic accumulation in the social seman-
tic network occurs only at the sentence level or also at the
narrative level. The results of the contrast-based analysis did
not reveal any evidence for the narrative-level social semantic
accumulation effect. However, it should be noted that the main
effect of narrative processing (narrative> sentence) observed in
our whole-brain analysis (see the Supplementary Materials) was
also much weaker than that reported by the previous studies
of narrative-level semantic accumulation (e.g. Xu et al., 2005).
This is possibly due to the fact that we usedmuch shorter narra-
tives than did the previous studies, aiming to better match the
linguistic variables between the high and low social-semantic-
richness materials. On the other hand, the results of our para-
metric modelling analysis did reveal a narrative-level effect in
the bilateral TPJ (see Tables 6 and 7), where the narrative-
level social-semantic-richness modulator showed modulation
effects on brain activation, even after being orthogonalized with
respect to the sentence-level social-semantic-richness modula-
tor. This finding is consistent with the previous observations
that the bilateral TPJs are involved in narrative-level social
semantic processes. Lin et al. (2018b) compared the brain acti-
vation in the beginning and ending sentences of social and
non-social narratives and found an interaction between the nar-
rative topic (social/non-social) and narrative processing period
(ending/beginning): during the reading of social narratives, the
ending sentence evoked much stronger activation than the
beginning sentence in the bilateral TPJ and middle temporal
gyrus; however, during the reading of non-social narratives,
such an effect was either not significant or much smaller.
Kaplan et al. (2017) found that the bilateral TPJ, posterior medial
cortices and medial prefrontal cortex showed stronger activa-
tion to narratives containing protected values (core personal,
national or religious values that are non-negotiable) than to
control narratives, and the effect was most pronounced dur-
ing the ending segment of the narrative. Therefore, the findings
of our parametric modelling analysis provided a new and con-
vergent piece of evidence that the bilateral TPJ may support
narrative-level social semantic processing.

Another important question that should be investigated
in future is how non-social semantic information, such as
sensory-motor semantic information, is accumulated in lan-
guage comprehension. The brain areas that integrate sensory-
motor semantic information are mainly distributed in the
parahippocampal gyrus, retrosplenial cortex and temporal-
parietal-occipital junction (Fernandino et al., 2016; Lin et al.,
2018a). Although these areas were seldom reported in previ-
ous studies of sentence and discourse comprehension (Walenski
et al., 2019; Yang et al., 2019), a recent study has reported their
selective activation in reading vivid passages (Tamir et al., 2016).
In addition, these areas are also known to support scene con-
struction (Hassabis and Maguire, 2009). Therefore, future stud-
ies may examine whether and how these areas accumulate

sensory semantic information using texts that describe scenes
or images.

Conclusion

We found that the social semantic network showed stronger
social semantic activation in sentence and narrative reading
than in word-list reading, and during sentence and narrative
reading, the social semantic network showed higher sensitivity
to the holistic social semantic richness of the stimuli than to the
social semantic richness of the constitutive words. These two
findings convergently indicate that the social semantic network
is involved in social semantic accumulation during language
comprehension.
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