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Introduction: Several studies reported dysregulated protein levels of brain-derived

neurotrophic factor (BDNF) in smokers and during cessation. However, the epigenetic

regulation of the BDNF gene has not yet been investigated. We measured the plasma

levels of BDNF and the epigenetic regulation of exon IV of the BDNF gene in smokers

compared to healthy controls over a cessation period of 14 days.

Method: We measured BDNF plasma levels and BDNF promoter methylation in 49

smokers and 51 non-smokers at baseline, day 7, and day 14 of smoking cessation.

Mean methylation levels of 11 Cytosine Guanosine dinucleotides of exon IV of the BDNF

gene were determined via bisulfite sequencing.

Results: BDNF plasma andmethylation levels were significantly lower in healthy controls

when compared with smokers across all time points. BDNF levels for smokers decreased

significantly during the cessation period. Comparing the sexes, female smokers showed

significantly lower plasma BDNF levels than healthy controls at baseline and over 14 days

of cessation. Male and female smokers showed significantly higher mean methylation

rates than non-smokers at baseline. In male smokers, meanmethylation levels decreased

significantly during the cessation period.

Conclusion: Our findings replicate the findings of previous studies that BDNF plasma

levels are altered in smokers. Furthermore, BDNF expression and gene methylation

are altered during the first 14 days of cessation. Our novel findings of dysregulated

methylation patterns in exon IV of the BDNF gene further support the thesis that BDNF

plays a role in nicotine dependence.
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INTRODUCTION

Cigarette smoking is one of the leading preventable causes of
related chronic diseases and deaths worldwide (1). Nicotine
is the main psychoactive component of tobacco that affects
many neurotransmitter systems and other factors such as brain-
derived neurotrophic factor (BDNF) (2). BDNF, a member of the
neurotrophin family (3), is abundantly expressed in the central
and peripheral nervous systems (4, 5) as well as peripheral tissue
such as platelets (6). It is involved in many critical neuronal
processes like developing and regulating neuro (7)-, glio (8)- and
synaptogenesis (9). As a promoter of neurite growth, it fosters
physiological neuronal system development (7).

Brain-derived neurotrophic factor also modulates diverse
neurotransmitter systems like glutamatergic, dopaminergic, and
serotonergic systems (10). Peripheral BDNF can be analyzed
in plasma and serum and some studies reported a positive
correlation with brain BDNF (11, 12). Thus, depending on the
context, changes in peripheral BDNF can, to a limited extent, be
used as surrogates of brain changes. Earlier studies supported
evidence that BDNF plays a crucial role in several substance
addictions, such as alcohol, cocaine, and methamphetamine
addiction (13). In the context of nicotine dependence, several
animal studies suggest that BDNF is functionally involved (2).
Previous studies in humans showed that peripheral BDNF levels
are altered in smokers compared to non-smokers. While the first
two studies showed a decrease in BDNF in smokers (14, 15), all
subsequent studies observed an increase in BDNF protein levels
in smokers (16–18).

Furthermore, studies have also investigated methylation of
BDNF promoter I in major depressive disorder, showing an
association between neurocognitive performance and two BDNF
SNPs, while methylation levels mediated this effect at specific
sites of promoter I (19). In another study, higher BDNF
methylation levels at exon I and exon IV were associated with
major depression (20). According to Ikegame et al., patients
suffering from mental disorders generally show decreased neural
BDNF levels, which are often – but not always – associated
with DNA methylation at specific BDNF promoter regions (21).
Hence, we assumed that changes in plasma BDNF levels would

TABLE 1 | Demographics.

Age BMI Cigarettes/Day QSU score Fagerström

Count (N) Mean SD N Mean SD N Mean SD N Mean SD N Mean SD N

Controls

Male 25 25.17 7.54 24 24.09 2.70 25

Female 26 27.42 7.12 26 22.17 3.20 26

Smokers

Male 29 29.56 10.08 25 26.61 4.12 25 11.40 7.26 25 70 28 29 2 2 29

Female 20 33.44 9.56 18 23.53 3.69 20 12.72 7.89 18 64 17 20 3 2 20

Some smokers and controls did not report age and BMI. For our Analysis of promoter methylation and BDNF plasma levels we included all samples with valid values (49 smokers vs.

51 controls).

BMI, body mass index; N, number; QSU, questionnaire of smoking urges; SD, standard deviation.

be related to changes in the methylation status of the BDNF
promoters. However, to the best of our knowledge, no studies
have investigated the epigenetic regulation of the BDNF gene
in the context of nicotine dependence and smoking cessation.
We hypothesized that plasma BDNF levels would be associated
with methylation levels at exon IV promoter of BDNF and
that changes in protein levels would be associated with changes
in methylation levels over the cessation period. This study
investigates plasma BDNF levels andmethylation rates of exon IV
of the BDNF gene in smokers compared to healthy non-smokers
at baseline and over a cessation period of 14 days.

MATERIALS AND METHODS

This study adhered to the Declaration of Helsinki and was
approved by the local Ethics Committee of Hannover Medical
School (approval number: 6695). We included 49 smokers
with nicotine dependence as defined by the International
Classification of Diseases and Diagnostics (ICD-10) and
Statistical Manual of Mental Disorders (DSM IV) (Table 1).
As controls, 51 healthy non-smokers were recruited. All
participants in this study gave written informed consent.
Exclusion criteria were concomitant psychiatric illness,
other substance or alcohol abuse or dependence, cerebral
ischemia, cerebral hemorrhage, epilepsy, cardiovascular
and renal diseases, age under 18 years, pregnancy, and
nicotine replacement therapy. Inclusion criteria were age
18–65 years and current smoker (minimum seven cigarettes
per week or one cigarette a day). The severity of nicotine
addiction was measured using the Fagerström-Test, while
craving was assessed using the Questionnaire of Smoking
Urges (QSU).

All smokers underwent a detailed physical examination,
routine laboratory testing, and urine drug screening. Fasting
blood samples and cotinine to check for relapse were drawn
from nicotine-dependent smokers and the controls on days
1, 7, and 14 (t0, t7, t14) of abstinence between 8:00 and
10:00 a.m. We choose a period of 2 weeks since withdrawal
symptoms tend to peak during the first week and can last
up to four more weeks (22). In a different study, the authors
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have observed changes in mean methylation of the BDNF
promoter over 14 days in smokers during alcohol withdrawal
therapy (23). All blood samples were anti-coagulated with
sodium EDTA. Plasma was separated in a centrifuge at 4,000 g,
and the aliquots were stored at −80◦C. BDNF plasma levels
were measured using the Quantikine Total BDNF ELISA
(Cat# DBNT00, R&D Systems, Minneapolis, USA). As the
sample count exceeded assay size, we decided to measure
samples from equal time points on one plate, applying the
same standard to every measurement. DNA for methylation
analysis was extracted from blood using the NucleoMag 200
kit (Macherey&Nagel, Düren, Germany). Bisulfite conversion
and purification were performed using the EpiTect R©96
Bisulfite Kit 142 (Qiagen, Hilden, Germany) following the
manufacturer’s recommendations. A detailed protocol of
bisulfite sequencing and determination of methylation rates is
provided in Supplemental File 1.

BDNF Exon IV
The BDNF gene has 11 exons and nine functional promoters
(24). We investigated BDNF exon IV since it has been extensively
studied in psychiatric research, mainly in the context of
depression (25).

Statistical Analysis
All statistical analyses were performed using the Statistical
Package for Social Sciences 26 (SPSS, IBM, Armonk, NY, USA).
GraphPad Prism 9 (SanDiego, California, USA) was used for data
illustration. As normality was not present in both methylation
data and ELISA measurements, we used the Kruskal–Wallis Test
to test for differences across controls and smokers. For pairwise
comparisons, we performed Dunn’s post hoc test with Bonferroni
correction for multiple comparisons in independent samples to
compare healthy controls with smokers. To measure changes
across time points in the smokers’ groups we used Friedman’s
Test for dependent samples, followed by Dunn’s Test for
pairwise comparison while controlling for multiple testing using
Bonferroni correction. For bivariate correlations, we applied the
Spearman method as a non-parametric option, accordingly.

RESULTS

BMI
BMI was significantly lower in controls compared with smokers
across all time points (H (3) = 13.45, P = 0.004). Furthermore,
BMI was significantly lower in controls when compared with t0,
t7, t14 (H (1) = −29.76, P = 0.04; H (1) = −33.05, P = 0.015; H
(1) = −32.24, P = 0.014). In males, BMI was significantly lower
in controls when compared to smokers across time points (H (3)
= 10.55, P = 0.014), while there was no difference for females.
Furthermore, BMI was significantly lower in male controls when
compared with t0, and t14 (H (1) = −21.87, P = 0.046; H (1) =
−21.92, P = 0.042).

Peripheral BDNF Levels
BDNF plasma levels were significantly lower in controls when
compared to smokers across timepoints (H (3) = 16.56, P =

0.001). Furthermore, BDNF levels were significantly lower in
controls when compared with t0, t7, t14 (z = −42.64, P = 0.001;
z = −35.50, P = 0.011; z = −31.30, P = 0.035). In smokers, no
significant change was observed during withdrawal.

In females, BDNF plasma levels were significantly lower in
controls when compared to smokers across timepoints (H (3) =
26.79, P < 0.001). While there was no difference for males, BDNF
levels were significantly lower in female controls when compared
with female smokers at t0, t7, t14 (z = −33.09, P < 0.001; z =

−29.17, P = 0.001; z =−26.82, P = 0.002; see Figure 1).
BDNF levels decreased significantly during the cessation

period (χ² (2) = 7.46, P = 0.024). Using pairwise comparison,
BDNF levels were significantly lower at T14 compared with T0
(P = 0.04; see Figure 1).

In females, BDNF levels decreased significantly during the
cessation period (χ² (2) = 6.10, P = 0.047). There was no
significant difference when comparing different timepoints after
the Bonferroni correction (see Figure 1).

Methylation Analysis
As a first step, we investigated differences in methylation
levels at specific CpG islands of the promoter region of exon
IV. Comparison of specific CpGs did reveal no significant
differences between healthy controls and smokers (see
Supplementary Figure S1). We further compared mean
methylation of exon IV promoter for the two groups and
genders. Mean methylation levels were significantly lower in
controls when compared to smokers across time points (H (3) =
21.07, P < 0.001). Furthermore, mean methylation significantly
lower in controls when compared with t0, t7, t14 (z = −49.56,
P < 0.0001; z = −30.55, P = 0.044; z = −38.59, P = 0.004). In
smokers, no significant change was observed during withdrawal.

In males and females, mean methylation levels were
significantly lower in controls when compared to smokers across
time points (H (3) = 9.65, P = 0.022; H (3) = 18.63, P
< 0.001, respectively). Furthermore, mean methylation levels
were significantly lower in female controls when compared with
female smokers at t0, t7, t14 (z = −24.09, P = 0.006; z =

−27.69, P = 0.001; z = −22.76, P = 0.012) and in male controls
when compared with male smokers at t0 (H (1) = −23.690,
P < 0.05; Figure 2).

Across smokers, there was no significant change in mean
methylation levels during the cessation period. In male smokers,
mean methylation levels decreased significantly during the
cessation period (χ² (2) = 6.07, P = 0.048). Furthermore,
using the non-parametric ’Dunn’s test, mean methylation was
significantly lower at T7 when compared with T0 (P = 0.045).
Of note, there was no difference between T0 and T14 as well as
between T7 and T14 (Figure 2).

Association Between Craving and Mean
Methylation
We used Spearman’s correlation analysis to analyze a relationship
between mean methylation, BDNF plasma levels, and
questionnaire of smoking urges (QSU) scores at all three
time points. Here, we found a positive association between the
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FIGURE 1 | BDNF protein levels of male (A) and female (B) smokers at baseline, day 7 and day 14 of cessation vs. healthy controls. BDNF, brain-derived neurotrophic

factor; CTRL, healthy controls; T0, first day of cessation; T7, day 7 of cessation; T14, day 14 of cessation. Significant differences are indicated by asterisks (P ≤ 0.05*).

FIGURE 2 | Mean methylation levels of exon IV in BDNF gene of male and female smokers at baseline, day 7 and day 14 of cessation vs. healthy controls. BDNF,

brain-derived neurotrophic factor; CTRL, healthy controls; T0, first day of cessation; T7, day 7 of cessation; T14, day 14 of cessation. Significant differences are

indicated by asterisks (P ≤ 0.05*). BDNF protein levels of male (A) and female (B) smokers at baseline.

QSU (subtest 2) and the total QSU score with mean methylation
(r(145)= 0.228, P= 0.06; r(145)= 0.191, P= 0.02, respectively).

Association Between Addiction Severity
and Methylation
We used the Fagerström test for nicotine dependence (FTND)
to assess how BDNF promoter methylation and protein levels
related to addiction severity (26). Nonparametric correlation
analysis revealed a significant correlation of both methylation (r
(47) = 0.322, P = 0.024) and protein levels (r (47) = 0.362, P
= 0.011) at time point t14. Plotting these correlations, however,
did not reveal a significant association between addiction severity
and methylation (r > 0.098; Supplementary Figure S2). Also,
using the classification from the previous study [1 (FTND < 3), 2
(FTND= 3–4), 3 (FTND> 4)], groups did not differ significantly
when put in relation to either protein levels or mean promoter
fragment methylation (data not shown).

Correlation Between BMI, Mean
Methylation and BDNF Levels
Using Spearman’s Correlation Coefficient, BMI showed no
association with BDNF plasma levels and mean methylation
across the whole sample (controls, smokers at t0, t7, and t14).

DISCUSSION

As we expected BDNF levels to be altered by addiction and
within the cessation period of 14 days, we investigated the effect
of smoking cessation on plasma BDNF levels and methylation
of exon IV of the BDNF gene. BDNF plasma and methylation
levels were significantly higher in smokers when compared
with controls across all time points. Mean methylation was
significantly higher in smokers when compared with healthy
controls across all time points. Also, female smokers showed
significantly lower plasma BDNF levels than healthy controls at
baseline and over 14 days of cessation.

Dysregulation of BDNF in Nicotine
Dependence
Our findings indicate that BDNF could be dysregulated in
smokers, while there was no significant change in methylation
rates during cessation in both sexes across all time points. We
found significant differences in males when comparing day 1 and
7 methylation percentages. Meanwhile, we observed significantly
decreasing BDNF protein levels, even though we found no
corresponding change in methylation, indicating a complex
regulation of which methylation is only one contributing
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influence. In male smokers, mean methylation levels decreased
significantly during the early cessation period (day 1 and 7)
and then regressed to the first value. In female smokers, BDNF
levels decreased significantly over the whole cessation period.
Taken together, our results suggest that BDNF plasma expression
and mean methylation are influenced by smoking as well as
smoking cessation.

Interestingly, we found a positive association between mean
methylation levels and craving across all time points. Even
though this finding points to a possible influence of methylation
levels on craving, the effect sizes are only small. We would
therefore interpret this very interesting result as a trend that
needs future investigations.

Furthermore, BDNF could be involved in the steps of a
cascade of several dysregulated pathways involved in nicotine
dependence. Several studies investigated the effect of smoking
on peripheral BDNF levels (14–18), while most studies showed
an increase of peripheral BDNF in smokers compared to non-
smokers, which is in line with our findings of elevated BDNF
levels in smokers. Further investigation is needed to validate
methylation and plasma expression levels of BDNF over a longer
period than 14 days, especially to investigate whether BDNF
levels approach levels of non-smokers.

Influence of BMI on BDNF
There is evidence that plasma BDNF levels vary in relation
to body weight in females (27). In the present study, BMI
levels were not associated with plasma BDNF levels and
significantly lower in controls compared with smokers. Since
our assumptions for performing parametric tests were not
met, we could not perform an analysis of covariance to
identify a possible influence of BMI on BDNF levels. In line
with previous findings, one possible explanation is that BMI
differences could explain our varying results. However, since
several factors influence BMI while BDNF seems to be associated
with addictive behavior predominantly, it is possible that the
changes could be due to cessation. This is also highlighted by
the fact that BDNF levels decreased significantly during the
observation period.

Factors Influencing BDNF Expression
Increasing evidence has shown that sociodemographic variables
and lifestyle factors such as food and alcohol intake influence
peripheral BDNF levels (28). In one study on BDNF, the
authors concluded that future studies should consider correcting
for the time of blood withdrawal, storage, urbanicity, age,
sex, smoking status and food and alcohol intake (28). In
the present study, we accounted for some of the mentioned
variables by performing blood withdrawal and immediately
(>2 h) storing all samples in a specific manner (s. methods).
As we could not include the potential influence of age and sex
in the main analysis, we validated the role of these variables
for methylation by correlation analysis and could not see an
influence (data not shown). Furthermore, we did not specifically
assess urbanicity, food, or alcohol intake. Regarding sex, one
study on the association between BDNF levels and major
depressive disorder reported that, in females, BDNF levels decline

with age while remaining stable in males. Furthermore, after
controlling for gender and age, the assays showed lower serum
BDNF levels being associated with higher depression scores.
Interestingly, in this study the effects remained significant after
correction for withdrawal time and smoking (29). Here we
found peripheral BDNF levels to decrease during the cessation
in females but not in males. In conjunction with the discussed
evidence, our results suggest possible gender-specific differences.
Due to the non-parametric nature of our data, we did not
conduct further analysis to identify a possible influence of
age and gender on protein or methylation levels. Respectively,
one study has argued that BDNF levels are generally not
normally distributed (30), and thus Gass and Hellweg (31)
conclude that small studies using parametric tests could therefore
be misleading.

BDNF Methylation or Expression and
Addiction Severity
Both QSU and FTND show slight aspects of association upon
initial correlation but fail to reveal substantial predictive value
for both addiction severity and craving. This is in part due to
the small cohort, where stratification is limited. With BDNF
changes being at the periphery of the regulatory processes that
are involved in reward circuitry regulation, variance is likely to
be increased and therefore requiring bigger cohorts to justify
reliable interpretation.

The Role of Peripheral BDNF Levels for
Regulation in the Brain
From studies in rodents, peripheral and brain BDNF protein
levels appear to correlate (11, 12). For the human brain, levels are
different in distinct brain areas (32) and research has shown both
evidence supporting and contradicting a correlation between
central and peripheral BDNF-levels (33). We, therefore, do not
associate methylation and peripheral expression levels with the
situation in the addicted brain. Of note, circulating BDNF levels
have been suggested to be associated with cognitive function,
with lower levels being found in patients with amnestic mild
cognitive impairment (34). Thus, differences in peripheral levels
could be partly explained by molecular differences leading to
cognitive function. This is important since a prospective study
by Vermeulen et al. (35) on the association between smoking
behavior and cognitive function in patients with psychosis,
their siblings, and healthy controls has shown that smoking
is associated with poorer cognitive function in each group
compared with nonsmoking. The mean age in our study
was similar to that in this study by Vermeulen et al. (35),
highlighting this critical factor influencing BDNF levels. In
contrast, a recent review concluded that BDNF is dysregulated
in many pathological conditions and cannot be regarded as a
valid biomarker but a marker related to mnemonic symptoms’
occurrence or progression (32).

Concerning peripheral BDNF levels in major depression,
one review has highlighted platelet function as a possible
confounding factor influencing BDNF measurement, with
platelets being the major source of peripheral BDNF (33). Since
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cigarette smoke is well known to affect platelet function (36–38),
a recent study has shown that platelet-derived BDNF regulates
tissue factor expression and that cigarette smoke stimulates pro-
atherothrombotic states (39). Also, human platelets treated with
an aqueous extract of cigarette smoke released BDNF in a dose-
dependent manner (39). Therefore, smoking cessation might
influence platelet function and, in consequence, BDNF-level
expression, while the kinetics of these effects remain unclear.
The significantly higher BDNF levels we found in smokers
could be caused by the effect of smoking on platelet function.
Furthermore, it seems possible that the normalization of platelet
function could partly explain the significant change in BDNF
levels during cessation groups.

Peripheral BDNF as a Potential Biomarker
As reduced BDNF is associated with several mental disorders, its
role as a possible biomarker has been studied extensively (31).
Several studies have shown that BDNF levels are decreased in
mental disorders such as depression (40), schizophrenia (41, 42),
anxiety disorders (43), and cognitive impairment (44), to name a
few. According to Gass and Hellweg (31), one explanation could
be that affective disorders share the common contributing and
sustaining factor stress which is well known to influence BDNF
levels, regulation, and signaling (45–48). One recent and rigorous
review has proposed a BDNF stress-sensitivity hypothesis. The
authors argue that disruption of endogenous BDNF activity by
factors potentiates sensitivity to stress and vulnerability to stress-
inducible illnesses and propose mechanisms by which BDNF
may induce plasticity to promote fear and trauma while enabling
adaptive plasticity during extinction learning (49). It is fair to
conclude that alterations in BDNF levels are neither disease
nor treatment specific since stress is a major factor in mental
disorders. However, the differences observed in our study could
partly be explained by smoking cessation being the altered factor
in smokers, even though we were not able to control for all
relevant confounding variables.

Limitations
The present study has several limitations. The reported BDNF
levels could partly be explained by differences in BMI, since we
could not perform an analysis of covariance. Nonetheless and
of note, BMI did not correlate with BDNF plasma expression,
suggesting that the differences found could be explained by
smoking cessation. One explanation could be the relatively small
sample size and the fact that we used non-parametric tests with
lower power than parametric tests. Since we did not assess platelet
count, we cannot perform further analysis to identify a possible
influence of platelet count on BDNF expression levels and
promoter methylation. In addition, we were only able to control
for some of the previously mentioned confounding variables
(Section Factors Influencing BDNF Expression).

Furthermore, we only investigated exon IV as being the
most prevalent target in psychiatric research. While it is
also worth noting that two studies reported opposing results,
namely decreased BDNF levels in smokers, those studies also
showed an increase of BDNF levels over 2–3 months (15). In
contrast to these findings, we did not observe any convergence

of BDNF levels with controls, supposedly due to the short
observation period of 14 days of cessation. Since physical nicotine
detoxification can last around 4 weeks and be associated with
psychiatric side effects, it is essential to investigate BDNF levels
and promoter methylation during a more extended follow-up
period while correlating changes in methylation and plasma
levels with psychometric parameters. In our study we put
emphasis on those smokers that remained abstinent over the
period of 14 days. Thus, we were not able to differentiate between
abstainers and relapsers to analyze a possible role of BDNF as
relapse marker, which should be done in future studies.

CONCLUSION

Our findings replicate those of previous studies that peripheral
BDNF is elevated in smokers. Also, BDNF levels decreased
during the short cessation period. Our novel findings of
dysregulated methylation patterns in exon IV of the BDNF
gene further support the hypothesis that epigenetic regulation of
BDNF plays a role in nicotine dependence in a gender-dependent
manner. Should further studies confirm these results, measuring
BDNF promoter IV methylation to determine addiction severity
and relapse probability could be a sensitive readout for the
clinical application that could enhance therapy and indicate the
efficacy of relapse prevention.
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Supplementary Figure S1 | Detailed CpG methylation for the analyzed promoter

fragment of the BDNFIV exon. (A) Overview of mean methylation (y-axis) per CpG

(x-axis) for Controls (blue) and patient timepoints (T0-green, T7-dark red,

T14-bright red). (B,C) Provide the gender-specific display of all CpGs.As the

general trend of the majority of CpGs is represented in the mean values for the

whole fragment, we refrained from looking at a detailed comparison of certain

positions for analysis. Error bars are ±1 SEM.

Supplementary Figure S2 | Comparison of methylation and protein levels with

the Fagerström questionnaire results (FTND). (A) Nonparametric Spearman

Correlation of Protein levels (BDNF_E), mean methylation (mean_meth), FTND and

FTND binning for groups defined by Lesch et al. (>3 = 1, 3–4 = 2, >4 = 3, FTND

Lesch). (B) Display of mean methylation values for the three Lesch FTND groups

divided by timepoint (T0-green, T7-dark red, T14-bright red). (C–H) Plot of mean

methylation (C–E) and protein levels (F–H) against the FTND questionnaire results.

Regression means with R square values for total trend and according to sex are

given for each timepoint.
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