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Abstract

Aim: To retrospectively investigate the changes of SpO2 and respiratory drive in preterm infants at birth after administration
of 100% oxygen.

Methods: Respiratory parameters, FiO2 and oximetry of infants ,32 weeks gestation before and after receiving FiO2 1.0
were reviewed during continuous positive airway pressure (CPAP) or positive pressure ventilation (PPV).

Results: Results are given as median (IQR) or percentages where appropriate. Suitable recordings were made in 50 infants
(GA 27 (26–29) weeks), 17 received CPAP and 33 PPV. SpO2 increased rapidly in the first minute after FiO2 1.0 and remained
stable. The duration of FiO2 1.0 tended to be shorter in the CPAP group than in the PPV group (CPAP vs. PPV: 65 (33–105) vs.
100 (40–280) s; p = 0.05), SpO2 .95% occurred more often in PPV group (53% vs. 69%) and lasted longer (70(40–95) vs.
120(50–202) s). In CPAP group, minute volume increased from 134 (76–265) mL/kg/min 1 minute before to 240 (157–370)
mL/kg/min (p,0.01) 1 minute after start FiO2 1.0 and remained stable at 2 minutes (252 (135–376) mL/kg/min; ns). The rate
of rise to maximum tidal volume increased (from 13.8 (8.0–22.4) mL/kg/s to 18.2 (11.0–27.5) mL/kg/s; p,0.0001) to 18.8
(11.8–27.8) mL/kg/s; ns). In the PPV group respiratory rate increased from 0(0–4) to 9(0–20) at 1 minute (p,0.001) to 23 (0–
34) breaths per minute at 2 minutes (p,0.01).

Conclusion: In preterm infants at birth, a rapid increase in oxygenation, resulting from a transient increase to 100% oxygen
might improve respiratory drive, but increases the risk for hyperoxia.
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Introduction

Hyperoxemia may lead to hyperoxia causing oxidative stress

and tissue injury which should be avoided in infants at birth [1,2].

Meta-analyses indicate that resuscitation of term infants at birth

with air significantly reduced mortality compared with those

resuscitated with fraction of inspired oxygen (FiO2) of 1.0 [1–6].

International resuscitation guidelines now recommend term

infants should start in air [2,7,8]. Less clinical data are available

for preterm infants, but guidelines now recommend to use oxygen

judiciously during stabilization of preterm infants at birth [2,7–9].

Since SpO2 percentiles were introduced [10] lower SpO2-

targets in the first minutes after birth are accepted. However,

hypoxia inhibits breathing movements in the fetus [11]. Although

O2 sensitivity of infants changes in days-weeks after birth [12] and

most preterm infants breathe at birth [13,14], it is not known when

the hypoxia-mediated switch from respiratory suppression to

stimulation occurs. Possibly hypoxia immediately after birth will

produce a weakened or absent respiratory drive as shown in

preterm lambs [12]. In contrast, it has been shown in asphyxiated

term infants [15] and animals [16] that applying 100% oxygen

with no titration delayed the time of the first breath.

From 2008 until 2010, the local guidelines of the Royal

Women’s Hospital (Melbourne, Australia) and the Leiden

University Medical Center (Leiden, the Netherlands) recom-

mended starting in air and switching to FiO2 1.0 if needed and

then titrating down in preterm infants at birth. An oxygen

saturation (SpO2) #70% at 5 minutes was used to increase FiO2

[10]. The immediate switch to 100% was a pragmatic choice, but

immediate FiO2 reduction was advocated once the infant was

stabilized.

Our aim was to investigate the change in SpO2 and respiratory

drive in preterm infants right after birth in the delivery room after

switching from air to FiO2 1.0.

Methods

The local institutional review boards (IRBs) of the Leiden

University Medical Center (Commissie Medische Ethiek, Leids

Universitair Medisch Centrum) and Royal Women’s Hospital (the
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Human Research Ethics Committee, Royal Woman’s Hospital)

approved physiological- and video recordings at birth in the

delivery room when respiratory support was necessary for research

purposes. Written parental consent to use the recordings for

research was obtained after birth. A retrospective study was

performed in both hospitals with data collected between 2008 and

2010. During the period of data collection local guidelines

recommended that support was started with air and switched to

FiO2 1.0 when: 1) cardiac massage was needed, 2) positive

pressure ventilation (PPV) was administered for 1 minute and

heart rate (HR) was ,100 beats per minute (bpm) or 3) SpO2

,70% at 5 minutes. FiO2 was then titrated down as quickly as

possible (when SpO2 .90%). Recordings were only made when

the research team was available.

Respiratory support was delivered with a T-piece resuscitator

(Neopuff, Fisher & Paykel, Wellington, New Zealand) and face

mask. Local resuscitation guidelines recommended to start PPV

(20–25/5 cmH2O) in preterm infants during apnea or

HR,100 bpm. In breathing infants and HR.100 bpm, CPAP

(5–6 cmH2O) is given. Changing pressures was left to the

discretion of the caregiver.

The use of a respiratory monitor (Acutronic Medical Systems

AG, Hirzel, Switzerland), a Masimo SET pulse oximeter (Masimo

Radical, Masimo Corporation, Irvine CA, USA), an oxylog

(Teledyne, Poway CA, USA) and Spectra program (Spectra,

Grove Medical Limited, Hampton, UK) for physiological record-

ings has been described in detail in previous publications [13].

All recordings of infants born at ,32 weeks gestation between

2008 and 2010 were reviewed. Using video and respiratory

function monitoring other interventions were identified performed

during the analyzed period. Infants receiving FiO2 1.0 were

identified and divided into two groups. This was based on the type

of respiratory support they received around the time point FiO2

1.0 was started: group 1) infants were breathing on continuous

positive airway pressure (CPAP) and group 2) received positive

pressure ventilation (PPV).

In all infants we recorded when FiO2 was increased to 1.0, for

what reason(s) (e.g. low HR, low SpO2), duration and the

downward titration rate of FiO2 1.0. Furthermore we noted the

increase in SpO2 duration of SpO2 .95%. We used SpO2 .95%

as an indication for increased risk for hyperoxia.

In group 1 (CPAP group) the effect of FiO2 1.0 on respiratory

drive was investigated. To measure the change in respiratory

effort, we analyzed the respiratory rate (RR), expired tidal volume

(Vte), minute volume (MV) and the rate of rise to maximum tidal

volume (mL/kg/second) during inspiration from 1 minute before

until two minutes after starting FiO2 1.0 (which served as a control

period). To measure the maximum rate of tidal volume increase

we used spontaneous breaths without mask leak (Vti = Vte).

In group 2 (PPV group) the tidal volumes and rate of rise will be

influenced by the positive pressure ventilation given and we only

analyzed RR of the spontaneous breaths from 1 minute before

until two minutes after starting FiO2 1.0. Breaths in between and

coinciding with inflations were identified according to previous

described methods [15]. In apneic infants, starting time of

breathing was noted.

As changing of FiO2 can influence flow and volume measure-

ments [17–19], the respiratory monitor was tested in vitro by

delivering a constant tidal volume using a glass syringe and

different gas conditions. The results were used to give the following

corrections: at FiO2 1.0, both inspired and expired tidal volumes

were corrected by 26% when using cold dry gas and by 210%

when heated gas was used.

Data are presented as mean (6 SD) or median (IQR) where

appropriate. Differences were analyzed with a paired samples t-

test for parametric data or a Wilcoxon signed rank test for non-

parametric data where appropriate using (SPSS for Windows,

version 17.0.0, Chicago, IL, USA). A two-sided p-value ,0.05 was

considered statistically significant.

Results

Data from 80 recorded infants were reviewed, 30 were excluded

(no respiratory support (n = 10), no supplemental oxygen (n = 7),

low quality recordings (n = 12) and 1 infant was born dead). Thus,

50 infants with GA 27 (26–29) weeks were analyzed (table 1);

during the study window (1 minute before–2 minutes after start of

oxygen) 17 breathed on CPAP (CPAP-group) and 33 received

PPV (PPV-group).

The infants in the CPAP-group did not receive PPV during or

after the study window. In both groups ventilation pressures were

not increased during the study window. (pressures given: CPAP-

group CPAP level 5.3 (4.6–5.9) cmH2O, PPV-group; PIP 21.6

(20.3–24.9) cmH2O and PEEP 4.2 (3.5–4.7) cmH2O) and no

readjustments of mask position were observed. After the study

window 1 infant of the CPAP-group was intubated, but reason was

unclear. In the PPV-group, 5 infants were intubated after the study

window for apnea and low SpO2 despite FiO2 1.0. Cardiac

massage was not provided to any infant.

Supplemental oxygen
In the CPAP-group FiO2 1.0 was started 300 (225–315) seconds

after birth and was given for 65 (33–105) seconds. FiO2 was

Table 1. Baseline characteristics for preterm infants breathing on CPAP and infants receiving positive pressure ventilation when a
FiO2 of 1.0 was started.

Characteristics breathing on CPAP Positive pressure ventilation p-value

N = 17 N = 33

Gestational age, wk, mean (SD) 28.9 (1.5) 27.1 (2.1) ,0.01

Birth weight, g, mean (SD) 1073 (227) 993 (311) ,0.0001

Male Sex (%) 10 (60) 16 (49) ns

Caesarean (%) 8 (47) 18 (54) ns

Apgar at 1 min, median (IQR) 6 (5–7) 4 (2–6) ,0.05

Apgar at 5 min, median (IQR) 8 (8–8) 7 (6–8) ,0.05

doi:10.1371/journal.pone.0076898.t001
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weaned in 20 (5–60) seconds to 21 (21–21) %. In all infants oxygen

was started for low SpO2 and HR was .100 bpm.

In the PPV-group FiO2 1.0 was started 180 (120–270) seconds

after birth and was given for 100 (40–280) seconds. FiO2 was

weaned in 25 (10–47) seconds to 21 (21–30)%.

Oxygen saturation
In all patients the fastest increase in SpO2 occurred in the first

minute after starting oxygen (figure 1) (CPAP-group: from 62

(16)% to 87 (12)% at 1 minute after and to 93 (5)% at 2 minutes

after starting oxygen, PPV-group: from 45 (19)% to 80 (24)%

(p,0.001) after 1 minute and to 87 (19)% after 2 minutes

(figure 1).

SpO2 .95% occurred in 9/17 (53%) infants of in group 1 and

in 23/33 (69%) infants of group 2. The starting point and duration

of SpO2 .95% are depicted in figure 2

Changes on respiratory drive when breathing on CPAP
In the CPAP-group, increasing FiO2 to 1.0 increased RR from

30 (18–41) 1 min before to 35 (24–45) breaths per minute (ns)

1 minute after to 39 (31–44) breaths per minute (p,0.05) in the

2nd minute.

Vte and MV increased significantly in 1st minute after

increasing FiO2 to 1.0 and remained stable in the 2nd minute

(Vte: from 4.9 (2.3–8.8) mL/kg to 6.7 (3.6–10.4) mL/kg (p,0.001)

to 6.5 (3.7–10.2) mL/kg (ns); MV: from 134 (76–265) mL/kg/min

to 240 (157–370) mL/kg/min (p,0.01) to 252 (135–376) mL/kg/

min (ns)).

The rate of rise to maximum tidal volume increased from 13.8

(8.0–22.4) mL/kg/s in the minute before to 18.2 (11.0–27.5) mL/

kg/s (p,0.0001) in the minute after increasing FiO2 to 1.0 and

remained stable at 18.8 (11.8–27.8) mL/kg/s (ns) in the 2nd

minute.

Changes on respiratory drive when receiving PPV
PPV was given in 23 apneic infants and in 10 infants for poor

respiratory drive. Apneic infants started breathing 80 (50–180)s

after FiO2 1.0 and at that moment SpO2 was 87% (11) and HR

147 (19) bpm.

RR increased from 0 (0–4) 1 min before to 9 (0–20) breaths per

minute (p,0.001) 1 minute after to 23 (0–34) breaths per minute

(p,0.01) in the 2nd minute after switching to FiO2 1.0.

Discussion

We investigated the influence of switching from air to FiO2 1.0

on SpO2 and respiratory drive in preterm infants at birth. Most

infants with SpO2 near the 10th percentile had a good HR but

FiO2 was increased to 1.0 because of low SpO2. After increasing

Figure 1. Oxygen saturation (%) of infants on CPAP and infants needing PPV in the minute before and 2 minutes after start of FiO2

1.0. Black = CPAP-group, light grey = PPV-group, (A) minute before start FiO2 1.0, (B) first minute after start FiO2 1.0, (C) second minute after start FiO2

1.0.
doi:10.1371/journal.pone.0076898.g001

Effect of Oxygen in Preterm Infants at Birth

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e76898



FiO2 to 1.0, respiratory drive improved simultaneously with a

rapid increase in SpO2. However, SpO2 .95% occurred in the

majority of infants, especially in the infants who received PPV,

which probably reflects the difficulty of simultaneously performing

PPV and titrating oxygen. These observations suggest that

targeting a higher percentile as currently recommended in

international guidelines [7,8] (25th–50th percentile) might improve

respiratory drive. A more stepwise increase in FiO2 and more

diligence in reducing FiO2, for example when SpO2 .85%, could

reduce the risk of hyperoxia.

We observed that preterm infants started to breathe more

vigorously, as indicated by an increased rate and effort, once FiO2

was increased and SpO2 improved. Antenatally, hypoxia sup-

presses fetal breathing movements [11] whereas postnatally

hypoxia stimulates breathing. The sensitivity increases during

days-weeks after birth [12]. However, the mechanisms driving the

large inspiratory efforts and controlling the switch to continuous

breathing after birth are unknown, although increasing arterial

PO2 may be involved [20]. We speculate that infants in our study,

who failed resuscitation with air, respiratory support was

insufficient to aerate the lung and supplemental oxygen was

required to compensate. We suggest that the resulting increase in

oxygenation increased drive from the respiratory center and

respiratory effort, which increased lung aeration and FRC. This

would explain why FiO2 1.0 was only required for a short time and

could be rapidly weaned allowing most infants to remain stable

with little extra oxygen. Although our weaning rate was fast,

studies comparing high versus moderate FiO2 levels in preterm

infants found similar levels of FiO2 at 10 minutes [9,21–23].

Experimental studies have shown that pulmonary vascular

resistance at birth is related to ventilation onset and oxygen had

little impact [24–26]. Also, Sobotka et al. found that increasing

FiO2 to 1.0 in hypoxic lambs just after birth improved blood

oxygenation, but had no effect on lung compliance and pulmonary

blood flow [25]. This supports the hypothesis that increased

oxygenation after FiO2 1.0 is achieved by increasing the partial

pressure gradient for oxygen diffusion compensating the ventila-

tion perfusion mismatch due to low FRC [25].

The reported Vte increased in infants on CPAP could be

explained by improved lung compliance. However, volume

increase occurred right after increasing FiO2 and remained stable

in the minute thereafter. Also, RR increase cannot be explained by

improving compliance. Alternatively, increased pressures could

have elevated Vte, but these remained unchanged. Increasing

FiO2 increases gas density which can influence measurements [17–

19]. However, after correction, tidal volumes remained signifi-

cantly larger after FiO2 1.0 and when considering the rate of rise is

also increased it is more likely to be the infant’s own effort.

Although studies showed it is feasible to support preterm infants

at birth with a FiO2 of ,1.0, most infants starting with low FiO2

levels needed an increased FiO2 (0.45–0.6) to reach target SpO2

levels [21,22]. However, the different approaches make it difficult

to compare these studies with our observational data reported in

this study. We often observed SpO2 below target. Therefore,

starting in air may not be the right approach. Although it is

unclear how detrimental a short period of FiO2 1.0 is at birth (1–

2 minutes), more vigilance in preventing SpO2 levels .95% is

needed [2].

Figure 2. Box plots showing median (IQR) starting time of weaning FiO2 1.0 (A), starting time of SpO2 .95%, (B) in seconds after FiO2 1.0 is started
and duration of SpO2 .95%, (C) in infants on CPAP and infants needing PPV. Grey = CPAP-group, white = PPV-group.
doi:10.1371/journal.pone.0076898.g002
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In line with our recent report [13], we observed that oxygen use

was not always according to the guidelines. Oxygen was given

earlier or later than recommended. In the PPV-group a SpO2

.95% occurred more often and lasted longer, increasing the

chances of hyperoxia. These observations may indicate the

algorithm was difficult to follow. This will become even more

difficult if separate SpO2 targets for each minute after birth are

defined and may lead to a change in focus away from adequate

ventilation. Adding an extra person to the resuscitation team could

be helpful.

Limitations
The retrospective nature of the study and the relative small

sample size precludes any hard conclusion regarding respiratory

drive and oxygenation. Recording respiratory parameters at birth

is challenging, similar studies do not include large number of

infants [27–31]. The infants included in this study is a sample of

the preterm infants born in the hospitals and a selection bias could

have occurred. However, the sample was randomly chosen as

recordings were performed if the research team was available. The

observed variation in starting time of FiO2 1.0 complicates

comparing with the respiratory drive of infants receiving air. Also,

the observational nature of this study prevented us to have a

control group of infants needing no support. However, we were

interested in the effect of FiO2 1.0 and measurements before

starting oxygen served as a control period.

Conclusions
We observed that during respiratory support of preterm infants

switching from air to FiO2 1.0 increased the risk for hyperoxia. No

hard conclusions can be drawn, but our observations might

suggest that respiratory drive increased after supplemental oxygen

was given and oxygenation improved. The role of SpO2 levels in

stimulating respiratory drive at birth merits further investigation.
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