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ABSTRACT: Osteoarthritis may result in both cartilage and subchondral
bone damage. It is a significant challenge to simultaneously repair cartilage
due to the distinct biological properties between cartilage and bone. Here,
strontium copper tetrasilicate/β-tricalcium phosphate (Wesselsite-
[SrCuSi4O10]/Ca3(PO4)2, WES-TCP) composite scaffolds with different
WES contents (1, 2, and 4 wt %) were fabricated via a three-dimensional
(3D) printing method for the osteochondral regeneration. The
physicochemical properties and biological activities of the scaffolds were
systematically investigated. 2WES-TCP (WES-TCP with 2 wt % WES)
composite scaffolds not only improved the compressive strength but also
enhanced the proliferation of both rabbit bone mesenchymal stem cells
(rBMSCs) and chondrocytes, as well as their differentiation. The in vivo
study further confirmed that WES-TCP scaffolds significantly promoted
the regeneration of both bone and cartilage tissue in rabbit osteochondral defects compared with pure TCP scaffolds owing to the
sustained and controlled release of bioactive ions (Si, Cu, and Sr) from bioactive scaffolds. These results show that 3D-printed WES-
TCP scaffolds with bilineage bioactivities take full advantage of the bifunctional properties of bioceramics to reconstruct the complex
osteochondral interface, which broadens the approach to engineering therapeutic platforms for biomedical applications.

1. INTRODUCTION
Osteoarthritis (OA) is a degenerative disease that involves
damage to articular cartilage and the underlying subchondral
bone. The loss of tissue leads to a large defect, causing pain
during movement.1 Due to significant joint pain and limited
joint mobility, the daily activities of 500 million people (7% of
the global population) are severely affected.2 Current treat-
ment strategies for OA are still problematic within the clinical
setting because of subchondral bone structural remodeling and
articular hyaline cartilage degradation.3 According to the
special biological microstructure of subchondral bone and
articular cartilage, it is a significant challenge to construct a
bioactive scaffold with the ability to simultaneously repair the
osteochondral tissue defect in tissue engineering.
The properties of bone and cartilage are different from each

other because of their specific anatomic function and structure.
Mechanically, the compressive modulus diminishes from bone
to cartilage. Biochemically, water concentration and collagen
diminish from cartilage to osseous tissue, while mineral
content increases.4 As is known, auto/allograft is a golden
standard for osteochondral regeneration.5 However, there are
some limitations, such as insufficient donator, secondary injury,
and immune rejection. Although different kinds of artificial
bone implants have been prepared to attempt to overcome the

challenge, such as polymers (poly(D,L-lactic-co-glycolic acid),
poly(caprolactone), poly(ethylene glycol), poly(glycolic acid),
etc.), metallic materials (titanium, titanium alloys, cobalt−
chromium alloy, stainless steel, etc.), and inorganic materials
(hydroxyapatite, β-tricalcium phosphate, etc).6 In addition,
two-dimensional nanomaterial-functioned PEEK implants
exhibited enhanced cytocompatibility, in vivo osseointegration,
and bone remodeling ability.7,8 However, there are a few
biomaterials that have the ability to induce the regeneration of
both cartilage and subchondral. With the development of
tissue engineering, osteochondral tissue engineering has
emerged and brought new hopes for osteochondral defect
repair.
The reconstruction of the osteochondral matrix micro-

environment is key to cartilage regeneration, and bioactive
material scaffold provides an appropriate microenvironment
for the regeneration of subchondral bone and cartilage tissues.9
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However, the three-dimensional (3D) printed monophasic
scaffold is limited by biological and mechanical properties and
cannot achieve cartilage and subchondral tissue regeneration.10

Although the 3D-printed multiphasic scaffolds can mimic the
construction of subchondral tissues and cartilage, it is
incompetent to biologically mimic the stability and integrity
of the subchondral bone and cartilage due to the complex
properties and microstructure of the bone−cartilage interface.1
In addition, the bonding strength between the two adjacent
phases is often insufficient, resulting in the separation of the
layers. Therefore, it is important to design and fabricate a
bioactive scaffold that possesses a dual-functional scaffold for
simultaneously regenerating bone and cartilage.
Strontium copper tetrasilicate (WES, SrCuSi4O10,) belongs

to the “Egyptian Blue Family” and exhibits high biocompat-
ibility both in vitro and in vivo.11 Sr is one of the alkali metals
and is an essential trace icon in the human body. It has
attracted the attention of scholars that 99.1% of absorbed Sr
element is deposited in human bones and teeth, especially
newly formed bones.12,13 Some studies have indicated that the
“dual regulation” of Sr is highly related to bone metabolism, it
can inhibit osteoclast activity for reducing bone resorption
while stimulating osteoblasts to secrete bone matrix.14−16

Recent studies demonstrated that the released Cu and Si ions
from CaCuSi4O10 could boost vascular endothelial to express
hypoxia-inducible factor-1 and growth factor for stimulating
new blood vessel formation.17,18 It has been proved that the
released bioactive ions (Si and Sr) from biomaterial scaffolds
are powerful elements for osteogenesis.19 Therefore, composite
bioceramic scaffolds may have significant potential for the
simultaneous regeneration of subchondral and cartilage tissues.
In this work, a 3D-printed composite scaffold was designed

and fabricated by the addition of WES into β-TCP
bioceramics. Such 3D-printed bioactive composite scaffolds
are expected for regenerating subchondral and cartilage tissues
attributed to the sustained release of bioactive ions. The
incorporation of WES into β-TCP improved the compressive
strength of the composite bioactive scaffolds. 3D-printed
bioceramic WES-TCP scaffolds with bilineage bioactivities
significantly enhanced the proliferation of rabbit bone
mesenchymal stem cells (rBMSCs) and chondrocytes and
improved their differentiation. Furthermore, the composite
scaffolds obviously promoted the formation of bone tissue and
cartilage tissue in vivo. Therefore, the prepared composite
scaffolds represent an intelligent strategy for osteochondral
tissue regeneration.

2. MATERIALS AND METHODS
2.1. Materials. Copper carbonate (CuCO3), strontium

carbonate (SrCO3), and silicon dioxide (SiO2) were purchased
from Aladdin Reagent Co., Ltd. (Shanghai, China). Pluronic F-
127 (20 wt %) was obtained from Sigma-Aldrich, and TCP
ceramics were purchased from Kunshan Chinese Technology
New Materials Co., Ltd. (Jiangsu, China).
2.2. Fabrication and Characterization of WES-TCP

Scaffolds. Briefly, we use a simple solid-state reaction method
to synthesize WES powders.20 The mixed powders of 1 × 10−3

m CuCO3, 1 × 10−3 m SrCO3, and 4 × 10−3 m SiO2 were
ground in a pestle mortar until homogeneous and heated at
1000 °C for 16 h in a platinum crucible with a heating rate of 5
°C min−1. The obtained products were regrounded and heated
by the same sintering condition. The unreacted raw materials
are removed by excess HCl solution (1 M). The WES-TCP

scaffolds were manufactured by the 3D plotting device
(BioScaffolder 3.1, Gesim, Germany) with a computer-assisted
design (CAD) model. We mixed 1, 2, and 4 wt % of WES and
TCP powders respectively, then added 20 wt % F-127
(Poloxamer) to the mixture, and stirred until it became
homogeneous. Then, the primary scaffold was fabricated by
extruding the ink through nozzles (needle standard: 22 G).
The dosing pressure was 1.5−2.5 bar, and the speed of the
plotting head was 6 mm s−1. WES-TCP scaffolds of 10 mm ×
10 mm × 1.5 mm following a crossed lay-dawn pattern (45°)
were prepared and photographed. As a control, pure TCP
scaffolds were also 3D printed using the same protocol.
To obtain WES-TCP scaffolds, the primary scaffolds were

dried overnight at room temperature. The WES-TCP scaffolds
were sintered at 1100 °C for 3 h, and the heating rate was 2 °C
min−1. The TCP scaffolds were prepared using the same
method as controls.
The compositions of TCP scaffolds with different WES were

evaluated by an X-ray diffractometer (XRD) using Cu Kα
radiation and operating at 40 kV with 40 mA current. Macro-
photograph and surface morphology of SPS scaffolds were
obtained from an optical camera and a scanning electron
microscope (FEI APREO S, Thermo Scientific, Netherland),
respectively. A static mechanical test machine (INSTRON
5566, Germany) was used for mechanical testing, and the
composite scaffolds were tested under a constant displacement
rate of 1.0 mm min−1.
To evaluate the degradation of WES-TCP scaffolds, they

were soaked in Tris−HCl (pH 7.4) in a 37 °C shaking water
bath for 1, 7, 14, 21, and 28 d, respectively. The ratio of Tris−
HCl volume to composite scaffold mass was 200 mL g−1. The
average ionic concentrations of Sr, Si, and Cu elements within
the Tris−HCl solutions were measured using inductively
coupled plasma atomic emission spectroscopy (ICPAES;
Varian). After the set soaking time, the composite scaffolds
were dried overnight at 60 °C, and the final weight of every
scaffold was accurately measured. The weight loss was
expressed as a percentage of the initial weight of the composite
scaffolds.
2.3. Cell Culture Experiments with rBMSCs and

Chondrocytes. Rabbit chondrocytes were provided by Prof.
Wang from Ninth People’s Hospital Affiliated to Shanghai
Jiaotong University School of Medicine, and they were
cultivated in Dulbecco’s modified Eagle’s medium low-glucose
(Thermo Fisher Scientific, Grand Island, America) containing
10% fetal calf serum (Thermo Fisher Scientific), 100 μg mL−1

streptomycin, and 100 μ mL−1 penicillin (Thermo Fisher
Scientific) at 5% CO2 and 37 °C. The rabbit rBMSCs were
cultivated in mesenchymal stem cell basal medium containing
10% rabbit mesenchymal stem cell-qualified fetal bovine
serum, 100 μg mL−1 streptomycin, 100 μ mL−1 penicillin,
and glutamine at 5% CO2 and 37 °C. The above reagents were
purchased from Gibco.
2.4. Cell Proliferation Assay. rBMSCs with a density of 1

× 105 cells per well were seeded on (1, 2, 4 )WES-TCP
scaffolds and TCP for control in 24-well plates and cultured at
5% CO2 and 37 °C for 1, 4, and 7 days. At each set time, the
original medium was refused, and every well was rinsed by PBS
three times. Then, rBMSCs were incubated in a 10% CCK-8
(Dojindo, Kumamoto, Japan) solution at 37 °C for 1.5 h.
Subsequently, the cell viability was assessed by detecting the
optical density at 450 nm. The chondrocytes were tested with
the same method.
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2.5. Quantitative Real-Time Reverse-Transcriptase
Polymerase Chain Reaction. An RNAprep Micro Kit
(TaKaRa, Japan) was used to evaluate the mRNA transcript
levels of osteogenic specific genes (SP7, OCN, and Runx-2)
and chondrocytes specific genes (COL II, AGGRECAN, and
SOX-9) at 7 d. The Prime Script first Strand cDNA synthesis
kit (TOYOBO, Japan) was used to prepare cDNA, and the
multifunction microplate reader (SpectraFluor Plus, Tecan,
Crailsheim, Germany) was used to determine the concen-
tration of RNA at 260 nm. Cycle conditions were as follows:
reverse transcription at 60 °C for 20 min; activation of
HotStarTaq DNA polymerase/inactivation of reverse tran-
scriptase at 95 °C for 1 min; and 40 cycles of 95 °C for 15 s
and 72 °C for 45 s. All of the primer sequences (Invitrogen
Inc., Carlsbad, CA) were designed with primer 5.0 software.
2.6. In Vivo Regeneration of Cartilage and Bone for

WES-TCP Scaffolds. The in vivo experiments were performed
according to the guidelines authorized by the Ninth People’s
Hospital Affiliated with the Shanghai Jiaotong University
School of Medicine Ethics Committee (No. SH9H-2021-
A607-SB). To evaluate the regeneration effect of pure TCP
and 2WES-TCP scaffolds, the osteochondral defect model
(height: 5 mm, diameter: 4 mm) was created on the groove of
knees in eligible rabbits (3 months old, 2−2.5 kg). Then, the
2WES-TCP or TCP scaffolds were implanted into the defects,

respectively, and the control group was Blank control. The
knee joints of the rabbits were collected for gross observation
and histological analysis at 12 weeks postsurgery. The
histological analysis was performed to observe the formation
of bone and cartilage tissues in the defect sites. All tissue
samples were hydrated, embedded in PMMA, and sliced. After
being polished, the tissue sections were stained with Van
Gieson (V&G) and Toluidine blue dyes. Finally, the staining
images were observed via a microscope.
2.7. Statistical Analysis. The experimental data were

expressed as mean ± standard deviation (SD) and analyzed by
one-way analysis of variance (ANOVA) with a post-hoc test. A
value of p < 0.05 was considered statistically significant and the
data were indicated with (*) for probability less than 0.05 (p <
0.05), (**) for p < 0.01, (***) for p < 0.001, and (****) for p
< 0.0001.

3. RESULTS
3.1. Characterization and Fabrication of 3D-Printed

WES-TCP Composite Scaffolds. The morphology of the
developed WES powders is shown in Figure 1a. The X-ray
diffractometer (XRD) patterns of pure TCP and WES (1, 2,
4)-TCP sintered under different temperatures are shown in
Figure 1b. The pure TCP and WES-TCP composite scaffolds
(denoted as 1WES-TCP, 2WES-TCP, 4WES-TCP) were

Figure 1. Preparation of 3D-printed WES-TCP scaffolds. SEM image of the WES powders (a). XRD patterns of TCP and (1, 2, 4)WES-TCP
calcined at 1100 °C (b). Photographs of 3D-printed TCP and WES-TCP composite scaffolds (c). SEM images of TCP (d1, e1), 1WES-TCP(d2,
e2), 2WES-TCP(d3, e3), and 4WES-TCP(d4, e4) scaffolds with different magnifications. WES-TCP composite scaffolds with a uniform
macrostructure were successfully fabricated via the 3D printing method.
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fabricated through extrusion-based 3D printing techniques.
The photographs of 3D-printed scaffolds are shown in Figure
1c. All of the scaffolds possessed smooth surfaces with uniform
45° interlaced architectures. As shown in the scanning electron
microscopy (SEM) images in Figure 1d,1e, the obtained 3D-
printed scaffolds had a controllable macrostructure, and the
surface morphologies of TCP, 1WES-TCP, and 2WES-TCP
were denser than that of 4WES-TCP.
As shown in Figure 2a, the results of the mechanical

property analysis showed that the compressive strength of
2WES-TCP was obviously higher than those of other scaffolds,
and the average compressive strength of TCP and (1, 2, and

4)WES-TCP scaffolds was 11.82, 13.58, 16.78, and 9.26 MPa,
respectively. As shown in Figure 2b, compared to pure TCP
scaffolds, the incorporation of the WES improved the
compressive Young’s moduli of 3D-printed WES-TCP
scaffolds, and the 2WES-TCP group exhibited the highest
Young’s modulus of 151.03 ± 8.59 MPa. There was no
significant difference in the compressive Young’s moduli
between those of pure TCP and 4WES-TCP scaffolds.
The sustained release of bioactive elements (Si, Sr, Ca, Cu,

and P) from 3D-printed TCP and WES-TCP composite
scaffolds was detected (Figure 2c−g). The release profiles
stand for the average rates of bioactive ions released at each

Figure 2. Characterizations of TCP and (1, 2, 4)WES-TCP scaffolds. Compressive strength of TCP and (1, 2, 4)WES-TCP scaffolds (a).
Compressive Young’s moduli of TCP and (1, 2, 4)WES-TCP scaffolds (b). Concentration of released Si (c), Sr (d), Ca (e), Cu (f), and P (g)
elements from the composite scaffolds. Degradation behavior of TCP and (1, 2, 4)WES-TCP scaffolds in the Tris−HCl solution (pH 7.4) (h).
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time point. Compared to pure TCP and (1, 2)WES-TCP
scaffolds, the bioactive Si, Sr, Ca, and Cu ions of 4WES-TCP
scaffolds exhibited a much higher ionic release during 4 weeks.
As shown in Figure 2h, the results of degradation profiles
displayed a decreasing trend of the relative weight, and the
average weight loss of pure TCP and (1, 2, 4)WES-TCP
scaffolds immersed in the Tris−HCl solution for 28 days was
10.31, 27.47, 30.67, and 34.46%, respectively. Previous studies
have shown that the release of Cu, Si, and Sr ions plays a
significant role in osteogenesis.21 Thus, the degradation of 3D-
printed WES-TCP composite scaffolds is expected to enhance
bone regeneration.
3.2. WES-TCP Composite Scaffolds Stimulating the

Proliferation and Differentiation of rBMSCs. The in vitro
osteogenic performance of 3D-printed pure TCP and (1, 2,
4)WES-TCP composite scaffolds was evaluated by rBMSCs.
As shown in Figure 3a, the proliferation of rBMSCs in the
2WES-TCP scaffolds group was obviously higher than that in
the TCP and 4WES-TCP scaffolds groups on day 3 and day 7.
Therefore, this study selected the 2WES-TCP scaffold for
further experiments. The SEM images revealed that the
rBMSCs spread well on TCP and 2WES-TCP scaffolds with
abundant filopodia in Figure 3b,c. Furthermore, we analyzed
the effect of 2WES-TCP scaffolds on the osteogenic differ-
entiation of rBMSCs. As shown in Figure 3d−g, compared to
the pure TCP group, the expression of runt-related tran-
scription factor 2 (Runx-2), Sox-9 gene, and Osterix (SP7) of
rBMSCs in 2WES-TCP scaffolds were distinctly upregulated
on day 7.

3.3. WES-TCP Composite Scaffolds Stimulating the In
Vitro Proliferation of Chondrocytes. As shown in Figure
4a, it is worth noting that compared with 4WES-TCP scaffolds,
2WES-TCP scaffolds could significantly promote the pro-
liferation of chondrocytes on day 7. We also analyzed the
specified gene expression in chondrocytes cultured on 3D-
printed TCP and (1, 2)WES-TCP scaffolds. As shown in
Figure 4b−d, compared to the pure TCP group, the expression
of COL II, SOX-9, and AGGRECAN genes in chondrocytes
were distinctly upregulated. Furthermore, the CLSM and SEM
images revealed that the chondrocytes on pure TCP and
2WES-TCP scaffolds spread well with abundant filopodia in
Figure 4e−h.
3.4. WES-TCP Composite Scaffolds Stimulating the In

Vivo Osteochondral Regeneration. We further inves-
tigated the in vivo osteochondral regenerative efficacy of 3D-
printed 2WES-TCP composite scaffolds according to the
rabbit osteochondral defect model. At 12 weeks postsurgery,
the rabbits were executed and tissue samples were obtained for
histological analysis. As shown in Figure 5a−c, V&G staining
exhibited that there was more bone tissue formation in the
2WES-TCP group compared with Blank and TCP groups. The
control group did not realize adequate healing of the
osteochondral defect and had poor bone regeneration and
large residual void spaces. Meanwhile, more positive staining
for cartilaginous ECM, collagen, and cell filling was found in
the 2WES-TCP scaffold group through toluidine blue staining
(Figure 5d−f). The photographs of bone tissue also intuitively

Figure 3. Proliferation and morphology of rBMSCs cultured on 3D-printed TCP and WES-TCP scaffolds. Proliferation of rBMSCs cultured on
pure TCP and WES-TCP scaffolds (a). SEM images of rBMSCs after seeding on TCP (b) and 2WES-TCP (c) scaffolds. The gene expression of
Runx-2 (d), Sox-9 (e), SP7 (f), and OCN (g) in rBMSCs after coculturing with scaffolds for 7 d (n = 3, *p < 0.05, **p < 0.01, ***p < 0.001, ****p
< 0.0001).
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displayed the cartilage repair effect at the defective sites
(Figure 5g−i).

4. DISCUSSION
Recently, many studies have shown that silicate bioactive
scaffolds have attracted much attention for excellent
bioactivity, and could enhance bone regeneration.22 In this
study, we successfully incorporated WES into TCP bio-
ceramics and fabricated 3D-printed porous composite

scaffolds. Our results suggest that the incorporation of 2WES
into 3D-printed TCP composite scaffolds significantly
enhanced the bone regeneration property. In addition, the
3D printing methods are efficient in controlling the internal
parameters of the porous structure such as morphology,
distribution, and morphology.23 Such a porous structure of 3D-
printed scaffolds is an essential factor for guiding and
stimulating the bone regeneration process, which could
promote the transport of nutrition and growth of cells.

Figure 4. Proliferation and morphology of chondrocytes cultured on 3D-printed WES-TCP scaffolds. Proliferation of chondrocytes cultured on
pure TCP and WES-TCP scaffolds (a). Gene expression of COL II (b), SOX-9 (d), and AGGRECAN (d) in chondrocytes after coculturing with
the scaffolds for 7 d. The SEM images of chondrocytes after seeding in TCP (e) and 2WES-TCP (f) scaffolds, and confocal laser scanning
microscopy (CLSM) images of chondrocytes after seeding in TCP (g) and 2WES-TCP (h) scaffolds (n = 3, *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001).
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In this study, we found that the compressive strength and
Young’s moduli of 2WES-TCP scaffolds were distinctly
increased. Sr element could increase the mechanical properties
by providing more functional groups and promoting ions to be
bonded. It was also reported that the addition of Sr ion
improved the strength of scaffolds, which makes scaffolds
suitable for subsequent implantations.24 However, the
mechanical properties were negatively affected by the high
content of WES (4%). The compressive strength and Young’s
moduli of the 4WES-TCP group were significantly lower than
those of the 1WES-TCP and 2WES-TCP groups may be
because of the faster degradation rate of the 4WES-TCP
group.25

The results of our study found that the synthesized WES-
TCP significantly promoted the osteogenic differentiation of
rBMSCs in vitro and the regeneration of subchondral bone in
vivo. The results indicated that 3D-printed WES-TCP
composite scaffolds have superior osteogenic bioactivity, and
2WES-TCP scaffolds possessed enhanced osteogenic perform-
ance in vitro and in vivo. The sustained release of Sr, Cu, and
Si bioactive ions from 3D-printed composite scaffolds was the
possible reason for the excellent bone regeneration property.
The possible mechanisms are as follows. On one hand, the
released Sr ions could activate the ERK-MAPK/Wnt signaling
pathway to enhance bone formation.26−29 On the other hand,
the released Si ions could activate the AMPK/ERK1/2
signaling pathway, promote the osteogenic differentiation of
rBMSCs, and further enhance bone formation.30 In addition,
vascularization plays an important role in the osteogenesis
process via renewable autologous cells and nutrient supply.31

The released Cu ions could stimulate the vascularization of
HUVECs.32 Based on these studies, it is reasonable to
conclude that the Cu, Si, and Sr bioactive ions from 3D-
printed composite scaffolds could effectively promote the
regeneration of subchondral bone.

The interesting result of our study shows that 3D-printed
WES-TCP composite scaffolds not only enhanced the
regeneration of subchondral bone but also improved the
regeneration of cartilage. The expression of the SOX-9, COL
II, and AGGRECAN genes in chondrocytes was obviously
elevated by the WES-TCP scaffolds. The possible reasons are
as follows. First, by stimulating the expression of COL II, the
SOX-9, and AGGRECAN genes, the activated HIF pathway of
chondrocytes could support matrix synthesis and chondrocyte
regeneration of cartilage reconstruction.33 Additionally, the
expression of the IHH gene is regulated by the hedgehog
pathway and plays a vital role in OA onset and develop-
ment.34,35 Moreover, Si and Sr ions released from bioactive
ceramic scaffolds could activate the HIF signal pathway to
promote cartilage regeneration in vivo, stimulate chondrocyte
maturation in vitro, and protect chondrocytes from OA via
inhibiting the hedgehog pathway.36 Cu, a key trace element
that is an essential component in the synthesis of cellular
enzymes in healthy cartilage tissues, such as lysyl oxidase, is a
copper-dependent amine oxidase, a key enzyme for collagen
cross-linking and could promote cartilage formation.37−39 The
released Cu ions from composite scaffolds could activate the
HIF pathway and shift macrophages to an anti-inflammation
M2 phenotype, which plays a vital role in promoting the
differentiation of chondrocytes.40 Hence, it implies that the
synergistic effect of Sr, Cu, and Si ions from 3D-printed
composite scaffolds could effectively promote the regeneration
of cartilage.
Medicines are used for OA treatment in clinics, which may

cause side effects, such as most medicines are smoothened
antagonists that could reduce subchondral bone remolding or
osteophyte overgrowth.36 In addition, different constructs of
scaffolds such as biphasic scaffolds and other multilayered
scaffolds have been fabricated for reconstructing osteochondral
defects. However, these strategies also have obvious

Figure 5. Regeneration quality of subchondral bone and cartilage in vivo after 12 weeks. V&G staining (a−c) and toluidine blue staining (d−f)
images of tissue samples. Photographs of tissue in different groups at 12 weeks (g−i).
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limitations, for example, insufficient mechanical integration
between two layers, and poor biological simulation of
functional and structural characteristics.36 There are a few
studies that show that monophasic scaffolds are used to restore
the complex osteochondral interface microstructure and
regenerate both subchondral bones and cartilage simulta-
neously. Herein, a monophasic WES-TCP scaffold containing
multibioactive ions was successfully fabricated to repair
osteochondral defects. Compared with conventional medical
treatment, the prepared WES-TCP scaffolds avoided systemic
toxicity. Additionally, according to the in vivo and in vitro
physiological studies,36,40 it is probable that composite WES-
TCP scaffolds stimulate cartilage reconstruction and promote
the regeneration of subchondral bone via the synergistic effect
of the Sr, Cu, and Si ions from 3D-printed WES-TCP
composite scaffolds.

5. CONCLUSIONS
In this study, WES-TCP scaffolds were successfully fabricated
through the 3D printing technique. The introduction of WES
enhanced the physicochemical properties of the composite
scaffolds and promoted the differentiation and proliferation of
rabbit BMSCs and chondrocytes. Simultaneously, the
synergetic effect of Sr, Cu, and Si ions from composite
scaffolds distinctly promoted the regeneration of both
subchondral bones and cartilage. The related mechanisms
might be that the released Cu, Sr, and Si ions possess bilineage
bioactivities, which are beneficial for the regeneration of both
subchondral bone and cartilage. Harnessing multibioactive ions
in a monophasic scaffold offers a viable and effective strategy
for the regeneration of osteochondral defects and OA therapy.
The designed scaffold takes advantage of the multifunctional
properties of bioceramics, which are an intelligent strategy for
regenerating cartilage and subchondral bone.
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