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Abstract

Knowledge of the habitat use and migration patterns of large sharks is important for assessing the effectiveness of large
predator Marine Protected Areas (MPAs), vulnerability to fisheries and environmental influences, and management of shark–
human interactions. Here we compare movement, reef-fidelity, and ocean migration for tiger sharks, Galeocerdo cuvier,
across the Coral Sea, with an emphasis on New Caledonia. Thirty-three tiger sharks (1.54 to 3.9 m total length) were tagged
with passive acoustic transmitters and their localised movements monitored on receiver arrays in New Caledonia, the
Chesterfield and Lord Howe Islands in the Coral Sea, and the east coast of Queensland, Australia. Satellite tags were also
used to determine habitat use and movements among habitats across the Coral Sea. Sub-adults and one male adult tiger
shark displayed year-round residency in the Chesterfields with two females tagged in the Chesterfields and detected on the
Great Barrier Reef, Australia, after 591 and 842 days respectively. In coastal barrier reefs, tiger sharks were transient at
acoustic arrays and each individual demonstrated a unique pattern of occurrence. From 2009 to 2013, fourteen sharks with
satellite and acoustic tags undertook wide-ranging movements up to 1114 km across the Coral Sea with eight detected
back on acoustic arrays up to 405 days after being tagged. Tiger sharks dove 1136 m and utilised three-dimensional activity
spaces averaged at 2360 km3. The Chesterfield Islands appear to be important habitat for sub-adults and adult male tiger
sharks. Management strategies need to consider the wide-ranging movements of large (sub-adult and adult) male and
female tiger sharks at the individual level, whereas fidelity to specific coastal reefs may be consistent across groups of
individuals. Coastal barrier reef MPAs, however, only afford brief protection for large tiger sharks, therefore determining the
importance of other oceanic Coral Sea reefs should be a priority for future research.
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Introduction

Recent studies have highlighted the critical role that sharks play

in regulating food chain diversity through top-down control [1],

[2], [3]. In coral reef ecosystems, models suggest reduced reef

resilience with shifts in coral to fleshy algal-dominated habitats

possibly due to the absence of sharks and other predatory fish from

coral reef systems [4], [5]. More recently, Sandin et al. [6] used

underwater visual censuses at reef sites with different densities of

top predators to show that fish species targeted by sharks tended to

allocate more energy to reproduction than to somatic storage. This

phenomenon led to increased biomass because of more individuals

in spite of their smaller size compared to sites without sharks.

Unfortunately shark populations are declining on a global scale,

largely due to illegal and uncontrolled fishing practises [7], [1].

This has led to concerns about shark populations in the Oceania

region [8]. Overfishing and poaching are driven by an increasing

demand for fins in the booming Asian economies [9]. Conse-

quently, there is a critical need to support shark conservation

through a better understanding of their ecology to insure the

balance and long-term resilience of marine ecosystems [10]. This

global conservation goal may be achieved using tools such as

Marine Protected Areas (MPAs) at several spatial scales [11]. The

declaration of MPAs can slow shark population declines [12], but

the spatial scale must encompass the home range of the relevant

species [13]. The extent of movement within and among high

value coral reef habitats can vary with shark species, as some

species are relatively sedentary (e.g. the blacktip, Carcharhinus

melanopterus) [14] and others migratory (e.g. the tiger shark,

Galeocerdo cuvier) [15]. These potentially complex movements can

determine the role sharks play as trophic links between distant

coral reef habitats, the potential interaction with fishing activities

and the vulnerability of sharks to these pressures [16], [17], [18].

Therefore, identifying the movement patterns and habitat-use of

key tropical shark species is essential for their conservation.

Many sharks undertake migrations and utilise resources in

different habitats with site-fidelity varying at different spatial and

temporal scales. This can influence the trophic role of larger
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predators in connecting distant habitats and reduce the risk of

regional extinctions [19]. Furthermore, adults of species previously

considered to exhibit strong reef fidelity (e.g. Grey reef whaler,

Carcharhinus amblyrhynchos) have been shown to range further than

previously thought, reducing the effectiveness of protected areas

for these species [18]. As a first step, MPAs for top-level predators

require an understanding of the spatial movements of individual

sharks, the determination of centres of shark activity, the

proportion of time spent in potential management areas and their

migration pathways to and from these areas. In addition,

ontogenetic differences need to be considered as many large

sharks display increasing home ranges with size and maturity [13],

[18], [20]. Heightened public concern about the occurrence of

large and dangerous sharks in New Caledonian waters has arisen

as a result of several human deaths since 2007 [21]. This makes it

increasingly important to understand the localised and migratory

movements of large sharks and how often they utilize regions with

high human activity. A better understanding of the movement

patterns of these migratory top predators is therefore essential, and

the absence of ecological data is often a limiting factor for the

efficacy of marine managed areas [22].

Despite the ecological importance of large species of shark and

their direct and indirect influence on the distribution of prey and

other species, information on the movements of large sharks has

largely been confined to USA, Europe, South Africa and Australia

[23]. In contrast, little is known about the movement of large

sharks in New Caledonia and the Coral Sea. This is due to their

wide-ranging, elusive behaviour and the challenges associated with

their capture [12], [24]. Moreover, the development of better

capture techniques and satellite and acoustic tagging technology

has led to substantial advances in documenting the movements of

these animals than was previously possible with traditional tagging

techniques (e.g. [25]).

The tiger shark is one of the top-level predators in coral reef

ecosystems and is listed as ‘near-threatened’ by the IUCN [26],

[27]. It has a cosmopolitan distribution and occurs throughout the

South Pacific, including the Coral Sea [28], [29]. Tiger sharks are

often considered to be a reef-associated ‘coastal’ species that

exhibits seasonal and diel visits to coral reef lagoons when

traversing between coral shoals and atolls [30] and visits to areas

with large prey items, such as green turtle, Chelonia mydas, rookeries

(e.g. Raine Island, northern Great Barrier Reef, GBR), are

independent of the prey’s nesting aggregations [31]. Tiger sharks

provide important trophic links between distant habitats [32] and

exhibit movements up to 6747 km, identified by conventional

tagging [25], [33]. Directional movements occur across ocean

basins [34], [35], during which dives to depths of 335 and 680 m

have been documented via acoustic and satellite telemetry,

respectively [34], [36]. Acoustic telemetry studies in Hawaii

suggest tiger sharks occupy home ranges of at least 109 km of

contiguous coastline with detections on acoustic receivers typically

brief (mean = 3.3 mins) and interspersed by weeks, months and

years [36]. In contrast, home ranges were considered to be larger

but undefined by a study in Shark Bay, Western Australia, because

satellite tracked tiger sharks displayed relatively low displacement

rates relative to sharks tracked over shorter time periods [35].

Furthermore, in the Atlantic, satellite telemetry revealed that large

female tiger sharks spent substantially more time in the open ocean

rather than coastal areas, with long-range migrations confirming

that this species is oceanic. These authors suggest, however, that

patterns of reef residency and migration may vary for different

sites, locations and regions around the world [37]. Recent work by

Papastamatiou et al. [15] suggests the complexity of tiger shark

movements could be due to triennial migrations of adult female

tiger sharks triggered by their reproductive cycle. In addition to

these observations, Driggers et al. [38] suggest it is probable that

parturition occurs in shelf areas of less than 100 m deep where

neonates remain until their first large-scale migration, as they

found no areas of increased juvenile abundance associated with

oceanic areas of high productivity. Importantly, the movements

and habitat-use of tiger sharks, remain largely unknown in the

Southwest Pacific.

The Coral Sea is a vast tropical/sub-tropical region in the

Southwest Pacific comprising both significant coral reef systems

around its boundary and open oceanic habitat with sea mounts

and reef aggregations across its basin [39], [40]. Connectivity of

reefs across the Coral Sea relies on sparse seamounts and reef

aggregations, both in the Australian and French Exclusive

Economic Zones (EEZ) [41]. Recent work suggest that these

isolated seamounts, such as the Osprey and Shark reefs in the

Australian EEZ, require urgent protection in order to conserve

reef-associated shark populations [42]. Moreover, demonstrated

interactions between large sharks and commercial long-lining and

illegal shark-fining occur across the Coral Sea [41]. Despite this,

information on the movement of large sharks in coastal coral reefs

and open oceanic and seamount habitats in the Coral Sea is scant

and as such the protection of large sharks in this region is of

concern, particularly for wide ranging species that undertake large

scale movements. Furthermore, recent work suggests the economic

value of an individual shark is substantially greater when it is kept

alive and available for various ecotourism activities [37], [43].

In March 2010 and affirmed in January 2012, a ‘‘declaration of

intention between France and Australia for the Coral Sea

sustainable management’’ was signed by the Minister for Foreign

and European Affairs of the French Republic and the Minister for

Foreign Affairs of the Commonwealth of Australia [44]. This

document identified strategies for cooperative management of

Coral Sea coastal and high seas ecosystems. Given the critical role

of large sharks in this region, the future co-management process

requires reliable ecological information for tiger sharks. The study

we present herein sought to provide the type of information

needed for effective management in the region. In the present

study we used multiple tagging techniques to quantify the spatial

dynamics of tiger sharks in the Coral Sea, with a particular

emphasis on New Caledonia. The aims of this study were to (1)

determine the level of site-fidelity to specific coral reef habitats and

temporal connectivity (days to years) among habitats, (2) quantify

the range of variation in movement patterns among individual

tiger sharks and, (3) determine the extent to which these

movement patterns represent migratory behaviours. In so doing

we test the hypothesis that tiger sharks undertake regular or

predictable migrations across the Coral Sea between New

Caledonia and Australia with no difference in the habitat-use

and site-fidelity at coastal barrier reefs of New Caledonia and

Australia compared to oceanic reefs in the Coral Sea.

Materials and Methods

Ethics Statement
This research was done in accordance with permit No. 6024-

4916/DENV/SMer (New Caledonia), permit No. G10 33187.2

(Great Barrier Reef Marine Park Authority), permit No. 143005

(Queensland Fisheries), permit No. QS2010 GS065 (Great Sandy

Marine Park) and permit No. LHIMP/R/2012/009 (Lord Howe

Island). This study was specifically approved by Griffith University

ethics ENV/16/08/AEC. Sharks were also satellite tagged in

Queensland (QLD) under Ocean and Coast Research animal

ethics approval CA 2010/11/482.
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Study Area
The Coral Sea lies off the northeast coast of Australia (QLD)

and is bounded in the east by New Caledonia, in the north by the

southern extremity of the Solomon Islands and the south coast of

eastern New Guinea (Fig. 1). On the western seaboard of this

region and at similar latitudes along the tropic of Capricorn, the

largest barrier reef system in the world (the Great Barrier Reef -

GBR) extends along the east coast of Australia. Approximately

1000 km to the east, New Caledonia boasts the world’s second

largest lagoonal reef system.

Our study area included six key locations widely separated

(.500 km each apart) to enable sampling and detection of shark

movements across the spatial extent of New Caledonia, the Coral

Sea and the east coast of Australia (Fig. 1): (1) Prony Bay in the

south of New Caledonia, (2) Reef barrier off Belep archipelago in

the north of New Caledonia, (3) the Chesterfield Islands in the

centre of the Coral Sea, (4) Lord Howe Island in the central south

of the Coral Sea, (5) Noosa to Rockhampton in Australia and (6)

Mackay and Cairns in the central and far north of the GBR. New

Caledonia has a large coral reef lagoon with interspersed island

and barrier reefs separated by channels typically 30–40 m deep.

The main island is surrounded by deep drop-offs to .1200 m with

ocean basins separating the Loyalty Islands to the east and the

Chesterfield Islands in the centre of the Coral Sea (Fig. 1). In the

north of New Caledonia, Belep is lightly populated by local

indigenous communities and is approximately 500 km to the north

of Noumea, the capital of New Caledonia. Prony Bay in the south

is approximately 100 km south of Noumea. A substantial nickel

mine is situated near the bay and supports a working population of

up to 10,000 people. From the west coast of New Caledonia a

deep oceanic ridge runs south to the Lord Howe rise. To the west,

Lord Howe basin (average 1500 m deep) separates the Chester-

fields from the east coast of Australia. The Chesterfield Islands

were used for commercial whaling in the early 1960s, but have

been uninhabited by humans for over 40 years. This seamount

sustains vast seabird populations and nesting green turtles. Isolated

from Australia to the west and New Caledonian to the east by 500

nautical miles in either direction, the Chesterfield Islands lie at the

northern end of a series of seamounts that run south in the centre

of the Coral Sea to Lord Howe Island. On the east coast of

Australia, the GBR extends from the north of Fraser Island to the

northern tip of Queensland. Beyond the barrier reef the Australian

continental plate extends out into the Coral Sea basin. We divided

our capture, tagging and tracking efforts among these study

locations (Fig. 1).

Acoustic Tags
All but one of the captured sharks were tagged with acoustic

transmitters via surgical implantation (see below). Acoustic

transmitters, Vemco V16 R-coded 69 kHz acoustic tags (Amirix

Systems Inc., Nova Scotia, Canada), were used to provide high-

resolution movement information in key study areas and long-term

Figure 1. Seamounts and surrounding bathymetry across the Coral Sea between New Caledonia and Australia. Acoustic receiver array
locations are shown along the east coast of Queensland, Australia and the southern Great Barrier Reef and inserts. Different shades of blue in the
legend indicate different water depths.
doi:10.1371/journal.pone.0083249.g001
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measurements of site fidelity. Acoustic tag battery lives were

estimated to be 696, 835, or 1448 days according to manufacturer

specifications/estimates and differences in battery size, given a

delay period of 50 to 130, 40 to 80, 30 to 90 s, respectively. Given

average coastal sea-conditions, wind-strengths of 11–16 knots (20–

29 km/hr), and high (H) or low (L) tag power output at 69 kHz,

we assumed acoustic detection ranges of 400–800 m (www.vemco.

com/education/range.php).

VR2W Acoustic Receiver Arrays
Transmissions from these tags were detected by acoustic

receivers moored underwater when a tagged shark came within

acoustic range. Thirty Vemco VR2W acoustic receivers (Amirix

Systems Inc., Nova Scotia, Canada) were deployed to passively

track movements of tiger sharks from January 2009 to February

2013 (Fig. 1). Receivers were deployed in six separate arrays in (1)

Prony Bay in the southern lagoon of New Caledonia 2009 (n = 8;

Fig. 1A), (2) the barrier reef off Belep in the northern lagoon of

New Caledonia in January 2010 (n = 3; Fig. 1B), (3) the

Chesterfield Islands in the centre of the Coral Sea in August

2010 (n = 7; Fig. 1C), (4) Lord Howe Island in June 2012 (n = 4;

Fig. 1D) and (5) receivers were also deployed in coastal areas along

the east coast of Queensland, Australia, as part of the QLD Large

Shark Tagging Program (QLSTP) (http://www.oc-research.com/

pages/tagging-program.php) in March 2010 on the Sunshine

coast (n = 4) and coastal area of Bundaberg to Rockhampton

(n = 2), and (6) Mackay and Cairns (n = 2) in the GBR. Receivers

on Lady Elliot Island, GBR, deployed by independent researchers

studying Manta rays, Heron and One Tree Island, GBR, by the

Australian Acoustic Tagging and Monitoring System (AATAMS)

and Bourail, New Caledonia, by the Aquarium des Lagons and

Université de la Nouvelle-Calédonie were also used to detect shark

movements. One receiver deployed at Estree Pass in Belep in

March 2010 received no detections and was subsequently

relocated to Yande Passe, Belep, in August 2010. However, this

receiver was unable to be retrieved in 2012 and was presumed

missing. Receivers were moored on concrete filled tyres (as per

Otway and Ellis [45]) in depths of 5–25 m or attached to anchored

float lines approximately 5 m above the sea floor. Data were

downloaded periodically throughout the study.

Satellite Tags
We used two types of satellite tags: (1) Pop-up Satellite Archival

Tags (PSATs) (models: MK10-PAT, miniPAT and Fastloc MK10-

AF, Wildlife Computers, Redmond, WA, USA) to quantify

swimming depths and migration pathways, and (2) dorsal fin-

mounted, position-only satellite tags (SPOT5, Wildlife Computers,

Redmond, WA, USA) to provide information on shark movements

outside the detection range of our acoustic receivers.

Geolocation of Satellite Tags
PSAT tags were pre-programmed to detach from the tiger shark

100–290 days after deployment. PSAT tags archived temperature,

depth and light intensity data during deployment and transmitted

to the Argos satellite array after the tags released from the shark.

Light-based geolocations were approximated using proprietary

software provided by the tag manufacturer (WC-GPE: Global

Position Estimator Program suite, Wildlife Computers, Redmond,

WA, USA) that employs threshold light-level geolocation methods

[46]. Most probable tracks were constructed from these estimates

using a state space unscented Kalman filter and blended sea

surface temperature in the UKFSST library [47] for the R

Statistical Environment [48]. Secondary bathymetric correction

was performed using maximum daily depth of each individual in

Figure 2. Restraint of 3.8 m tiger shark in harness.
doi:10.1371/journal.pone.0083249.g002
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the analyzepsat library for R [49], [50] and 95% confidence

interval envelopes were included in plots to illustrate the

equivalent error bubble around most probable tracks. Due to

lack of approximated locations from WC-GPE, the most probable

track for one individual (TS 25) was constructed using raw light

levels in a state space model performed in the TrackIt library for R

[51] followed by bathymetric correction.

SPOT tags transmit a signal to the Argos satellite array

whenever the dorsal fin breaks the surface for long enough (i.e. 15

to 30 seconds). This provides a near real-time estimate of the

shark’s position. The accuracy of the position estimate however,

depends on the number and time between transmissions received

during a satellite pass and are classified as either 3 (,250 m), 2,

(250–500 m), 1 (500–1,500 m) and 0, A or B (1,500 to 3000 km)

[52]. Z positions provide no estimates of the shark’s position. We

used all class 3, 2 and 1 positions to plot tracks and included class

0, A or B positions if these were within a realistic swimming

distance at a maximum speed of 3.5 km hr21 [34], [53] from a

Table 1. Tiger sharks monitored at New Caledonia (Southern Province, Northern Province), the east coast of Australia (Southern
Queensland and the Great Barrier Reef) and the Chesterfields in the Coral Sea with acoustic tags.

Tiger
Shark

Tagging
Location

Date of
Capture Sex

TL
(cm)

days bw
tagging and
first detection

No. of
days
monitored

No of
days
detected

No. of
detections

Av minutes
at each
station

Max linear
distance bw
detections (km)

1 SP 30/01/2009 F 154 192 1273 14 39 4.5 5.5

2 SP 7/07/2009 F 164 10 1141 6 55 5.7 3.5

3 SP 1/02/2010 F 192 na 906 0 0 0 –

4 SP 9/07/2009 F 270 21 1143 9 35 6.75 6.75

5+ SP 1/10/2008 F 300 495 – – – – 1442

6 SP 26/01/2009 F 300 0 1277 1 1 1 0.9

7 SP 13/07/2009 M# 312 0 1139 1 2 4 0.9

8 SP 13/07/2009 M* 340 0 1139 3 8 2.5 2

9 SP 24/08/2010 F 370 225 702 31 91 3.14 5.5

10 SP 28/01/2009 M* 380 62 1275 30 103 4.35 10.9

11 SP 15/07/2009 M* 390 405 875 2 20 1.3 4.7

12 NP 4/03/2010 F 286 200 875 1 2 1 1

13 NP 4/03/2010 F 290 110 875 5 31 4 1

14 NP 11/03/2010 M# 294 267 868 1 3 3 244

15 NP 3/03/2010 F 338 28 876 7 11 2.85 1

16 CI 12/08/2010 F 260 6 432 155 872 4.13 22

17 CI 13/08/2010 F 270 2 432 36 438 12.2 0

18 CI 12/08/2010 F 310 4 595 255(4) 2948(68) 5.5 22(742)

19 CI 16/08/2010 M* 310 8 432 183 1292 3.93 22

20 CI 18/11/2011 M* 323 YBR

21 CI 25/11/2011 M* 323 YBR

22 CI 20/11/2011 M* 328 YBR

23 CI 22/11/2011 F 329 YBR

24 CI 12/08/2010 F 330 13 432 2 10 6 14.4

25 CI 15/08/2010 F 332 14 858 3(1) 9(9) 2.5 9.5(761)

26 C GBR 20/04/2011 F 232 YBR

27 C GBR 20/04/2011 F 260 YBR

28 C GBR 20/04/2011 F 276 YBR

29 C GBR 31/10/2012 M* 346 YBR

30 C GBR 30/10/2012 F 367 YBR

31 C GBR 31/10/2012 F 370 YBR

32 SQ 1/03/2011 F 210 YBR

33 SQ 21/09/2011 F 270 YBR

34 SQ 19/09/2011 F 300 98 98 1 2 2 117

Individual sharks bolded and underlined were also tagged with various satellite tags (see Table 2).
+refers to shark identified with photo-ID.
*refers to mature males.
#refers to male sharks with semi-calcified claspers. TL refers to total length. Tagging locations include, SP (Southern Province, New Caledonia), NP (Northern Province,
New Caledonia), CI (Chesterfields), SQ (Southern Queensland, Australia), C GBR (Cairns, Great Barrier Reef).
–indicates no data available. na refers to not applicable. YBR refers to yet to be recorded. Brackets for TS18, TS 25 refer to detections on the GBR.
doi:10.1371/journal.pone.0083249.t001
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previous class 1–3 position, capture location or acoustic receiver

detection.

Shark Capture and Tagging Procedures
At each location large sharks were captured using barbless hook

and line (baited with tuna pieces) and restrained in a specially

designed harness developed by Werry et al. [54] (Fig. 2). Captured

sharks were guided into the harness, which was placed parallel to

the vessel. The restrained shark was maintained with its head

directed into the current to ensure constant flow of water over the

gills. Sharks were then tail-roped and inverted to initiate tonic

immobility. Sharks remained docile in this position while

morphometrics of total length (TL) (cm) and gender were

recorded. Dorsal fins and distinguishing body features of all

captured sharks and tiger sharks that broke away from baited lines

before tagging were photographed as per Clua et al. [55]. The

harness also enabled the opportunistic identification of stomach

contents for sharks that regurgitated their contents after capture

and restraint in the harness. For individual comparisons, tiger

sharks were assigned ontogenetic categories of mature, sub-adult

or juvenile. Size-at-maturity estimates of 330 cm TL and 292 cm

TL for females and males respectively were determined based on

tiger sharks from Hawaii [56]. The presence of semi-calcified

claspers were used to define sub-adult males and sharks .259 cm

TL for sub-adult females. Juveniles were defined as ,259 cm TL

for females and the presence of non-calcified claspers for males. A

Vemco R-code V16 transmitter was then surgically implanted into

the body cavity through a small incision in the abdominal wall (as

per Holland et al. [34]). PSAT tags were attached to selected tiger

sharks by creating a small incision in the shark’s skin at the base of

the dorsal fin and inserting a titanium dart under the skin. The

titanium dart was then locked in place with a small stitch. SPOT

tags were attached on selected sharks by creating 4 small holes

near the top of the shark’s dorsal fin and using threaded nylon with

washers and lock nuts to secure the tag. After tagging, sharks were

maintained in the harness while the research vessel slowly moved

forward to push oxygenated water over the gills of the shark.

Tagging and capture stress was monitored as per Werry et al. [54].

Sharks swam away vigorously on release (Video S1), although one

tiger shark in the Chesterfields was also released via underwater

assistance on scuba.

Behavioural Patterns
Localised behavioural patterns of tiger sharks with acoustic tags

were defined into four categories. (1) Passer-by, for individuals

never detected on acoustic arrays after the first month of release

after acoustic tagging. (2) Transient, for individuals that were re-

detected on individual acoustic arrays after temporal periods

greater than one month. (3) Pseudo-Resident, for individuals

detected on the same acoustic array for more than five days within

each month for three or more months of the year and for ,30% of

their potential detection period, and (4) Residents, for individuals

detected within ten or more months in each year within individual

acoustic arrays and for .30% of their entire potential detection

period.

Table 2. Tiger sharks monitored at New Caledonia (Southern Province, Northern Province), the Chesterfields in the Coral Sea and
Cairns (GBR) with satellite tags.

Tiger
Shark

Tagging
Location Sex

TL
(cm)

Satellite
tag type
and id

MK10
Pop-off date,
SPOT 5 last
transmission

Duration of
deployment
(days)

Max distance
from release
point (km)

Max depth
during
deployment
(m)

Modal
depth
(m)

Mean
depth
(m)

Max
temp

(6C)

Min
temp

(6C)

Modal
temp

(6C)

Mean
temp

(6C)

3 SP F 192 SPOT 5 11/03/2010 38 240 – – – – – – –

6 SP F 300 MK10 2/02/2009 4 208 80 64.0 48.5 26.2 25.1 26.1 25.7

8 SP M* 340 MK10 1/08/2009 19 150 368 40.0 53.0 24.4 14.4 23.8 23.2

9 SP F 370 MK10 22/02/2011 181 1141 1136 16.0 11.2 26.2 5.6 22.0 –

11 SP M* 390 MK10 11/02/2010 210 154 640 40.0 61.0 28.8 8.2 23.7 23.5

13 NP F 290 SPOT 5 17/03/2010 13 60 – – – – – – –

14 NP M# 294 SPOT 5 17/03/2010 7 23 – – – – – – –

16 CI F 260 mini
MK10

27/08/2010 15 124 312 62.5 55.0 24.4 17.8 23.6 23.0

17 CI F 270 Fast-loc
MK10

17/08/2010 4 – 19 12.0 13.9 27.8 22.8 23.6 23.7

18 CI F 310 mini
MK10

13/12/2010 93 207 536 39.5 91.0 27.4 9.4 24.0 20.7

25 CI F 332 Fast-loc
MK10

22/08/2010 7 101 66 40.5 28.0 32.2 23.4 23.6 23.8

29 C GBR M* 346 MK10 31/10/2012 78 240

30 C GBR F 367 Fast-loc
MK10

30/10/2012 DNR

31 C GBR F 370 Fast-loc
MK10

31/10/2012 DNR

Tiger shark numbers correspond to sharks with acoustic tags in Table 1.
*refers to mature males.
#refers to male sharks with semi-calcified claspers. TL refers to total length. DNR refers to did not report.
doi:10.1371/journal.pone.0083249.t002
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Statistical Analysis
Data from receivers were processed to define the length of time

an individual was monitored (calculated as release date till date of

last detection), the number of days an individual was present

during the monitoring period, the average number of days

between subsequent detections, the movements within and

between acoustic arrays and the difference in diel detection

frequency. Significant differences in proportion of detections

between night (18:00 to 5:59, sunset to sunrise) and day (6:00 to

17:59, sunrise to sunset) detected between individuals were

determined using Chi-square. A standardized Residency Index

(RI) was calculated for all sharks as the total number of days a tiger

shark was detected within an acoustic receiver array divided by the

number of days the shark could possibly have been detected

assuming its transmitter worked for the period of estimated battery

life [57].

To determine if there were differences in the space use of each

of the satellite tagged sharks three-dimensional 50% and 95%

kernel utilisation distributions were calculated using methods

described in Simpfendorfer et al. [58] using the ‘ks’ package in R

[59]. This method incorporates both horizontal and vertical

movements together to provide a more accurate representation of

the shark’s movement [58]. The plug-in bandwidth was used to

calculate smoothing factor for the kernel estimation as it has been

shown to be the most appropriate for bandwidth for home-range

studies (see [60]). No further statistical analysis was conducted on

the 3D kernels due to the high variability in the number of days

that each shark was tracked.

Results

Characteristics of Acoustic and Satellite Tagged Sharks
Thirty-four tiger sharks 154–390 cm TL were captured across

five study locations between October 2008 and October 2012

(Table 1). Thirty-three sharks were tagged with acoustic transmit-

ters: four males and six females in the Southern Province of New

Caledonia, one male and three females in Belep, Northern New

Caledonia, four male and six females in Chesterfield and eight

females and one male on the east coast of Australia. Tiger sharks

on the east coast of Australia were tagged with acoustic tags as part

of the QLSTP. Female tiger sharks were primarily sub-adult

(n = 10). Fewer adult females were captured (n = 4), of which only

one was captured and tagged within New Caledonia. Juvenile

sharks (n = 4) were captured only in the Southern Province while

both sub-adult (n = 2) and mature (n = 4) males were captured in

the north and south of New Caledonia and at the Chesterfield

Islands in the centre of the Coral Sea. Only a single male was

tagged within the Australian study locations.

Of these sharks, fourteen were also tagged with satellite tags

(Table 2), three with SPOT tags and 11 with PSATs. Sharks with

acoustic tags were detected over total days (d) ranging from one to

255 (less than the battery length of the acoustic tags)(median 4.5 d)

with two to 858 days between acoustic tagging and first detection

on either an array closest to location of tagging or another array in

Figure 3. Temporal occurrence of tiger sharks tagged at New Caledonia (Southern Province, Belep), the southern GBR and the
Chesterfield Islands in the Coral Sea with acoustic tags. Individual sharks are numbered with sex (M = male; F = female) (see Table 1) and
arranged by increasing body size from top to bottom within each study location. Numbers are bolded for mature sharks. Note shark 34 F was tagged
at Fraser Island (Australia) and 14 M was detected at Bourail (New Caledonia) after being tagged at Yande Pass (Table 1). x refers to tagging date. Blue
dots indicate detections in the respective acoustic arrays. D refers to end of available reception period for an acoustic array or tag.
doi:10.1371/journal.pone.0083249.g003
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the study location (median 28 d)(Table 1). This compared to

detection periods of four to 210 days (median 19 d) for PSATs and

seven to 38 days (median 13 d) for SPOT tags (Table 2). With the

exception of TS9, TS11 and TS29, premature release occurred for

all PSATs, and no data was received from two PSAT tags

deployed in Australia on mature females (Table 2).

Acoustic Monitoring
Patterns of acoustic detections differed between acoustic arrays

and individuals. Individual temporal patterns of occurrence were

highly variable in coastal arrays and displayed little evidence of

residency (Fig. 3, 4), however sharks tagged in 2010 and monitored

until November 2011 in the Chesterfield Islands, with the

exception of mature females, displayed consistent patterns of

movement and strong residency (Fig. 3, 4). These individuals

undertook extensive excursions between receivers within the array

area in the Chesterfields with continual movement patterns back

and forward across the lagoon that varied with each individual

(Fig. 5). Days detected for these sharks ranged from 36 to 255

across all months of the year (Fig. 5). In contrast, the number of

days tiger sharks were detected on acoustic receivers in the

Southern Province varied from 0 to 31 with one mature 370 cm

TL female (TS9) and a mature 380 cm TL male (TS10) displaying

pseudo-residency behaviour (Fig. 6). Days detected for tiger sharks

varied between one to seven in Belep and zero to one in Australia.

Mature females (TS24 and TS25) in the Chesterfield Islands,

however, were detected for only two and three days respectively

and exhibited similar patterns of transitory and asynchronous

occurrence to those of tiger sharks detected in coastal acoustic

arrays (Fig. 3, 4 and 5). More than half of the sharks detected on

acoustic arrays displayed transitory or a combination of pseudo-

residency and transitory behaviour, with the remaining eight

sharks detected in coastal arrays displaying passer-by behaviour

(Table. 1, Fig. 4 and 6). For example, TS34 was briefly detected

once, 117 km from her tagging location off Fraser Island,

Australia, by an acoustic receiver at Lady Elliot Island (Fig. 7).

Likewise, TS14 tagged at Yande Pass, Belep, was detected at

Bourail, New Caledonia, on an acoustic receiver array deployed

by another research team over 240 km from the shark’s tagging

location (Table 1; Fig. 7). In addition TS25 was detected at One

Tree Island, adjacent to Heron Island on the GBR 842 days after

being tagged in the Chesterfields in August 2010. Furthermore,

TS18 was detected at Lady Elliot Island, GBR, 591 days after

being tagged in the Chesterfields in August 2010 and at Heron

Island, GBR, 595 days after being tagged. This shark displayed

strong residency to the Chesterfields for her first year of tracking

before detection on the GBR. Both TS 18 and TS 25 displayed

migrations of over 600 linear km providing direct evidence of

temporal connectivity between oceanic reefs of the Coral Sea in

New Caledonia and the GBR. All tiger sharks were detected only

on acoustic receivers closest to their respective capture locations

except TS14, TS18, TS25 and TS34. Tiger sharks were detected

across all months in the south of New Caledonia irrespective of

ontogeny or sex (Fig. 3, 6). Movements between acoustic receiver

stations in the Southern Province occurred primarily in the

Woodin Channel and the coral bommie in the greater lagoon.

One 380 cm TL mature male (TS10) was detected well within

Prony Bay at the Carenage River on several occasions. Visits at

individual stations were typically brief as sharks were typically

detected only once within a three minute period on individual

stations. No tiger sharks were captured, tagged or detected at Lord

Howe Island during the period of acoustic receiver deployment.

Overall 55% of the 33 tiger sharks with acoustic tags were

detected after release. 30% were yet to be recorded (detected)

(YBR) and one shark was resighted although this shark was not

tagged (Table 1). Diel patterns of detection showed individual

Figure 4. Residency Index (RI) of tiger sharks tagged at New Caledonia, the southern GBR and the Chesterfield Islands in the Coral
Sea with acoustic tags. Individual sharks are numbered (see Table 1) and arranged by increasing body size from top to bottom for those tagged in
the Coral Sea (top section) and those in New Caledonia/GBR (bottom section). Numbers are bolded and sex (M = male; F = female) shown for mature
sharks.
doi:10.1371/journal.pone.0083249.g004
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differences between day and night for sharks detected for sufficient

temporal periods (Table 3).

SPOT Tracks
Three tiger sharks fitted with SPOT tags produced 43 positional

fixes between February and March 2010. Most of these positions

(n = 34) were from TS3, a 192 cm TL juvenile tagged in the

Southern Province. Interestingly, TS3 was not detected on any of

the acoustic receivers in the vicinity of her tag and release location,

however SPOT positions showed she moved throughout the

Southern Province, remaining within the lagoon and adjacent to

the barrier reef for the period of her tracking (Fig. 7). Alternatively,

TS13 (n = 7) and TS14 (n = 2) had few positional fixes, although

TS13 was periodically redetected on acoustic receiver stations at

her original tagging location after 200 days. TS14 was also

detected on another acoustic array after 294 days (Table 1).

PSAT Tracks and Ocean Migration
Eight tiger sharks fitted with PSATs revealed long distance,

open-ocean and inter-island migrations with seven of these sharks

detected on acoustic arrays at the site of capture after four to 405

days (Fig. 7). Tiger sharks tagged in the Southern Province showed

migrations out of the main lagoon into open-ocean. TS6 moved

south and was one of two satellite tagged sharks in New Caledonia

not to be detected on an acoustic receiver. TS8 migrated east

towards the Loyalty Islands, whereas TS11 migrated into the

Coral Sea south of New Caledonia before returning to the

Southern lagoon after 210 days. During this journey, TS11

underwent dives of up to 640 m. TS9 underwent a significant

migration south and appeared to be oriented to the oceanic

Norfolk ridge. TS9 spent most of her time near the surface, but

underwent a deep dive of 1136 m to waters of 5.6uC (Fig. 8C).

This shark then moved south past Norfolk Island before turning

north back along the Norfolk ridge. TS9 was then detected back

on the southern New Caledonia acoustic array after 225 days

(Fig. 7).

Tiger sharks satellite tagged in the Chesterfield Islands showed

movements out into open-ocean before returning to the lagoon

and were then detected on the acoustic array. TS16 and TS17

appeared to be resident or pseudo-resident, whereas TS24 and

TS25 were detected back on the Chesterfield array after 326 and

86 days, respectively. TS18 was tracked for 93 days. Interestingly,

this shark showed numerous deep dives between periods of

remaining at depths of no more than 40 m (Fig. 8A). Only one

satellite tagged shark in the Great Barrier Reef (TS 29) provided a

track for 78 days out into the Coral Sea off Cairns before the

satellite tag popped-off west of Lizard Island. Satellite tags from

two female tiger sharks 367 and 370 cm TL (Table 2) tagged in

Cairns did not report (Table 2). Photo-ID of the dorsal fin of TS5

revealed the movement of this shark across the Coral Sea between

Woodin Channel, Southern New Caledonia, in 2008 to Noosa

Heads, Australia, in 2010 (Fig. 9). The combination of satellite and

acoustic telemetry revealed the ocean migration and periodic

return of TS11 to Woodin Channel 405 days after tagging.

Dive Profiles and Three-dimensional Habitat-use
Dive profiles showed extraordinary levels of vertical movement

with the deepest depth on record for a tiger shark at 1136 m

(Fig. 8). Three-dimensional 95% kernel estimates demonstrated

tiger sharks utilised deep open ocean relatively close to the GBR,

off Cairns (Fig. 10), whereas kernels suggest utilisation of the

shallow lagoon with interspersed diving/movement down into

deep water (possibly foraging) before returning to the lagoon. This

pattern ties in nicely with the acoustic data (Fig. 3 and 8). The

kernel estimates for the south of New Caledonia reflected the

migration of sharks away from the southern New Caledonia

lagoon, but indicated that the sharks also utilise the lagoon itself,

which is a vast area with depths up to 80 m (Fig. 7F). Three-

dimensional activity spaces (95%) averaged at 2.366103 km3 and

varied from 0.16 to 4.486103 km3. Kernel estimates 50% varied

from 37.7 to 9.496102 km3.

Patterns of Coral Reef Site-fidelity
Our study demonstrates extraordinary reef fidelity among tiger

sharks in New Caledonia and the Chesterfield reefs. In New

Caledonia, dorsal fin photo-ID of TS5 confirmed this shark was

present in Prony Bay, New Caledonia, in 2002 on a whale carcass

[55] and in 2008. As far as we are aware, this is the longest

confirmed record of site-fidelity for a large tiger shark. This shark

was later captured on shark control equipment at Noosa on the

east coast of Queensland, Australia, in 2010 before being tagged

and released by another research team (Fig. 9). In addition, TS 11

was captured and tagged with satellite and acoustic tags in New

Caledonia in 2009 before returning to the site of capture in 2010.

Eight sharks with satellite and acoustic tags were detected back on

acoustic arrays at sites of release two to 405 days after tagging

(median 24.5 d).

Discussion

Tiger sharks monitored by a combination of acoustic and

satellite telemetry across the Coral Sea utilised a remarkable range

of habitat both horizontally among shallow coastal and island reefs

and open ocean as well as vertically through the epi-, meso- and

bathypelagic layers. This range of habitat-use is entirely consistent

with results from previous studies conducted in other geographic

regions (e.g. [34], [35], [36], [37]). The novelty in our findings is

the remarkable year round residency of the sub-adult females and

an adult male tiger shark in the isolated oceanic Chesterfield

Island reef(s). Our study, however, did not support the hypothesis

that tiger sharks undertake regular or predictable migrations

between New Caledonia and Australia across the Coral Sea.

Unlike other large apex predators and top level consumers, such as

the white shark (Carcharodon carcharias) and humpback whale

(Megaptera novaeangliae) which do appear to undertake consistent

seasonal migrations within the Coral Sea (e.g. [61], [62], [63]),

tiger sharks in our study displayed complex individual variability in

both their wide-ranging migrations and localised movement

patterns. Our results suggest discrete groups of tiger sharks across

the Coral Sea utilise specific coral reefs incorporating nearby deep

water oceanic environments 98 to 249 km from the location of

tagging with three-dimensional (combined horizontal and vertical)

Figure 5. Spatial occurrence of tiger sharks tagged at the Chesterfield Islands in the Coral Sea with acoustic tags. Individual tiger shark
numbers correspond to Table 1. Arrows indicate direction of movement between receivers; double headed arrows indicate repeated movements
between receivers. Coloured bubbles indicate the proportion of detections at numbered acoustic receivers. Shades of blue in the legend are labelled
to indicate different water depths. Inset bar graphs indicate the number of days detected in each month and localised behaviours; PB (Passer-by), T
(Transient), PR (Pseudo-Resident), R (Resident). Blue arrows indicate the month of capture.
doi:10.1371/journal.pone.0083249.g005
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activity spaces typically ranging from 0.16 to 4.486103 km3. In

addition, our data suggest that selected individuals then undertake

more wide-ranging migrations that provide temporal (but unpre-

dictable and irregular) connectivity between reefs of New

Caledonia and Australia. Recent work by Papastamatiou et al.

[15] suggests this may be due to a phenomenon known as ‘partial

migrations’ based on analysis of tiger shark movements in the

Hawaiian island chain where only a proportion of the shark

population migrate in a given period. In light of our data we

propose two provisional and interlinked hypotheses related to

mating/pupping and coastal vs oceanic reef-use to explain the

observed migratory patterns.

Mating/Pupping as a Driver for Adult Movement
Mature females were captured at all sites other than Lord Howe

Island (LHI), although a small juvenile was filmed in 30 m of water

on the LHI plateau during Baited Remote Underwater Video

(BRUV) surveys undertaken by I. Kerr (LHI marine parks)

providing evidence of pupping and the presence of mature females

at this oceanic Coral Sea island (see Video S2). Mature females

also displayed the longest migrations (e.g. TS9) and least frequent

occurrence on acoustic receiver arrays suggesting they may be the

main participants in wide-ranging movements that provide

important temporal connections between ‘local’ groups of spatially

separated (i.e. 500 km ) tiger sharks.

Mature females have triennial reproductive cycles [56] that

probably drive unpredictable and seemingly inconsistent, yet

extremely important, long-range migrations between mating and

foraging grounds and suitable pupping habitats. Mating and

pupping requirements may partially explain adult tiger shark

migration patterns in the Coral Sea. Using random walk models

from male and female tiger sharks recoded via passive acoustic

telemetry in the Hawaiian Islands, Papastamatiou et al. [15]

proposed that inter-island movements by tiger sharks were a result

of a combination of partial reproductive migrations and individual

decisions related to water temperature and primary productivity.

This was also based on the limited inter-island movement of large

males compared to that of mature females. Our data seemingly fit

the proposed model of Papastamatiou et al. [15] and suggest that

mature females may be of primary concern for conservation of

tiger shark populations in the Coral Sea. For example, the

transient nature of mature females in the Chesterfields compared

to sub-adult and mature male sharks supports the notion that large

females may move in three year cycles between pupping and

foraging grounds on the east coast of Australia and the west coast

of New Caledonia with mating taking place in the oceanic reefs in

the Coral Sea. This strategy provides a largely unpredictable

means of utilising sparse foraging and pupping habitats, but

increased and varied mating opportunities with males that may be

more restricted in their movements. Isotope analysis of tiger shark

tissues from different regions in the Coral Sea will be a useful

means to compare the signatures of males and females to further

quantify these patterns [64]. In addition, blood analysis of adult

females in coastal and oceanic areas will help to elucidate

movements in response to parturition. This method was also

proposed by Hammerschlag et al. [37] for tiger sharks in the

Atlantic and Papastamatiou et al. [15] for tiger sharks in the

Hawaiian Islands.

Our longest satellite track was undertaken by a 3.7 m female

(TS 9) who undertook a directional migration of 1141 km from the

coastal areas of the southern province of New Caledonia to close

to Norfolk Island before being detected back at her coastal site of

tagging after 225 days. During our survey efforts and repeat

tagging trip in the Chesterfield Islands, we did not capture or

observe small juvenile or new born tiger sharks; however, small

juveniles were caught in the coastal areas (,60 m of water) of New

Caledonia and have been recorded in Australia [65]. In addition,

pregnant females have been recorded on the east coast of

Australia, suggesting parturition occurs in these coastal areas.

Overall, general migration patterns of tiger sharks in the Coral

Sea may be masked by highly variable individual movement

patterns. In our study mature males showed high levels of site

fidelity at oceanic reefs (e.g. TS 19) and repeated occurrence in

only one of our defined tiger shark ‘group’ areas of the south of

New Caledonia (e.g. TS 10), consistent with the model proposed

by Papastamatiou et al. [15]. However, one male made a long

range movement 294 km south along the west coast of New

Caledonia, whereas TS 5 (a 3 m sub-adult female) showed

extensive movement from southern New Caledonia to Noosa

Heads, Australia, over a period of 495 days. TS 5 occurred in

southern New Caledonia in 2002 and 2008 prior to its occurrence

in Australia in 2010 (Fig. 9). In the future, new and advanced

satellite tags (e.g. satellite-linked radio-telemetry (SLRT) tag with a

multi-year battery capacity), such as those used over a two-year

period by Domeier and Nasby-Lucas [66] on white sharks, may

better reveal these movement patterns for large female tiger

sharks.

Localised Habitat-use
Our data lead us to reject our hypothesis of no difference in

localised habitat-use of reefs across the Coral Sea by tiger sharks.

In fact, we found an obvious difference in the shark behaviour

between coastal (New Caledonia and GBR) and isolated oceanic

reefs (Chesterfields). While we acknowledge differences in the

number of receivers providing coverage in acoustic arrays, the

novelty in our findings is the remarkable year round residency of

the sub-adult females and an adult male tiger shark in the isolated

oceanic Chesterfield reef(s). Satellite telemetry revealed members

of this group of sharks made frequent deep dives, but acoustic data

revealed frequent returns to the lagoon area with ongoing

‘‘patrolling’’ movements between cays across the lagoon. While

Meyer et al. [36] and Lowe et al. [30] demonstrate that isolated

lagoons are important to Hawaiian tiger sharks and some

individuals occur year round, we are not aware of any studies

that have demonstrated year round, continual residency for large

tiger sharks to the extent of those in our study.

Mature male and female tiger sharks utilise coastal and oceanic

reef habitats in different ways most likely driven by a combination

of female parturition requirements, suitable pupping grounds for

offspring [56], [67] and utilisation of productive prey patches.

Differences in female and male occurrence and habitat-use

patterns have been recorded for other shark species, e.g. the

Figure 6. Spatial Occurrence of tiger sharks within the Southern Province (A to H) and Northern Province (I) monitoring arrays in
New Caledonia (see Fig. 1). Individual tiger shark numbers correspond to Table 1. Arrows indicate direction of movement between receivers;
double headed arrows indicate repeated movements between receivers. Coloured bubbles indicate the proportion of detections at numbered
acoustic receivers. Different shades of blue in the legend indicate different water depths. Inset bar graphs indicate the number of days detected in
each month and localised behaviours; PB (Passer-by), T (Transient), PR (Pseudo-Resident), R (Resident). Bar graph arrows indicate the month of
capture. Numbers alongside the bubbles correspond to receiver number.
doi:10.1371/journal.pone.0083249.g006
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Figure 7. Spatial patterns of tiger shark movements across the Coral Sea between 2008 and 2013. Bubble plots show 95% confidence
interval envelope for PSAT tracks. (A) Satellite tracks of PSAT tiger sharks tagged in the Southern lagoon of New Caledonia; (B) SPOT satellite tagged
tiger sharks in the north of New Caledonia; (C) PSAT tiger sharks in the Chesterfield Islands, and (D) off Cairns in the GBR. (E) Includes the straight
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oceanic short-fin mako, Isurus oxyrinchus, and blue shark, Prionace

glauca [68] and coastal species such as the blacktip, Carcharhinus

melanopterus [69] and scalloped hammerhead, Sphyrna lewini [70],

[71] and were attributed to female avoidance of males as a strategy

to increase fitness and reduce competition, different dietary

requirements, and the locating of suitable pupping grounds for

offspring [68], [70]. In our study area, data based on capture of

328 mature tigers in the QLD Shark Control Program between

2002 and 2012 along the QLD coast confirm the regular

occurrence of both mature male and female tiger sharks (at a

ratio of 1:1.5). While adult male and female tiger sharks occur at

sites across the Coral Sea, different life history requirements for

males and females are likely driving individual differences in shark

behaviour and habitat-use on both local and basin-wide scales in

the Coral Sea.

Coastal vs Oceanic Reef Foraging Hypothesis
Different reefs have varying prey and habitat characteristics that

influence shark behaviour. The abundance and diversity of

suitable prey available in the Chesterfields lagoon, in contrast to

the sparsely distributed resources found on coastal reefs, may

explain tiger shark residency. The Chesterfield reefs sustain large

turtle populations including seasonal aggregations of breeding

green turtles, populations of numerous sea snake species and

breeding colonies of different species of sea bird (.200,000

individuals) in addition to teleost populations [41], [72]. For

example, the stomach contents of one tiger shark (TS 19) tagged in

the Chesterfield Islands contained hawksbill turtle (Eretmochelys

imbricata), seabird and sea snake remains; prey items consistent

with prey availability in the Chesterfields. Individual prey species

do not necessarily explain residency as tiger sharks in the remote

northern GBR do not necessarily occur in conjunction with the

seasonal aggregations of the world’s largest breeding colony of

green turtles at Raine Island [31]. However, Hawaiian tiger sharks

undertake pelagic migrations between islands to coincide with

seasonal prey accessibility such as the availability of fledging black-

footed albatross, Phoebastria nigripes [32]. These anomalies around

the Pacific Ocean add to the confusing and seemingly unpredict-

able patterns of tiger shark movement. However, the diversity of

food resources and temporal variability in prey in the Chesterfields

could explain the abnormally long residency (and absence of

seasonality) of one adult male tiger in our study (TS 19) and

indicates the Chesterfields may be a very important feeding

ground for tiger sharks. In turn these favourable conditions may

facilitate this area as a fertile mating ground. In contrast, adult

female tiger sharks appeared to simultaneously leave the Chester-

fields and were only briefly re-detected approximately one year

after initial tagging, suggesting transitory behaviour among the

isolated oceanic coral reefs probably due to the aforementioned

mating/pupping hypotheses. Tiger sharks are true generalists and

able to utilise wide and varied food sources and probably adapt

their behaviour accordingly and with opportunity [73]. Tiger

sharks likely seek out and exploit productive and predictable

resource patches that exhibit abundant food. Tiger sharks visiting

turtle rookeries or bird fledging sites are therefore no more

anomalous than white sharks visiting seal rookeries. Sharks move

on when the resources are depleted as some of these resources

(birds, turtles) are highly seasonal. Other locations may perhaps

encourage more resident behaviour, especially for pre-reproduc-

tive animals (e.g. Chesterfields/oceanic reefs), as these locations

have permanent high resource abundance. Maturity/breeding

may provide a powerful incentive to leave these highly productive

sites.

Reef Fidelity
Individual differences in movement patterns are not uncommon

in reef-associated sharks (e.g. C. amblyrhynchos, [18]). Juveniles often

show high site fidelity to a small region, whereas larger and older

individuals are likely to move beyond a single reef or display wider

ranging movements [20], [74]. To some extent, this trend remains

true for the tiger shark, which, unlike smaller reef-associated shark

species, shows no evidence for long-term residency in previous

studies, instead exhibiting movements through large home ranges

of at least 109 km [32], [35]. In our study, a SPOT track of a

juvenile tiger shark in southern New Caledonia showed that this

shark remained within the lagoon and close to the barrier reef (an

distance between the first photo-ID spotting of TS5 in New Caledonia and the second on the east coast of Australia. (F) The movement of a juvenile
TS in the south of New Caledonia. Red arrows indicate movements from point of release to detection on spatially separated array for tiger sharks with
acoustic tags. Orange arrows indicate generalised patterns/directions of major currents within the region of tiger shark migration. EAC refers to the
East Australian Current.
doi:10.1371/journal.pone.0083249.g007

Table 3. Diel patterns of tiger shark occurrence at acoustic receiver stations.

Tiger
Shark

Tagging
Location

Date of
Capture Sex TL (cm)

day time
detections

night time
detections X2 P

1 SP 30/01/2009 F 154 30 9 19.4 ,0.001

2 SP 7/07/2009 F 164 5 50 34.2 ,0.001

4 SP 9/07/2009 F 270 20 15 7.7 0.398

9 SP 24/08/2010 F 370 56 35 24.3 0.028

10 SP 28/01/2009 M* 380 44 58 14.6 0.166

16 CI 12/08/2010 F 260 474 389 173.4 0.004

17 CI 13/08/2010 F 270 62 374 203.2 ,0.001

18 CI 12/08/2010 F 310 1081 1868 443.7 ,0.001

19 CI 16/08/2010 M* 310 526 522 175.8 0.902

Chi-square analysis and P values refer to day and night time detections.
doi:10.1371/journal.pone.0083249.t003
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area of approximately 3145 km2) (Fig. 7F), whereas four PSAT

tagged sub-adult and adult tiger sharks (both male and female)

migrated out of the same area and undertook wide-ranging ocean

migrations. This is consistent with other studies that suggest

restricted movement of young of the year (YOY) and small

Figure 8. Depth-temperature profiles of selected PSAT tagged
tiger sharks. (A) TS25 Chesterfield Islands, (B) TS11 South lagoon of
New Caledonia, and (C) TS9 South Lagoon of New Caledonia. Black bars
above A refer to periods of acoustic detection in the Chesterfield array.
Note differing spatial and temporal scales.
doi:10.1371/journal.pone.0083249.g008
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juvenile tiger sharks out to a depth of 100 m from the coast based

on long-term catch records on the east coast of the USA [38], [75],

as opposed to adults which occupy shelf and oceanic waters across

the western Atlantic [1], [37]. Furthermore, the literature suggests

that tiger shark movement becomes more localised over short

periods (weeks) at hotspots of resource availability, such as

seamounts [76], rather than in coastal areas [35], [37].

A recent review comparing horizontal and vertical movements

of coastal sharks suggests fidelity is common in species that use

nursery areas, but fidelity to mating, pupping, feeding and natal

sites has rarely been observed [67]. Our data presents extensive

fidelity to sites of tagging in the south of New Caledonia and the

Chesterfields, with eight double-tagged (i.e., both satellite and

internal acoustic tags) sharks detected back on our acoustic array

at the site of tagging after two to 405 days (median 62 d) (Table 1).

These data illustrate the potentially long-term site fidelity of large

tiger sharks to specific coastal areas. Conservation of tiger sharks

may be facilitated by the recently established MPAs in southern

New Caledonia, especially as the southern New Caledonian

coastal site may operate as a feeding area with obvious multi-year

sporadic use by large tiger sharks. However, the wide ranging

movements of TS 11 and other large tiger sharks also suggest a

better understanding of the use of ocean habitats is necessary for

effective conservation.

Three-dimensional Habitat Use
Three-dimensional (3D) space use was estimated when the

horizontal and vertical coordinates were determined simulta-

neously, however few studies consider 3D when describing the

habitat-use of large sharks. Our study provides the first estimate of

long-term 3D habitat-use by tiger sharks. Caution should be

applied however, as light-based geolocation position estimates may

contain considerable spatial errors compared to real time SPOT

tag locations; nonetheless this method enables informed MPA

design by providing an estimate of 95% of the (3D) activity space

of individual tiger sharks. Clearly tiger sharks are utilising deep

water habitats, which appear to be particularly important in the

sub-adult and adult life history stages. MPA design for large sharks

can be greatly improved if the 3D habitat use is known,

particularly if incorporating open ocean areas. Our estimates of

95% home range showed large variability between individuals;

however sharks frequented the epipelagic layer (0–100 m). In the

vertical plane, movements are often attributed to foraging or

navigation, but are less well understood than horizontal move-

ments for almost all shark species. Hammerschlag et al. [37] noted

that pelagic migrations by tiger sharks in the Atlantic coincide with

areas of the Gulf Stream and its associated eddies that are highly

productive and known for aggregations of prey including tuna and

billfish. Use of deep water habitat by tiger sharks probably varies

with ocean productivity, upwelling and proximity to highly

productive prey patches (e.g. oceanic reefs such as the Chester-

fields). Dive patterns by tiger sharks tagged in coastal areas could

also be a means to utilise bathymetric cues to navigate/migrate

between islands in addition to foraging [33], [61].

Implications for Conservation and Management
The migratory movements of large tiger sharks from New

Caledonia out into the Coral Sea toward Australia reflects the

potential conservation implications for managing these widely

separated habitats lying on a migration ‘highway’ for marine

megafauna. Few fish species utilize such a remarkable range of

habitat in such a short amount of time, thus tiger sharks provide

novel trophic links horizontally among the shallow coastal and

island reefs and open ocean as well as vertically through the epi-,

meso-, and bathypelagic layers. Across the Coral Sea, tiger sharks

demonstrate bi-partite habitat use (between ocean and coral reef)

with high individual variability. Our data has shown direct

evidence of reef site fidelity in the Chesterfield Islands, suggesting

oceanic Coral Sea reefs may be particularly important for this

species, both as potential mating grounds and feeding grounds for

large individuals. Based on our data trends we suggest that mature

females may be the primary individuals migrating between

Australia and New Caledonia across the Coral Sea driven by

reproductive cycles. Females may also be returning to suitable

coastal areas for parturition after utilising productive ‘stop-over’

prey patches (e.g. seamounts such as the Chesterfields), hence

providing important trophic links between distant reef habitats in

the Coral Sea. Protection of oceanic reefs in the Coral Sea may be

a critical means to conserve future stocks of this species and will

Figure 9. Resightings of individual tiger shark based on dorsal
fins. Arrows highlight the distinguishing features of the individual
sharks fin. Note A1 was identified by Clua et al. [55]. The photo taken in
A3 is after a tissue sample was taken from the second notch in the
shark’s dorsal fin.
doi:10.1371/journal.pone.0083249.g009

Figure 10. Individual 3D (95%) activity space of satellite tagged tiger sharks in the Coral Sea. (A) South New Caledonia: Green TS 6,
Orange TS 8, Grey TS 11, (B) Chesterfields: Blue TS 16, Green TS 18, (C) Cairns: Purple TS 29.
doi:10.1371/journal.pone.0083249.g010
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require international cooperation. The conservation of tiger sharks

can be facilitated in some cases by the use of coastal barrier reef

marine protected areas, especially for specific sites that demon-

strate continual fidelity over multiple years across individuals (such

as southern New Caledonia). However these areas only provide

brief protection for large life-history stages of tiger sharks which

frequent pelagic waters. Oceanic migration of adults, especially

females, is of particular concern. Our findings further emphasize

the need to address marine conservation issues at an international

scale, as top predators such as the tiger shark traverse country

EEZ’s and leave the protection afforded by coastal barrier reef

managed areas [11], [77]. A joint-managed (Australia and France)

connectivity corridor across the Coral Sea may be one method to

address this. Successful international management initiatives will,

however, require more long-term research on habitat-use and

migration by large tiger sharks [67]. Future research should

therefore focus on comprehensive satellite tracking of mature tiger

shark (both male and female) along the chain of seamounts and

oceanic reefs in the centre of the Coral Sea, from the Chesterfield

Islands south to LHI. Determining the role of other oceanic coral

reefs should be a priority for the conservation of tiger sharks in the

Coral Sea.

Supporting Information
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72. Borsa P, Pandolfi M, Andréfouët S, Bretagnolle V (2010) Breeding avifauna of

the Chesterfield Islands, Coral Sea: current population sizes, trends, and threats.
Pac Sci 64 (2): 297–314.

73. Matich P, Heithaus MR, Layan CA (2011) Contrasting patterns of individual

specialization and trophic coupling in two marine apex predators. J Ani Ecol 80
(1): 294–305.

74. Garla RC, Chapman DD, Shivji MS, Wetherbee BM (2006) Movement patterns
of young Caribbean reef sharks, Carcharhinus perezi, at Fernando de Noronha

Archipelago, Brazil: the potential of marine protected areas for conservation of a

nursery ground. Mar Biol 149: 189–199.
75. Natanson LJ, Casey JG, Kohler NE, Colket T IV (1998) Growth of the tiger

shark, Galeocerdo cuvier, in the western North Atlantic based on tag returns and
length frequencies; and a note on the effects of tagging. Fish Bull (Wash DC) 97:

944–953.
76. Rogers AD (1993) The biology of seamounts. In: Blaxter JHS, Southward AJ,

editors. Advances in marine biology, vol 30. London: Acadmic Press ltd. pp.

305–366.
77. Mora C, Myers RA, Coll M, Libralato S, Pitcher TJ, et al. (2009) Management

effectiveness of the world’s marine fisheries. PLoS Biol 7(6): e1000131.

Coral Sea Tiger Shark Movement

PLOS ONE | www.plosone.org 18 January 2014 | Volume 9 | Issue 1 | e83249


