
ORIGINAL RESEARCH ARTICLE
published: 20 September 2013
doi: 10.3389/fnins.2013.00160

Reward-based learning under hardware constraints—using
a RISC processor embedded in a neuromorphic substrate
Simon Friedmann1*, Nicolas Frémaux2, Johannes Schemmel1, Wulfram Gerstner2 and

Karlheinz Meier1

1 Kirchhoff Institute for Physics, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
2 School of Computer and Communication Sciences and Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Edited by:

Elisabetta Chicca, University of
Bielefeld, Germany

Reviewed by:

Jennifer Hasler, Georgia Insitute of
Technology, USA
Piotr Dudek, University of
Manchester, UK
Stefan Mihalas, Allen Institute for
Brain Science, USA

*Correspondence:

Simon Friedmann, Kirchhoff
Institute for Physics,
Ruprecht-Karls-University
Heidelberg, Im Neuenheimer Feld
227, 69120 Heidelberg, Germany
e-mail: simon.friedmann@
kip.uni-heidelberg.de

In this study, we propose and analyze in simulations a new, highly flexible method of
implementing synaptic plasticity in a wafer-scale, accelerated neuromorphic hardware
system. The study focuses on globally modulated STDP, as a special use-case of this
method. Flexibility is achieved by embedding a general-purpose processor dedicated to
plasticity into the wafer. To evaluate the suitability of the proposed system, we use a
reward modulated STDP rule in a spike train learning task. A single layer of neurons is
trained to fire at specific points in time with only the reward as feedback. This model
is simulated to measure its performance, i.e., the increase in received reward after
learning. Using this performance as baseline, we then simulate the model with various
constraints imposed by the proposed implementation and compare the performance. The
simulated constraints include discretized synaptic weights, a restricted interface between
analog synapses and embedded processor, and mismatch of analog circuits. We find
that probabilistic updates can increase the performance of low-resolution weights, a
simple interface between analog synapses and processor is sufficient for learning, and
performance is insensitive to mismatch. Further, we consider communication latency
between wafer and the conventional control computer system that is simulating the
environment. This latency increases the delay, with which the reward is sent to the
embedded processor. Because of the time continuous operation of the analog synapses,
delay can cause a deviation of the updates as compared to the not delayed situation. We
find that for highly accelerated systems latency has to be kept to a minimum. This study
demonstrates the suitability of the proposed implementation to emulate the selected
reward modulated STDP learning rule. It is therefore an ideal candidate for implementation
in an upgraded version of the wafer-scale system developed within the BrainScaleS
project.

Keywords: neuromorphic hardware, wafer-scale integration, large-scale spiking neural networks, spike-timing

dependent plasticity, reinforcement learning, hardware constraints analysis

1. INTRODUCTION
In reinforcement learning, an agent learns to achieve a goal
through interaction with an environment (Sutton and Barto,
1998). The environment provides a single scalar number, the
reward, as feedback to the actions performed by the learning
agent. The agent tries to maximize the reward it receives over
time by changing its behavior. In contrast to supervised learn-
ing, where an instructor supplies the correct actions to take, here
the agent has to learn the correct strategy itself through trial-
and-error. Typically this is done by introducing randomness in
the selection of actions and taking into account the resulting
reward. Recently, several studies have suggested extending classi-
cal spike-timing dependent plasticity (STDP, Caporale and Dan,
2008; Morrison et al., 2008) into reward-modulated STDP to
implement reinforcement learning in the context of spiking neu-
ral networks (Farries and Fairhall, 2007; Florian, 2007; Izhikevich,
2007; Legenstein et al., 2008; Frémaux et al., 2010; Potjans et al.,
2011). One of the key issues in reinforcement learning is solving

the so-called temporal credit assignment problem: reward arrives
some time after the action that caused it. So how does the agent
know how to change its behavior? It needs to retain some infor-
mation about recent actions in order to assign proper credit for
the rewards it receives. To do this, reward modulated STDP gener-
ates an eligibility trace for every synapse that depends on pre- and
postsynaptic firing. This trace, modulated by the reward, deter-
mines the change of synaptic weight, thereby solving the credit
assignment problem.

Spike-based implementations do not only offer an approach
to biological models of learning, they are also suitable for imple-
mentation in neuromorphic hardware devices. Existing systems
offer a number of interesting characteristics, such as low-power
consumption (e.g., Wijekoon and Dudek, 2008; Livi and Indiveri,
2009; Seo et al., 2011), faster than real-time dynamics (Wijekoon
and Dudek, 2008; Schemmel et al., 2010), and scalability to large
networks (Schemmel et al., 2010; Furber et al., 2012). They are
typically built with two goals in mind: as new kind of brain

www.frontiersin.org September 2013 | Volume 7 | Article 160 | 1

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuromorphic_Engineering/10.3389/fnins.2013.00160/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=SimonFriedmann&UID=84884
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=NicolasFremaux&UID=15078
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JohannesSchemmel&UID=1075
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=WulframGerstner&UID=2298
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=KarlheinzMeier&UID=2505
mailto:simon.friedmann@kip.uni-heidelberg.de
mailto:simon.friedmann@kip.uni-heidelberg.de
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Friedmann et al. Reward-based learning under hardware constraints

inspired information processing device and to provide a scalable
platform for the experimental exploration of networks. Several
studies so far have focused on the implementation of variants of
unsupervised STDP in neuromorphic hardware (Indiveri et al.,
2006; Schemmel et al., 2006; Ramakrishnan et al., 2011; Seo
et al., 2011; Davies et al., 2012). The synapse circuit presented
by Wijekoon and Dudek (2011) implements the model proposed
by Izhikevich (2007) with the goal of enabling reward modulated
STDP.

In this study we analyze the implementability of a reward mod-
ulated STDP model derived from Frémaux et al. (2010) as one
example of a flexible hardware learning system. To that end, we
propose an extended version of the BrainScaleS wafer-scale sys-
tem (Fieres et al., 2008; Schemmel et al., 2008, 2010) to serve
as a conceptual basis for this analysis. This system is designed
as a faster than real-time and flexible emulation platform for
large neural networks. The use of specialized analog circuits
promises a higher power-efficiency than conventional digital sim-
ulations on supercomputers (Mead, 1990). The acceleration in
time compared to biology also makes the system interesting for
reinforcement learning, which typically suffers from slow con-
vergence (Sutton and Barto, 1998). Starting from an existing
system with limited modifications leads to a more realistic design
prototype compared to starting from scratch.

A key objective for the proposed neuromorphic system is to
be a valuable tool for neuroscience. Therefore, the design must
not be targeted at a single network architecture, task or learn-
ing rule, but instead stay as flexible as is reasonably possible. On
the other hand, implementing large-scale neural networks with
accelerated time-scale raises technical challenges and trade-offs
have to be made between flexibility and performance. The pro-
posed extension represents a plasticity mechanism reflecting this
design philosophy: specialized analog circuits in every synapse are
combined with a general purpose embedded plasticity-processor
(EPP). This way, the benefits from the worlds of analog and
processor-based computing can be combined: analog circuits
are used for compact, power-efficient and fast local processing,
and digital processors allow for programmable plasticity rules.
Integrating the processors into the same application specific inte-
grated circuits (ASIC) on the wafer as the neuromorphic substrate
allows for scalability to wafer size networks and beyond.

In the following, we will consider only the aforementioned rule
studied in Frémaux et al. (2010) and analyze effects caused by
the adaptation to the hardware system in simulations. We want to
answer the question whether the hybrid approach combining pro-
cessor and analog circuits is a suitable platform for this particular
learning rule. Among the hardware-induced constraints are non-
continuous weights, drift of analog circuits and communication
latency between hardware substrate and the controlling computer
system. We want to test and compare the performance of the
unconstrained and the constrained plasticity rules in order to
find guidelines for the hardware implementation, for example the
required weight resolution or maximum noise levels. Section 2
describes the extended hardware system and the plasticity model.
Section 3 presents results from simulations showing performance
under hardware constraints. Section 4 provides a discussion of
our results.

2. MATERIALS AND METHODS
2.1. USING AN EMBEDDED PROCESSOR FOR PLASTICITY
The key concept of our hardware implementation of synaptic
plasticity is to use a programmable general-purpose processor
in combination with fixed-function analog hardware. Software
running on the processor can use observables and controls to
interface with the neuromorphic substrate. Thereby, it is pos-
sible to flexibly switch between synaptic learning rules or use
different ones in parallel for different synapses. The alterna-
tive to this concept would be to use fixed-function hardware
instead of a general-purpose processor. This would allow a more
efficient implementation of one specific rule, at the cost of sys-
tem versatility. In the following, we give background informa-
tion on a complete neuromorphic system following the concept
of processor-enabled plasticity. From the system described, we
derive hardware constraints that are used in the simulations
reported in section 3.

2.1.1. System overview
Figure 1 gives a schematic overview of the complete hardware
system. The experimenter controls the system through a control
cluster of off-the-shelf computers. The network is provided in a
description abstracted from the details of the system using the
PyNN modeling language (Davison et al., 2008). An automated
mapping process translates the description into the detailed con-
figuration that is written to the wafer-modules (Wendt et al.,
2008; Ehrlich et al., 2010). These modules are interconnected by a
high-speed network to communicate spike-events (Scholze et al.,
2011). External stimulation can be applied to the network from
the control cluster, using the high-speed links that are also used

FIGURE 1 | Overview of the system. The user controls the system
through a cluster of conventional computers by sending configuration and
spike data to a number of modules that each carry a wafer. These wafer
modules are interconnected with a high-speed network to exchange spike
events. The wafer contains identical building blocks, of which one is shown
in an expanded view. The proposed extension to the BrainScaleS
wafer-scale system in form of the embedded plasticity processor is marked
in red. Input/output access from the processor to other components of the
building block is indicated with triangles.

Frontiers in Neuroscience | Neuromorphic Engineering September 2013 | Volume 7 | Article 160 | 2

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Friedmann et al. Reward-based learning under hardware constraints

for configuration. The wafer itself is subdivided into building
blocks that contain the neuromorphic substrate, i.e., synapses,
neurons, parameter storage and networking resources for spike
transmission.

Our proposed extension adds an EPP to every building block
on the wafer, together with its own memory for instructions
and data. It will be equipped with three interfaces to the fixed-
function hardware: read and write access on the synapses, rate
counters and event generation for the network and access to the
control bus of the building block. The latter is also used by exter-
nal control accesses and thus, a plasticity program running on
the embedded processor will be able to do everything that could
be done from an off-wafer control computer as long as it only
requires information local to the block. There is no direct com-
munication channel between processors envisioned, but software
on the control computer could be used for data exchange.

2.1.2. Implementing plasticity
Our proposed design represents a hybrid system, in which the dig-
ital EPP interacts closely with analog components. Every synapse
contains an analog accumulation circuit, similar to the version
used in an earlier design (Schemmel et al., 2007). For each pre-
post and post-pre spike-pair, the time difference �t is measured
and weighted exponentially using the amplitude A± and time
constant τ±:

δ± = A± exp

(
−|�t|

τ±

)
. (1)

These values are added to two local capacitors a+ and a−, respec-
tively. In the extended version the EPP will select synapses for
readout and use an analog evaluation unit to produce a series of
bits bi out of a+ and a−. The evaluation function can perform
different readout operations controlled by configuration bits ei

cc,
ei

ca, ei
ac and ei

aa and analog parameters atl and ath:

bi =
⎧⎨
⎩1 if atl + ei

aca+ + ei
caa−

1 + ei
ac + ei

ca
>

ath + ei
cca+ + ei

aaa−
1 + ei

cc + ei
aa

0 otherwise
. (2)

Using b0 . . . bN − 1, the current weight of the synapse w and pos-
sibly further global parameters P0 . . . PM − 1 as input, the weight
update � is then calculated in software by the EPP:

� = F (b0, . . . , bN − 1, w, P0, . . . , PM − 1) (3)

Then, the new weight w′ = w + � is written to weight storage by
the plasticity program. Using two evaluations b0, b1 with different
sets of configuration bits, a simple example for F would be:

F (b0, b1) = Ã0b0 + Ã1b1 (4)

With arbitrary constants Ã0 and Ã1.
Synapses in the system are organized in an array of synapse-

units, where each synapse has a 4 bit weight memory imple-
mented with static random-access memory (SRAM) cells. These
offer the ability to combine adjacent units to increase resolution
to 8 bit. Of course this has the negative effect of reducing the total
amount of implementable synapses.

2.1.3. Embedded micro-processor
Plasticity algorithms will be implemented by software programs
executed on the EPP. A large class of micro-processors is in use
today for various different applications from supercomputers, to
smartphones and embedded controllers for traffic lights. They
all use different computer architectures reflecting the specific
requirements and constraints of their application.

There are three important characteristics for a processor: one,
the used instruction set architecture (ISA) that defines coding and
semantics of instructions and registers. Two, whether instructions
are executed out-of-order and three, whether the design is super-
scalar, i.e., instructions can execute in parallel. The instruction
set architecture used here is a subset of the PowerISA 2.06 spec-
ification for 32 bit (PowerISA, 2010). The main reason to use an
existing ISA is the availability of compilers and tools. Code for
the EPP can be generated using the GNU Compiler Collection
(Stallman, 2012), using the C programming language.

The micro-architecture of the EPP is shown in Figure 2. The
frontend fetches and issues instruction in program order to the
functional units. Due to different latencies, instructions can retire
out of program order to the write back stage. For example a
slow memory access may be overtaken by a quick add instruction
issued after it. Program and data are stored in a 12 kiB memory. A
direct-mapped cache (ICache) is used for instruction access and
to avoid the von-Neumann bottleneck (Backus, 1978). Branches
can be predicted with a fully associative branch predictor using
2 bit saturating counters to track branch outcome (Strategy 7 in
Smith, 1998). The functional units include load/store for memory
access, a branch facility for control transfers, fixed-point arith-
metic and logical instructions including a barrel shifter, multiply
and divide. The SYNAPSE special-function unit implements appli-
cation specific instructions and registers. It allows for accelerated
weight computation and synapse access.

FIGURE 2 | Micro-architecture of the embedded plasticity processor.

The design is separated into frontend and backend. The frontend takes four
clock cycles to decode instructions and issue them in-order to the
applicable functional unit. The functional units take a minimum of two
cycles. Writing the result back to the register file takes another cycle.
Input/output operations are performed through a bus interface served by
the load/store unit and a specialized interface to the synapse array.

www.frontiersin.org September 2013 | Volume 7 | Article 160 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Friedmann et al. Reward-based learning under hardware constraints

An important goal for our proposed design is to maintain
small area requirements to allow integration into the existing
BrainScaleS wafer-scale system. To this end, we chose in-order
issue of instructions to avoid additional control logic associated
with tracking of instructions and reordering. However, out-of-
order completion can be achieved with relatively small area over-
head using a result shift-register (Smith and Pleszkun, 1985) and
was therefore included to improve performance.

2.2. MODEL FOR REINFORCEMENT LEARNING
To demonstrate reinforcement learning using the proposed sys-
tem architecture, we chose a plasticity rule and a learning task
described in Frémaux et al. (2010). The R-STDP rule (Florian,
2007; Izhikevich, 2007) is a three-factor synaptic plasticity learn-
ing rule that modulates classical two-factor STDP with a reward-
based success signal S. At the end of each trial of the learning task,
a reward R is calculated according to the performance of the net-
work and is used to modify the weights according to the learning
rule.

2.2.1. Network model
The network we simulate consists of two layers, connected with
plastic synapses using the reward-modulated learning rule. The
input layer consists of units repeating a given set of spike trains.
The output layer consists of spiking neurons, being excited by the
fixed activity from the input layer.

The original network in Frémaux et al. (2010) uses the simpli-
fied Spike Response Model (SRM0, Gerstner and Kistler, 2002)
for the output neurons. It is an intrinsically stochastic neuron
that emits spikes based on the exponentially weighted distance
to the threshold. In hardware the most commonly used neu-
ron type is the deterministic leaky integrate-and-fire (LIF). The
proposed system would use the hardware neuron reported in
Millner et al. (2010) that can be operated as Adaptive Exponential
Integrate-and-Fire (AdEx, Brette and Gerstner, 2005) or con-
ventional LIF model. Since a certain amount of randomness
in the firing behavior is required for reinforcement learning,
we add background noise stimulation in the form of Poisson
processes.

A tabular description of the network model can be found
in Table 1. NU input units project onto NT neurons that are
additionally stimulated by NB random background sources. All
neurons are connected to all inputs, but each has individual
random stimulation from equally sized and disjoint subsets of
the random background. In every trial the same input spike
pattern is presented, but the background noise realization is
different.

For each input i = 0 . . . NU − 1, the input pattern con-
sists of randomly drawn spike times Sij ∈ U (0, ttrial) with j =
0 . . . Nstim − 1, where U (0, ttrial) is the uniform distribution on
the interval [0, ttrial]. All simulations use the same input spike
times Sij that are generated once to ensure comparability.

Weights for the random background have a uniform value wB,
so that every background spike causes the neuron to fire. Weights
for input synapses are initialized to wS, chosen so that single
input spikes do not cause firing. See Table 2 for the numerical
values.

2.2.2. Synaptic plasticity model
In the reward modulated STDP learning rule, the outcome of
standard STDP drives so-called eligibility trace changes �ek:

�ek = ηA± exp

(
−|�tk|

τ±

)
, (5)

with learning rate η, time-difference between pre- and post-
synaptic spike �tk for the k-th pair, STDP time constant τ+ for
pre-before-post pairings, τ− for post-before-pre pairings, and, in
the same fashion, amplitude parameters A±. The �ek are accu-
mulated on a per-synapse eligibility trace e. This trace decays
exponentially according to:

e(t) =
∑

k
tk < t

�ek exp

(
− t − tk

τe

)
(6)

with time-constant τe of the decay and tk being the time of the
post-synaptic spike for pre-before-post pairings and of the pre-
synaptic spike otherwise.

To calculate the weight update, a success signal S is used
as modulating third factor. It represents the difference between
reward received R and a running average of reward R

S = R − R. (7)

The reward is given at the end of each trial according to the learn-
ing task as defined in the next section. The running average is
calculated as Rn+1 = Rn + (

Rn − Rn
)
/5 for the n-th trial. The

weight update is then given by

� = Se (ttrial) (8)

with the trial duration ttrial.
In Frémaux et al. (2010) different time constants for pre-

before-post (τ+ = 20 ms) and post-before-pre (τ− = 40 ms) are
used. The amplitudes A+ and A− are chosen so that both parts
are balanced, i.e., A+τ+ = −A−τ−. Synapses of the BrainScaleS
wafer-scale system are designed for time constants of 20 ms. We
do not want to assume, that this can be increased by a factor
of two and therefore, we reduce τ− to the same value as τ+.
Consequently we also use identical amplitudes to keep the STDP
window W balanced. The plasticity rule described in this section
represents the theoretical ideal model for our comparison that we
refer to as the baseline model. Section 2.2.4 describes how this is
mapped to hardware and the resulting constraints.

2.2.3. Learning task
In reinforcement learning, reward given is determined by the
nature of the learning task considered. In our case, the goal of the
network is to reproduce a given target spike train. Hence, reward
should be given in proportion to the similarity of the actual and
target outputs, as measured by some metric. Here, we use a nor-
malized version of the metric Dspike[q] by Victor and Purpura
(1996). Dspike[q] represents the minimal cost of transforming the
output of a trial into the target pattern by adding, deleting and

Frontiers in Neuroscience | Neuromorphic Engineering September 2013 | Volume 7 | Article 160 | 4

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Friedmann et al. Reward-based learning under hardware constraints

Table 1 | Description of the network model used for the learning task after Nordlie et al. (2009).

A: MODEL SUMMARY

Populations Three: input U, random background B, target T

Connectivity Feed-forward

Neuron model Leaky-integrate-and-fire, fixed voltage threshold, fixed absolute refractory period (voltage clamp)

Synapse model Exponentially shaped post-synaptic conductances

Plasticity Three-factor STDP

Input Fixed-length spike-trains with uniformly distributed firing times

B: POPULATIONS

Name Elements Population size

U Stimulus generator NU

B Poisson generator NB

T LIF neurons NT

C: CONNECTIVITY

Source Target Pattern

U T All-to-all, initial weights wS

B T Non-overlapping 250 → 1, weight wB

D: NEURON AND SYNAPSE MODEL

Name LIF neuron

Type Leaky integrate-and-fire, exponential-shaped synaptic conductances

Sub-threshold dynamics

⎧⎨
⎩Cm

dV
dt

= gL
(
EL − V

) + g(t)
(
Ee − V

)
if t > t∗ + τref

V (t) = Vreset else

g(t) = w exp
(−t/τsyn

)
Spiking if V (t−) < Vth ∧ V (t+) ≥ Vth

1. set t∗ = t

2. emit spike with time-stamp t∗

E: PLASTICITY

Name Three-factor STDP

Spike pairing scheme Reduced symmetric nearest-neighbor (Morrison et al., 2008)

Weight dynamics � = Sa(t)

a(t) = ∑
i

ti < t
A± exp

(|�ti |
τ±

)
exp

(
− t − ti

τe

)
w ∈ [wmin, wmax]

F: INPUT

Type Target Description

Stimulus generator U Nstim spikes at random firing times distributed uniformly within the trial duration.

Poisson generators B Independent Poisson spike-trains with rate νB

See Table 2 for numerical values of the parameters.

shifting spikes. Adding and deleting have unit cost, while shift-
ing by �t has a cost of q�t. For �t > 2/q, deleting the spike
and adding a new one at the correct time is cheaper than shift-
ing it. Therefore, the parameter q controls the precision of the
comparison. The cost parameter is set to 1/q = 20 ms for our
simulations.

Thus in a trial where neuron j fires with a spike train Xout, j and
the target was Xtarget, the contribution of neuron j to the reward is

Rj = 1 − Dspike[q] (
Xout, j, Xtarget

)
Nout, j + Ntarget

, (9)

where Nout, j and Ntarget are the number of spikes in Xout, j

and Xtarget, respectively. Because Dspike[q] is bound to[
0, Nout, j + Ntarget

]
, Rj is limited to [0, 1]. The total reward

R used for the weight update is the average of Rj over all NT

neurons.
The target spike train is generated by simulating the neu-

ral network with a set of reference weights Wij for inputs i =
0 . . . NU − 1 and neurons j = 0 . . . NT − 1. All simulations use
the same set of reference weights to ensure fair comparison:

Wij =
{

Ŵ sin
(

iπ
NU

)
if 0 ≤ i ≤ NU

2

0 if NU
2 < i < NU

(10)

with Ŵ = 0.45 nS. An example of an output spike pattern pro-
duced by the network is shown in Figure 3. A new target spike
train is generated at the beginning of every simulation run.
Its firing times can be different even for identical weights and
stimulation, because of the random background stimulation.

www.frontiersin.org September 2013 | Volume 7 | Article 160 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Friedmann et al. Reward-based learning under hardware constraints

Table 2 | Numerical values for parameters.

Parameter Value

NU 250

NB NT · 250

NT 5

Cm 500 pF

gL 10 nS

EL −70 mV

Ee 0 mV

τref 10 ms

Vreset −60 mV

Vth −50 mV

A± ±32 pS

τ± 20 ms

τe 0.1 . . . 1000 s

wmin 0 nS

wmax 0.5 nS

wB 20.0 nS

wS 0.21 nS

Ŵ 0.45 nS

νB 0.008 Hz

ttrial 1 s

For parameter definitions see Table 1 and text.

FIGURE 3 | Raster-plot of output spike-events for all five neurons at

intervals of 2000 trials. Red bars indicate the target firing times.

2.2.4. Simulated hardware constraints
The baseline plasticity model described in Equations (5–8) can
not be reproduced exactly by the proposed system. This results in
two distinct classes of effects: trade-offs introduced on purpose to
reduce costs, for example in area, and non-ideal behavior of the
hardware system.

In the first category, we analyze the effect of discretized weights
and a limited access to analog variables by software running on
the EPP. For the second category we study leakage in analog
circuits and timing effects caused by finite processor speed and
communication latencies.

2.2.4.1. Discrete weights. In the hardware system, synaptic
weights are discretized since they are stored as digital values in the
synapse circuit. The number of bits per synapse is a critical design

decision when building a neuromorphic hardware system. Having
fewer bits saves wafer area, so that more synapses can be imple-
mented. More bits, on the other hand, allow for a higher dynamic
range of the synaptic efficacies. The weight resolution also defines
the minimum step size that can be taken by a learning rule. To
analyze the sensitivity of learning performance to weight resolu-
tion, we modify the baseline model to use discrete weights with
different numbers of bits. On a learning rule update, we precisely
calculate the new weight (64 bit floating point) and round it to
the nearest representable discrete weight value. The tie-breaking
rule is round-to-even.

In the case of non-continuous weights with r bits, all updates
with

|�| <
1

2

wmax − wmin

2r − 1
(11)

are discarded by rounding. Here wmin and wmax are the minimum
and maximum weight values that can be represented and � is the
true weight update (see Equation 8). Fewer bits per synapse means
that more updates are discarded, causing the effective learning
rule to increasingly deviate from the baseline learning rule.

A workaround to this problem is to perform discretized
updates �d probabilistically, depending on the exact weight
update � as given by Equation (8). In this way, some of the
updates that would otherwise be lost can be preserved. Using
the correct update probabilities results in the average weight
change being identical to that of the baseline model, i.e., without
discretization.

To see this, we note that �d can only assume
values that are multiples of the discretization step
δr = (wmax − wmin) / (2r − 1), assuming wmin = 0. If the
baseline weight change � is between the k-th and (k − 1)-th
step, the discrete update �d is picked from those with probability
p = Pr (�d = kδr | �) and 1 − p, respectively. Such a scheme
leads to the average update 〈�d〉 for a given � being

〈�d〉 = kδrp + (k − 1)δr(1 − p) (12)

= δr(k − 1) + δrp. (13)

By picking p as

p = � − (k − 1)δr

δr
, (14)

it holds that 〈�d〉 = �.

2.2.4.2. Baseline model with added noise. When performing
weight updates probabilistically, randomization introduces addi-
tional noise to the weight dynamics. This noise is not present in
the baseline model with continuous weights. Therefore, adding
an equivalent amount of random noise to the baseline simulation
allows for a more accurate assessment of weight discretization
with probabilistic updates.

With every update, probabilistic rounding introduces an error
z = �d − �. For simplification, we introduce ε ∈ [0, δr) and sub-
stitute � = (k − 1)δr + ε in Equation (14) to get p = ε/δr . Then,

Frontiers in Neuroscience | Neuromorphic Engineering September 2013 | Volume 7 | Article 160 | 6

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Friedmann et al. Reward-based learning under hardware constraints

z is distributed according to

Pr (z | ε) =

⎧⎪⎨
⎪⎩

p if z = δr − ε

1 − p if z = −ε

0 otherwise.

(15)

We are now interested in the unconditional probability distri-
bution Pr(z) to add noise shaped accordingly to the baseline
simulation with continuous weights. This is given by

Pr(z) =
∫ δr

0
Pr(z | ε) Pr(ε)dε. (16)

Assuming ε to be uniformly distributed in its allowed interval
gives Pr(ε) = δ−1

r . Using the Kronecker-Delta δ to write down
Pr(z | ε) with p = ε/δr (Equation 14) gives:

Pr(z) = 1

δr

∫ δr

0

ε

δr
δ (z − δr + ε) +

(
1 − ε

δr

)
δ (z + ε) dε

=
{

δr − z
δ2

r
for 0 < z < δr

δr + z
δ2

r
for − δr < z ≤ 0

(17)

Equation (17) describes a triangular shaped probability density
for the noise introduced by probabilistic updates. As is to be
expected, the noise is bounded by ±δr .

2.2.4.3. Thresholded readout. The eligibility trace is imple-
mented using the analog accumulation in the synapse unit. For
every spike pair, Equation (1) is evaluated and the correspond-
ing eligibility trace change is added as charge on the local storage
capacitors a+ and a−, respectively. These values are not directly
accessible to the EPP. Instead, using the evaluation unit described
in section 2.1.2 with threshold � = ath − atl, accumulation trace
a = a+ − a−, configuration bits e+

ac = 1, e+
aa = 1, e+

ca = 0, e+
cc = 0

for the evaluation of b+ and e−
ac = 0, e−

aa = 0, e−
ca = 1, e−

cc = 1 for
b−, the readout computes

b± =
{

1 if ± (a+ − a−) > �

0 otherwise
. (18)

The weight update with threshold readout �t is then performed
using an update constant A

�t = SA (b+ − b−). (19)

The parameters � and A should be chosen so as to minimize
the deviation introduced by calculating weights according to
Equation (19) instead of Equation (8). Ideally, one would like to
satisfy 〈�t〉 = �. However, detailed analysis of the simulations
(not shown) showed that the eligibility trace distributions for dif-
ferent synapses at different stages of learning were very different.
In that context, choosing parameters � and A that minimize the
difference between the baseline change � and the average effective
change 〈�t〉 for a particular synapse would not in general have

the same effect for other synapses. Instead, we resort to a heuris-
tic method to fix global threshold and update constant, described
below, and assess its effectiveness in simulations.

For the simulations presented here, a precursor run over 100
trials without learning was used to measure the final absolute
eligibility value 〈|a|〉 averaged over all readout operations. The
threshold � was then set to �∗ = 〈|a|〉 for the actual learn-
ing simulation. In this way, the average (across synapses) final
eligibility value encountered during weight updates is close to
the threshold. This represents a trade-off between exceeding
the threshold only seldom, but then causing large—possibly
disruptive—weight changes, and exceeding the threshold often,
but only applying small changes.

With Np (�) being the number of readout operations that
exceed the threshold, i.e., b+ or b− are non-zero, and the total
number of readout operations N, the update constant A is set to

A∗ = N

Np(θ∗)
θ∗. (20)

Thereby, the mean absolute eligibility value used with the readout
Np(�

∗)A∗/N is effectively the same as 〈|a|〉 in the baseline model.

2.2.4.4. Analog drift. The local accumulation units in the hard-
ware synapses do not have a mechanism for controlled decay
of the eligibility trace. An ideal implementation of the circuit
would stay unchanged over time, after a spike-pair has caused an
update. In reality there are leakage currents causing the accumu-
lation traces a+ and a− and their difference a to drift. Leakage is
caused by a number of processes that depend on transistor geom-
etry, manufacturing process, temperature and internal voltages
(Roy et al., 2003). It is therefore difficult to predict either time-
scale, shape or variability of this effect. We try to get an estimate
on the sensitivity of the model to uncontrolled temporal drift,
by simulating learning with a drift function φi (t; a0). Here t is
the duration of the drift and a0 is the starting value for t = 0.
The index i is over all synapses and both trace polarities. This
function describes the development of a+ (t) and a− (t) between
spike-pair induced updates. The accumulation value is given as
the difference a (t) = a+ (t) − a− (t). We define an exponential
drift function

φi (t; a0) =

⎧⎪⎨
⎪⎩

a0e−λit for λi > 0

amax − (amax − a0) eλit for λi < 0

a0 else,

(21)

where amax is the maximum value that a+ and a− can assume
and λi = 1/τe,i is the inverse time constant. Positive λi leads to
exponential decay as it was used so far. Negative λi causes a drift
away from zero, toward the limit amax. For every synapse and for
positive and negative traces, τe,i is drawn from a Gaussian dis-
tribution with mean τe and standard deviation meτe using the
mismatch factor me. In the limit of large t, this allows for four final
states of a (t): Decay to zero, drift to amax or −amax and remaining
constant at a0 for λi = 0.

It is important to note that we do not intend to precisely model
the leakage behavior of the analog circuit. Instead, we use a simple

www.frontiersin.org September 2013 | Volume 7 | Article 160 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Friedmann et al. Reward-based learning under hardware constraints

model capturing the essence of drifting analog values to get an
estimate for the sensitivity to this effect.

2.2.4.5. Delayed reward. The hardware system is a physical
model of the emulated network. Therefore, emulated time
progresses continuously during network operation with the
acceleration factor α relative to wall-clock time. During all com-
munication and computation, network operation continues. The
amount of reward for each trial is calculated by the control clus-
ter, after the nominal trial duration has ended and output spike
events have been transmitted to the cluster. The success signal is
then determined and sent back to the embedded processor. Then,
the plasticity program will sequentially execute the weight update
for all synapses taking a certain amount of time per synapse. This
time is consumed by the synapse array access and the weight
computation.

These two effects are modeled by adding a constant delay DR

after the trial has finished and an update rate νs giving the number
of updated synapses per second. The weight update for synapse i
occurs at ti = ttrial + DR + i

νs
. The order in which synapses are

updated is determined by their position in the synapse array and
is therefore a result of the automated mapping process. For this
study, we assume weight updates to be fast enough compared to
the reward delay DR and therefore use ti = ttrial + DR.

The delay causes a deviation from the ideal model because the
accumulation capacitors a+, a− used to store the eligibility trace
continue to decay. The eligibility value used for the weight update
is then reduced by a factor

β = exp

(
−DR

τe

)
. (22)

This can prevent a weight update that would have been made
in the non-delayed case by reducing a below the readout thresh-
old �. We assume that the delay DR is known or can be estimated
and lower the threshold to β�.

In theory, this would allow to correct for arbitrary delay, since
the exponential decay never reaches zero. In hardware this is
not the case, because the eligibility readout is subject to noise.
Therefore, after a certain delay, traces will be indiscernible from
noise. To account for this, we simulate Gaussian distributed noise
δa on the readout with standard deviation σa and mean 0. The
value used for comparison to the threshold is then given by
a′ = a + δa. If a signal-to-noise ratio z∗ is required for correct
learning, a limit Dmax for the delay can be calculated using the
signal-to-noise ratio z(t) = a(t)/σa

z(t) = a (ttrial)

σa
exp

(
− t − ttrial

τe

)
. (23)

With z (Dmax + ttrial) = z∗ and a (ttrial) = amax, the maximally
tolerable delay in the presence of noise is given by

Dmax = −τe ln

(
z∗σa

amax

)
. (24)

2.2.5. Measuring performance
Simulations consist of 10,000 trials in 20 parallel runs with dif-
ferent random seeds. At the beginning of every run, 100 trials are
simulated without learning: during this time the running average
R can settle to a stable approximation of the reward. The aver-
age over R during these trials is used as the initial reward level
Rbefore of this run. During the last 1000 trials of the simulation, it
is assumed that learning has reached a stable state: the final reward
level Rafter is the average of R over these trials.

The model is simulated using the Brian simulator (Goodman
and Brette, 2008). Weight updates are calculated with custom
Python code using the NumPy package (Numpy, 2012).

3. RESULTS
In the previous section, we analyzed a synaptic learning
rule (Florian, 2007; Izhikevich, 2007; Frémaux et al., 2010), and
the necessary adjustments that have to be made in order to imple-
ment it on a hardware system. The goal of this section is to
quantify the sensitivity to constraints of the system—for exam-
ple discretized weights or imperfections of analog circuits—to
identify those critical for the model. Starting from the baseline
configuration without hardware effects, we add constraints and
measure their effect on the learning performance.

3.1. BASELINE
The baseline model implements the learning rule described in
section 2.2 and Table 1 without hardware effects, and serves as
comparison for simulations including such effects. The eligibility
trace e of the theoretical model is identified with the local accu-
mulation a in hardware synapses. Thereby, changes to the weight
are deferred until the success signal S is given from the attached
control cluster, after the produced spike train has been evalu-
ated. New weights are assumed to be calculated using a software
program running on the EPP.

The raster plot in Figure 3 shows the output spike train at
several points in time during a learning simulation. In the begin-
ning at trial 0, spikes are generated randomly by the background
stimulation. Later on, the network learns to produce spikes at the
targeted points of time indicated with red vertical bars. In the last
trial, neurons fire close to most of the target times. The evolu-
tion of the reward obtained in each trial averaged over 20 runs is
shown in Figure 5A. Variance in the last 1000 trials is due to the
random background stimulation and to the exploratory behav-
ior it generates in the learning rule. Most of the performance
improvement is achieved within the first 2000 trials, the final level
of reward being Rbase

after = 0.54 ± 0.05.
This is the result using one particular set of reference weights

Wij and stimulation pattern Sij that were defined in section 2.2.1.
To test how well this result generalizes to other weights and stim-
ulation patterns we perform two additional experiments: first of
all, we randomize the reference weights, so that in 20 simula-
tion runs the network learns with a different set of reference
weights in each run. These weights are drawn randomly from a
uniform distribution, so that the k-th run uses reference weights
Wk

ij ∈ U (wmin, wmax) to generate its target spike train. This gives

a final level of reward of Rw
after = 0.59 ± 0.08 averaged over the 20

runs with different reference weights.

Frontiers in Neuroscience | Neuromorphic Engineering September 2013 | Volume 7 | Article 160 | 8

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Friedmann et al. Reward-based learning under hardware constraints

In the second experiment we again use the Wij reference
weights for all 20 simulations. The stimulation pattern is random-
ized by drawing new spike times for each run from a uniform dis-
tribution, so that the k-th run uses spike times Sk

ij ∈ U (0, ttrial) for

all trials. This gives a performance Rs
after = 0.53 ± 0.08 averaged

over the 20 different sets of stimulation patterns.
The final reward level for the baseline simulation, random-

ized reference weights and randomized stimulation pattern are
shown in Figure 4. The data show, that the from here on used
special case of reference weights Wij and stimulation spike times
Sij is within the performance range of randomly selected refer-
ence weights and input spike timings. The variances on Rw

after and
Rs

after also show that there is considerable variation in the uncon-
strained theoretical model. To reduce variation in our results, so
that changes caused by hardware effects are more visible, we use
Wij and Sij from here on.

3.2. DISCRETIZED WEIGHTS
In designing the neuromorphic hardware system, one is faced
with a trade-off between implementing more synapses with lower
bit resolution and less synapses with higher resolution. Therefore,
we would like to know how many bits are required for each synap-
tic weight to achieve good performance in the learning task. We
perform a three-way comparison between the baseline model, a
deterministic algorithm that simply rounds calculated weights to
allowed representations and a probabilistic variant as outlined in
section 2.2.4. Using deterministic weight updates, all updates sat-
isfying Equation (11) do not cause a weight change. With fewer
bits more updates are lost and learning performance is expected
to suffer. This is what can be seen in Figure 5. The simulations
shown there compare performance of the baseline model, to a
constrained model with discretized weights of decreasing resolu-
tion. Figure 5A also shows the full reward trace of a single run
picked arbitrarily. The plot exhibits a number of sharp drops in
reward that last for less than 15 trials, before returning to the

FIGURE 4 | Final level of reward for: baseline simulation, randomized

reference weights, and randomized stimulation pattern. The final
performance level of the baseline simulation Rbase

after using reference weights
Wij and stimulation pattern Sij is comparable to the final level of reward
averaged over randomly chosen reference weights Rw

after and stimulation
patterns Rs

after.

previous performance level. The final level of performance is not
affected by these glitches. For the 8 bit case, performance is as
good as using continuous weights (Figure 5B). Figure 5C shows
a slightly reduced performance for 6 bit. Using only 4 bit with
deterministic updates causes performance to degrade: it does not
reach the same final level of reward (Figure 5D black trace). See
Table 3 for the final performance values Rafter. Using probabilistic

FIGURE 5 | Reward traces showing the running average R̄ (only every

50th point plotted) for different weight resolutions averaged over 20

runs. (A) Baseline performance with continuous weights. Additionally, the
light gray trace shows the reward R for every trial of a single simulation. (B)

Performance with 8 bit resolution. The lower plot shows the difference to
the baseline model in (A). The shaded area shows the difference for every
point in the trace instead of only for every 50th. (C) Performance with 6 bit
resolution. (D) Performance with 4 bit resolution. The black trace shows the
result for deterministic updates. The green trace for probabilistic updates.

Table 3 | Comparison of simulations with different hardware

constraints.

No Description Rafter DKS Reference

1 Baseline* 0.54 ± 0.05 – –

2 Baseline with noise† 0.45 ± 0.03 – –

DISCRETIZED WEIGHTS

3 8 bit 0.53 ± 0.03 0.008* (1)

4 6 bit 0.52 ± 0.03 0.039* (1)

5 4 bit, deterministic 0.37 ± 0.03 0.098* (1)

6 4 bit, probabilistic 0.46 ± 0.03 0.053† (2)

THRESHOLD READOUT

7 8 bit 0.59 ± 0.03 0.140* (1)

8 6 bit 0.59 ± 0.05 0.120* (1)

9 4 bit, deterministic 0.27 ± 0.04 0.154* (1)

10 4 bit, probabilistic 0.48 ± 0.05 0.043† (2)

The table lists the final performance Rafter and the Kolmogorov–Smirnov (KS)

measure DKS comparing the final weight distribution to the one of the reference

simulation indicated by its row number in the last column. For this comparison,

the continuous reference distribution is rounded to the respective resolution.

The p-value for the KS test is p = 0.35 for 8 bit and p < 0.01 in all other cases.

www.frontiersin.org September 2013 | Volume 7 | Article 160 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Friedmann et al. Reward-based learning under hardware constraints

updates improves the performance for 4 bit to R
4p
after = 0.46 ±

0.03, which is (85 ± 10)% of the baseline level Rbase
after (Figure 5D

green trace).
So in the task studied here, there is no gain in building

synapses using more than 8 bit. Because weight updates are con-
trolled by a programmable processor, it is possible to switch
between deterministic and probabilistic updating even after the
system has been manufactured. In this context, a trade-off can
be made between number of synapses and reachable perfor-
mance by using either probabilistic 4 bit or deterministic 8 bit
synapses.

3.2.1. Baseline with added noise
As discussed in section 2.2.4, probabilistic updates introduce
additional noise on the weights. The baseline simulation with
added noise uses updates �′ = � + z with z drawn from the
distribution given in Equation (17) using r = 4.

Figure 6A shows reward traces for the baseline simulation with
and without added noise. One can see, that with noise learning is

FIGURE 6 | (A) Comparison of the baseline simulation with and without
added noise on the weight updates. The lower plot shows the difference
between both traces in the upper plot. (B) Comparison between 4 bit
discretized weights with probabilistic updates and baseline with added
noise of equivalent magnitude. Again, the lower plot shows the difference
between both traces in the upper box.

initially faster, but fails to reach the same level as without. The
final level of performance in the former case is Rnoise

after = 0.45 ±
0.03, while it was Rbase

after = 0.54 ± 0.05 in the latter simulation.
Figure 6B compares baseline with added noise to the case with
4 bit weights and probabilistic updates. Both variants reach the

same final level of reward (Rnoise
after = 0.45 ± 0.03 and R

4p
after =

0.46 ± 0.03), but with continuous weights this level is reached
faster. In conclusion, Figure 6 shows, that the achievable perfor-
mance for 4 bit resolution with probabilistic updates is limited
by the added noise and not the limitation to discrete weight
values.

3.2.2. Effect on weights
Besides comparing the received reward, it is also informative to
compare the distribution of synaptic weights after learning for
the different weight resolutions. Figure 7 shows histograms of
weights for different resolutions and deterministic and probabilis-
tic updating. The weights of the baseline simulation are given
in Figure 7A and with added noise for r = 4 in Figure 7E. For
discretized weights with deterministic updates, the distribution
from Figure 7A binned to the respective resolution is also shown
in green (Figures 7B–D). For Figure 7F, the green bars show the
weights from the baseline simulation with added noise binned to
4 bit.

The baseline histograms (Figures 7A,E) are bimodal with
peaks at the maximum and minimum allowed weights. This
is also the result, one would get for an unsupervised additive
STDP rule (Morrison et al., 2008). With discretized weights and
deterministic updates, the bi-modality is maintained. For 6 and
4 bit an increasing deviation from the rounded baseline his-
togram is apparent. Here, more weights lie in the central region,
so that the counts are lower than baseline toward the mini-
mum and maximum weights. For 4 bit with deterministic updates
(Figure 7D) a local maximum at 0.2 nS can be observed. This
corresponds to the initial weight wS = 0.21 nS and indicates that

FIGURE 7 | Histograms of synaptic weights after learning. The weights
from all 20 repetitions for each resolution and update mode are shown. (A)

Continuous weights. (B) 8 bit weights in black. Continuous weights are
discretized to this resolution and shown in green. (C) 6 bit weights in black,
again with equally binned continuous weights in green. (D) 4 bit weights with

deterministic updates in black and the continuous result in green. (E) Final
weights for the baseline simulation with artificially added noise, of which the
reward trace is shown in Figure 6. (F) Final weight histogram for 4 bit
resolution with probabilistic updates in black. Now the green bars give the
distribution of weights from the baseline simulation with added noise.

Frontiers in Neuroscience | Neuromorphic Engineering September 2013 | Volume 7 | Article 160 | 10

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Friedmann et al. Reward-based learning under hardware constraints

many synapses have not been updated at all or only with small
increments.

The results of a Kolmogorov–Smirnov (KS) test between the
baseline distribution shown in Figure 7A and the respective result
obtained with discrete weights is shown in Table 3. The baseline
distribution was rounded to the weight resolution of the respec-
tive simulation for the test. The data show increasing deviation
with smaller weight resolution. The obtained p-values indicate,
that the distributions are not identical to the discretized base-
line case (p = 0.35 for 8 bit and p < 0.01 otherwise). Note, that
the distribution is also different from the continuous baseline
distribution, since it is discrete.

The root-mean-square error of the weights as compared to the
baseline simulation is given by

Ew =
√√√√ 1

NU NT

NU NT∑
i = 0

(
wi − 〈

wbase
i

〉)2
. (25)

Here,
〈
wbase

i

〉
is the i-th weight averaged over 20 repetitions of

the baseline simulation. Averaged over the individual runs of the
baseline simulation itself, this gives

〈
Ebase

w

〉 = (0.10 ± 0.06) nS.
For 8, 6, and 4 bit, this increases to

〈
E8

w

〉 = (0.11 ± 0.06) nS,〈
E6

w

〉 = (0.12 ± 0.06) nS, and
〈
E4

w

〉 = (0.17 ± 0.07) nS. Compared
to the total weight range of only 0.5 nS, those are large deviations.
Since already the baseline simulation shows a root-mean-square
error of 20% of this range, it can be concluded, that learning does
not produce a single fixed set of weights. This is either due to
redundancy in the weights or irrelevant synapses.

When noise on weight updates is added to the simulation,
the distribution of final weights changes (Figure 7E). Here, the
histogram is still bimodal with peaks at the weight boundaries,
but in-between the distribution is flat. The weight noise modifies
weights by up to δr ≈ 0.03 nS in each update (see Equation 17).
This acts as a diffusion process smoothing the weight distribu-
tion. For 4 bit weights with probabilistic updates (Figure 7F), the
histogram is also flattened compared to the variant with deter-
ministic updates (Figure 7D). The result is qualitatively in good
agreement with the rounded weights from the baseline simula-
tion with added noise. The root-mean-square error using weights
from the baseline simulation with added noise as reference is〈
E

4p
w

〉
= (0.15 ± 0.03) nS. The KS test reveals a smaller deviation

from the baseline simulation with noise compared to the 4 bit case
with deterministic updates (No. 6 compared to no. 5 in Table 3).
However, the test also shows the weight distributions to not be
identical (p < 0.01).

3.3. THRESHOLDED READOUT
The hybrid approach of combining processor based digital com-
puting with analog special-function units necessitates an interface
between these two. At this interface some form of analog-to-
digital conversion (ADC) has to take place. The simplest form of
ADC is comparison to a threshold. We next ask whether such a
simple interface is sufficient for good performance on the learning
task. Figure 8 shows performance for different weight resolutions
compared to baseline using the thresholded readout. In contrast
to the simulations shown in Figure 5, updates are now calculated

FIGURE 8 | Performance with threshold readout. As in Figure 5 the
running average of the reward R̄ is plotted averaged over 20 runs. The lower
plots show the difference to the baseline trace in Figure 5A. (A)

Performance traces for continuous and 8 bit weights. In gray reward R for
every trial in a single run with continuous weights is shown. (B)

Performance traces for 4 bit resolution with deterministic and probabilistic
updates.

according to Equation (19) instead of Equation (8). In particular,
Equation (19) does not directly use the eligibility trace e(ttrial),
but the evaluation bits b+, b− determined by the readout mech-
anism (Equation 18). Performance in the case of continuous,
8 and 6 bit synapses (6 bit with threshold readout mechanism
not shown) qualitatively shows the same picture with and with-
out threshold readout (compare Figures 5, 8): Resolutions of 8
and 6 bit reach good performance while 4 bit with determinis-
tic updates is degraded. The precise values of the final reward
Rafter given in Table 3 indicate a small improvement of 0.06 ±
0.04 in reward by the threshold mechanism for 8 and 6 bit.
When comparing traces for weights of the same resolution in
Figures 5, 8, those with threshold readout (Figure 8) show less
variability between trials. For example, the trace of the single
run in Figure 5A exhibits more noise than the one in Figure 8A.
The variability can be quantified by the standard deviation σS of
the success signal S (see Equation 7). For a resolution of 8 bit,
σS = 4.0 × 10−5 is reduced to σS = 1.2 × 10−5, when using the
threshold readout. This is caused by the smoothing effect of
the readout threshold, which effectively replaces extreme values
of the eligibility trace e(ttrial) with the update constant A = A∗.
The update constant A∗ is determined heuristically according to
Equation (20).

When using probabilistic updates (Figure 8B, green trace), the
performance level of the baseline simulation with added noise on
the weights of equivalent magnitude is also slightly surpassed (see
Nos. 2 and 9 in Table 3). With deterministic updates and 4 bit
synapses, performance is further reduced by 0.10 ± 0.05 using the
threshold readout (black traces in Figures 5D, 8B).

Hence the simple readout method consisting in using only a
threshold comparison does not reduce performance. Therefore,
the qualitative result from the previous section still holds: with
deterministic updates 6 bit is enough to achieve the performance
level of the baseline simulation. If updates are performed in a
probabilistic manner, 4 bit is sufficient to reach the performance
of the baseline simulation with added noise.

3.3.1. Effect on weights
Comparing the histograms of synaptic weights after learning gives
a similar picture to the results of section 3.2: With determin-
istic updates, the histograms have maxima at the upper and

www.frontiersin.org September 2013 | Volume 7 | Article 160 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Friedmann et al. Reward-based learning under hardware constraints

lower weight limit as is shown in Figures 9A,B. The 4 bit case
(Figure 9B) again shows a local maximum around the initial
weight value wS = 0.21 nS. In comparison to Figure 7D this max-
imum is broader. With probabilistic updates the histogram is
nearly flat (Figure 9C). The average root-mean-square error to
the mean baseline weights can be compared to the values given
in section 3.2: For 8 bit resolution it is

〈
E8t

w

〉 = (0.19 ± 0.06) nS,
which is larger than

〈
E8

w

〉
. For 4 bit the error

〈
E4t

w

〉 = (0.18 ±
0.11) nS is comparable to

〈
E4

w

〉
. With probabilistic updates the

result
〈
E

4tp
w

〉
= (0.15 ± 0.01) nS is the same as

〈
E

4p
w

〉
without the

threshold readout.
The KS test shows larger deviations of the weight distribu-

tion for all simulations with deterministic updates compared
to having only discrete weights (Table 3). For 4 bit with prob-
abilistic updates the deviation is decreased (Nos. 10 and 6 in
Table 3).

3.4. ANALOG DRIFT
In the hardware system, the eligibility trace is implemented as
an analog variable inside the synapse circuit. It is therefore sub-
ject to drift caused by leakage currents. In Equation (21), we
have proposed to model this using a drift function. Additionally,
this behavior varies between synapses due to imperfections intro-
duced by the manufacturing process. This is taken account for
by randomly drawing parameters for the drift function from a
Gaussian distribution.

To assess the impact of this drift on the performance in the
learning task, we performed a sweep over a number of aver-
age time constants and degrees of mismatch between synapses.
The results of the simulation, using continuous weights and

FIGURE 9 | Histogram of synaptic weights after learning with

threshold readout. (A) The histogram is plotted in black for 8 bit
weights. The green histogram shows the result for continuous
weights rounded to this resolution. (B) As in (A), but for 4 bit
weights with deterministic updating. (C) Final weights for a resolution
of 4 bit with probabilistic updating in black. Now, the green histogram
shows the final weights of the baseline simulation with added noise
rounded to this resolution.

the thresholded eligibility readout described above, are shown
in Figure 10. The gray value indicates the difference between
Rafter and the baseline value Rbase

after (section ??) in units of the
standard deviation of the baseline simulation (darker color is bet-
ter). All values fall within one standard deviation of the baseline
case, which means that performance is only weakly sensitive to
changes of time constant and mismatch of the eligibility trace.
The best performance is achieved for τe = 0.5 s and no mismatch
(Rafter = 0.59 ± 0.02). In section 3.3, the black trace in Figure 8A
shows the reward trace for the same parameters. The simulation
there reached the same performance. For very large time con-
stants, i.e., τe = ±1000 s, drift is negligible compared to the trial
duration ttrial = 1 s. This leads to minor deviations in the left-
most (〈Rafter〉 = 0.55 ± 0.02) and rightmost (〈Rafter〉 = 0.55 ±
0.01) columns of Figure 10. This is above the baseline level, but
below the one reached in simulations with threshold readout and
8 bit resolution. The worst performance (Rafter = 0.45 ± 0.04) is
obtained for small time constants τe = 0.5 s with large mismatch
factor me = 1, because for τe lesser than or equal to the trial
duration, the effect of drift is more important.

In this test, the model has shown to be robust to large devi-
ations from the temporal behavior of the eligibility trace in the
baseline model. Drift toward the positive and negative extrema
of the eligibility trace, which is the opposite of the desired decay-
ing behavior, does not affect performance. Neither does variation
of up to 150 % of the time constant. This shows the model
to be a well-suited candidate for implementation in neuromor-
phic hardware, where large variations and distortions are often
encountered.

3.5. DELAYED REWARD
In the proposed system, the simulation of the neural network is
carried on by analog hardware elements, while the simulation of
the environment is left to a conventional computer system. In this
context, latencies due to technical reasons—e.g., by communica-
tion with the environment or computation by the EPP—can cause
temporal delays with respect to ideal calculations. Additionally,
the analog readout of the accumulation traces a+, a− is affected
by noise.

FIGURE 10 | Difference of final reward to the baseline simulation

Rafter – Rbase
after in units of the baseline standard deviation. The varied

parameters are the average time constant and the amount of mismatch
between synapses.

Frontiers in Neuroscience | Neuromorphic Engineering September 2013 | Volume 7 | Article 160 | 12

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Friedmann et al. Reward-based learning under hardware constraints

To better understand the impact of these effects on learning
performance, a sweep over readout noise and reward latency val-
ues was performed, the results of which are shown in Figure 11.
The simulation did not include mismatched drift, but used a fixed
time constant of 500 ms with continuous weights. The gray value
represents the improvement in reward by learning Rafter − Rbefore.
The data shows that depending on the amount of noise learning
is impaired by the delay. The red bars indicate the predicted max-
imally tolerable delay assuming a signal-to-noise ratio of one is
required (Equation 24). The simulation fits the prediction well. A
noise level of σa = 500 pS corresponds to 50 % of the maximum
of the eligibility trace amax.

The simulation results confirm that noise on the local accu-
mulation circuit limits tolerable delay. Because of the accelerated
time base of the system, communication delays can easily reach
seconds of emulated time. With an acceleration factor of α = 105

1 s of emulated time is equivalent to 10 μs. So with 1 % of noise
(σa = 10 pS), the round-trip-time to the environment must be
less than 20 μs for a τe = 500 ms time constant. Equation (24)
can be used to find working combinations of the parameters
round-trip-time, analog noise and time constant.

3.6. TOWARD HARDWARE IMPLEMENTATION
The previous sections have presented results for the perfor-
mance of the learning rule under various constraints caused by
a hardware implementation. We now want to present simula-
tion results and area estimates for the hardware implementation
itself. So far, the EPP has been produced as an isolated gen-
eral purpose processor in a 65 nm process technology. A version
integrated into the BrainScaleS wafer-scale system was tested in
simulation.

The EPP core produced in the 65 nm technology covers an
area of 0.14 mm2 excluding SRAM blocks for 32 kiB of main
memory. It was tested using the CoreMark benchmark (EEMBC,
2012) achieving a normalized score of 0.75 Iterations

s·MHz . At 500 MHz
and 1.2 V supply voltage it consumes (48.0 ± 0.1) mW of power
executing the CoreMark benchmark.

The BrainScaleS wafer-scale system is built in a larger 180 nm
process technology. A version with integrated EPP was prepared
to estimate area requirements and to simulate the system. The

FIGURE 11 | Improvement in reward Rafter – Rbefore by learning for a

range of delays and accumulator readout noise levels. Red bars indicate
the predicted maximally tolerable delay (Equation 24). Data is averaged over
15 simulation runs.

design was synthesized and standard cell placement was carried
out. This gave an area estimate for the EPP core of 0.895 mm2,
excluding the 12 kiB of main memory. All plasticity related logic
in the digital part make up 6.2 % of the total design area. In
simulation we tested a weight updating program suitable for the
reward modulated STDP rule discussed in this study. It requires
5.1 kiB of main memory and achieves a best-case update rate
of 9552 synapses/s for 4 bit weight resolution. Due to the lack
of hardware support for probabilistic updates and higher weight
resolutions than 4 bit in the SYNAPSE special-function unit, per-
formance is reduced in these cases. For probabilistic updates it
is 802 synapses/s and for 8 bit weights 573 synapses/s. Note, that
update rates are given in the biological time domain using an
acceleration factor of 104.

4. DISCUSSION
In this study we have proposed a hybrid architecture for plasticity,
combining local analog computing with global, program-based
processing. We have then simulated a reward-modulated spike-
timing-dependent plasticity learning rule studied by Frémaux
et al. (2010) to analyze its implementability. Starting from a base-
line case with no hardware effects, the level of hardware detail
of the simulations was increased, with a focus on the negative
effects introduced by an implementation using the proposed sys-
tem. Note that we did not try to precisely model the hardware
device, as it would be done, for example, in a transistor level simu-
lation. Instead, our goal was to find the effects to which the model
is sensitive in order to guide future design decisions.

Overall, we did not find major obstacles for the proposed
implementation, but we showed that some design choices are
critical to the proper functioning of the learning rule. In the
following, we will discuss guidelines concerning weight resolu-
tion, implementation of the eligibility trace and the importance
of low-latency communication. After that, we will consider scal-
ability and flexibility of the approach and compare the design
with other hardware systems and discuss the limitations of this
study.

4.1. WEIGHT RESOLUTION
For neuromorphic hardware systems using digitally represented
weights, a key question is how many bits to use per synapse, as
this determines the amount of wafer area the circuit requires.
For networks with highly connected neurons, small synapses are
important for scalability. This drives implementations to a reduc-
tion of the number of bits used for the weight compared to
software simulators, which typically use a quasi-continuous 32
or 64 bit floating-point representation. On the other hand, on-
line synaptic plasticity learning rules, for example STDP, require
incremental changes to the weights. Discretization confines these
changes to a grid with a resolution determined by the number of
bits.

For the synaptic plasticity model and the learning task consid-
ered, we found that this indeed limits learning performance when
using deterministic updates and 4 bit weights. Two solutions to
this problem were tested: using higher resolutions and mak-
ing updates probabilistically. In the former case, a performance
comparable to the continuous case is reached with 6 bit. With

www.frontiersin.org September 2013 | Volume 7 | Article 160 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Friedmann et al. Reward-based learning under hardware constraints

probabilistic updates, the performance of 4 bit synapses could
be improved to nearly the same level. The comparison to the
baseline simulation with added noise of equivalent magnitude
showed performance to be limited by the introduced noise and
not the discretization of weight values. Therefore, it is not nec-
essary to build high resolution hardware synapses comparable to
software simulators, but even a modest number of bits gives good
performance.

In Seo et al. (2011) the authors arrive at a similar result. They
built a completely digital system in a version with 1 bit synapses
and probabilistic updates and one with 4 bit synapses and deter-
ministic updates. Learning performance in a benchmark task is
improved in the latter case, but adds additional costs in area and
power consumption.

In Pfeil et al. (2012) the question of weight resolution was
also studied for the BrainScaleS wafer-scale system using a syn-
chrony detection task. Comparable to our findings, they report
8 bit weights to perform as good as floating-point weights. 4 bit
weights were sufficient for solving the task, but did not reach the
same performance.

4.2. IMPLEMENTATION OF THE ELIGIBILITY TRACE
In neural models of reinforcement learning, the eligibility trace
serves an important purpose: it allows to connect neural activity
with reward. Reward typically arrives with a delay with respect
to the activity underlying causing actions respective spikes. But
only when reward arrives does the agent know how to change the
weights. The hybrid concept of local analog accumulation and
global processor-based weight computation fits this model very
well. Therefore, we can identify the local circuit in the synapse
with the eligibility trace. However, there are two differences.
First, the processor does not have direct access to the accumu-
lated value, but can only do a simple comparison operation
(Equation 2). Second, there is no controlled exponential decay
of the accumulator. The analysis in sections 3.3 and 3.4 shows
no degradation in learning performance by both effects. On the
other hand, the lack of controlled and possibly configurable decay
presents a constraint to the fidelity, with which learning rules can
be implemented. It is not clear, how other learning tasks would be
affected by this lack.

4.3. IMPACT OF REAL-WORLD TIMINGS
In the presence of delayed reward, three parameters govern
whether learning is possible: (1) communication round-trip-time
to the environment and back, (2) the amount of noise on the eli-
gibility trace, and (3) the time constant of decay of the eligibility
trace. Equation (24) allows to determine working combinations
of them. Reducing the speed-up factor would make communica-
tion latency less of a problem, but it would require longer lasting
analog storage to achieve the same time constant in emulated
time. Small long-term analog memory is difficult to build due to
leakage effects. Therefore, the triangle of parameters needs to be
carefully balanced. A different approach to deal with communi-
cation latency would be to execute the environment on the EPP
itself. This would require adding direct access to spike times by
the processor.

4.4. SCALABILITY AND FLEXIBILITY
It is important to note, that the synaptic weight and eligibility
trace are stored local to the synapse circuit and therefore do
not consume processor main memory. Therefore, for the tested
learning rule the required memory does not increase with the
number of synapses. The rule itself can be implemented using
5.1 kiB of memory for code and data, which is well below the
provided 12 kiB. The time to update all of the synapses scales
linearly with their number. In the proposed hardware system,
one EPP processes up to 230 k synapses. Compared to this, the
best-case updating rate of 9552 synapses/s for the reward modu-
lated STDP rule implies delays on the order of tens of seconds if
all synapses are used. Therefore, the same considerations apply
as to the problem of delayed reward discussed in section 4.3.
For the task tested here, simulations indicate no degradation of
learning performance for update rates down to 500 synapses/s
(data not shown). However, the task only uses a small subset of
1250 synapses.

In general and depending on the task, the updating rate can
limit the number of usable plastic synapses per processor to
a number below 230 k. This can be met with three strategies:
Randomizing the order of updates, so that over time all synapses
are updated with a short delay. Reducing the acceleration factor by
recalibration as long as the resulting neuronal time-constants are
still within the achievable range of the circuit. Distributing plastic
synapses over the wafer, so that fewer are used per processor and
thereby trading efficiency against fidelity of the emulation. The
last approach is especially suitable if not all synapses in the model
require plasticity.

Since the EPP is a general purpose processor, arbitrary C-code
can be used to define learning rules. These rules are restricted by
three constraints: (1) The program has to fit into 12 kiB of mem-
ory. (2) The updating rate establishes a soft limit on the number of
plastic synapses per processor. (3) The program can only observe
the network activity through the local accumulation circuits. The
last point in particular excludes changing the shape of the STDP
curve (Equation 5), since it is a fixed property of the local synapse
circuit.

Although we only discuss one particular learning rule in
detail in this study, a main strength of the system is its abil-
ity to implement a wide set of rules. Going beyond STDP-based
rules, two examples would be gradient descent methods and
evolutionary algorithms. In both cases—as for the STDP rule
studied here—the environment provides a reward signal that
guides the change of weights performed locally by the EPP. For
these two examples, the local accumulation circuit is not used
at all. Instead, for gradient descent, or ascent in the case of
reward, the gradient of a randomly selected subset of weights
is determined by evaluating the performance of the network
multiple times and then changing the weights in direction of
the gradient. For evolutionary algorithms, the weights belong-
ing to an individual would be distributed over the wafer, so that
every processor has access to a subset of weights of all indi-
viduals. After the reward for each individual is supplied by the
environment, the processors can perform combination and muta-
tion on their local subsets in parallel. Typically, gradient descent

Frontiers in Neuroscience | Neuromorphic Engineering September 2013 | Volume 7 | Article 160 | 14

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Friedmann et al. Reward-based learning under hardware constraints

and evolutionary algorithms require many evaluations of network
performance and are therefore computationally expensive on
conventional computers. In the proposed hardware system, the
high acceleration factor, implementation of the network dynam-
ics as physical model, and the parallel weight update promise fast
learning with these rules and good scalability with the number of
synapses.

4.5. COMPARISON TO OTHER STDP IMPLEMENTATIONS
Plasticity implementations found in the literature typically focus
on variants of unsupervised STDP and use fixed-function hard-
ware. For example in Indiveri et al. (2006) STDP works on
bi-stable synapses and is implemented using fully analog circuits.
In Ramakrishnan et al. (2011) analog floating-gate memory is
used for weight storage that can be subjected to plasticity. In con-
trast, Seo et al. (2011) describes a fully digital implementation
using counters and linear-feedback shift registers for probabilis-
tic STDP with single-bit synapses. While these systems allow for
flexibility, for example in the shape of the timing dependence,
there are three main restrictions compared to the processor based
implementation presented here: (1) Flexibility is restricted to
parameterization of a more or less generic circuit. (2) Weight
changes are triggered by spike-events and depend on the tim-
ing of spike-pairs. (3) The synapse has no state in addition to
the weight. Points (2) and (3) imply that weights have to be
changed immediately in reaction to pre- or postsynaptic spikes.
This rules out the ability to implement an eligibility trace to solve
the distal reward problem of reinforcement learning (Izhikevich,
2007).

The analog synapse circuit in Wijekoon and Dudek (2011)
does include a local eligibility trace and the ability to mod-
ulate the weight update by an external reward signal. The
plasticity of the synapses can be configured to operate under
modulation or as unsupervised STDP. Their approach repre-
sents a specialized implementation of reward modulation that
emphasizes power and area efficiency. In contrast, our approach
aims for flexibility, so that very different learning rules can be
implemented on the same hardware substrate, thereby sacrific-
ing some of the efficiency. Examples given previously for non-
STDP type learning rules are gradient descent and evolutionary
algorithms.

However, there are systems that also use a general-purpose
processor for plasticity. For example, in Vogelstein et al. (2003)
an implementation of STDP in an address-event representation
(AER) routing system is presented. They use three individ-
ual chips: a custom integrate-and-fire neuron array, an SRAM
based look-up table for synaptic connections and a micro-
controller for plasticity. For STDP, the micro-controller processes
every spike and maintains queues of pre- and post-synaptic
events. This necessitates multiple off-chip memory accesses
for every event and at regular time steps. Contrary to our
approach, their system has access to the detailed timing of
spikes and can therefore additionally implement rules includ-
ing short-term effects, as in Froemke et al. (2010). However,
in terms of scalability, our proposed system is superior due
to the integration of processor, event routing and neuronal

dynamics onto the same wafer. This reduces power consumption
by eliminating communication across chip boundaries. Also,
due to the hybrid architecture of analog accumulation and
digital weight computation, the workload for the processor is
reduced. This is an important aspect if a high speed-up factor is
aimed for.

The system reported in Davies et al. (2012) is a specialized
multi-processor platform for neural simulations. In implement-
ing STDP, a key constraint for them is limited access to weights
stored in external memory. They solve this problem by predicting
firing times based on the membrane potential. This simultane-
ously illustrates the strength and weakness of this architecture.
Since the system is completely digital, they have unconstrained
access to state variables, such as the membrane potential. With
analog neurons, this always requires some form of analog to dig-
ital conversion. On the other hand, weights are stored external
to the processor and have to be transfered between chips. In our
system, close integration of weight memory and processor on the
same substrate in addition to the optimized input/output instruc-
tions of the SYNAPSE special-function unit, make weight access
more efficient.

In conclusion, the hybrid processor based architecture pro-
posed in this study represents a novel plasticity implementation
for hardware. To our knowledge, it introduces two novel con-
cepts: first, the integration of a general-purpose processor for
plasticity onto the neuromorphic substrate, and second, the close
interaction with specialized analog computational units using
an extension of the instruction set. In combination, this allows
for reward-based spike-timing-dependent synaptic plasticity in
reinforcement learning tasks.

4.6. LIMITATIONS
The goal of this study was to analyze the implementability of
a reinforcement learning task on a proposed novel hardware
system. The technical implementability of the system itself was
not subject of this study. We assumed a sufficiently fast proces-
sor for the delay analysis (section 2.2.4). It should be part of
the design process of a future implementation to test perfor-
mance against our simulations. The updating speed could limit
the amount of plastic synapses per processor depending on the
decay time constant τe. We also did not model the analog part
of the system in detail, but restricted simulations to a generic
drift function. Measurements in the existing BrainScaleS wafer-
scale system could be used to characterize the drifting behavior.
However, considering that we did not see degraded performance
over a large range of time constants and fixed-pattern variation, it
does not seem likely that performance would be worse in a more
accurate model.

With regard to the model tested here, we restricted the study
to one specific task of spike train learning, which is a generic and
general learning task for spiking neurons: many tasks can be for-
mulated as a relaxed version of spike train learning. We showed
that the performance of the model is not negatively affected
by hardware constraints. It remains an open question whether
there are other tasks that give good performance in software
simulations, but fail when hardware constraints are included.

www.frontiersin.org September 2013 | Volume 7 | Article 160 | 15

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Friedmann et al. Reward-based learning under hardware constraints

We restricted the study to epochal learning with defined trial-
duration ended by the application of the reward. In a next step,
this approach should be extended to continuous time learning
scenarios. In this case, processor update speed and the size of the
decay time constant could play a more important role.

ACKNOWLEDGMENTS
The research leading to these results has received funding by the
European Union 7th Framework Program under grant agreement
nos. 243914 (Brain-i-Nets) and 269921 (BrainScaleS). We would
like to thank Thomas Pfeil for helpful discussions.

REFERENCES
Backus, J. (1978). Can program-

ming be liberated from the von
neumann style? A functional
style and its algebra of programs.
Commun. ACM 21, 613–641. doi:
10.1145/359576.359579

Brette, R., and Gerstner, W. (2005).
Adaptive exponential integrate-
and-fire model as an effective
description of neuronal activity. J.
Neurophysiol. 94, 3637–3642. doi:
10.1152/jn.00686.2005

Caporale, N., and Dan, Y. (2008).
Spike timing-dependent plasticity:
a hebbian learning rule. Annu.
Rev. Neurosci. doi: 10.1146/annurev.
neuro.31.060407.125639

Davies, S., Galluppi, F., Rast, A.
D., and Furber, S. B. (2012). A
forecast-based stdp rule suitable
for neuromorphic implemen-
tation. Neural Netw. 32, 3–14
doi: 10.1016/j.neunet.2012.02.018.
Available online at: http://www. sci-
encedirect.com/science/article/pii/S
0893608012000470 (Selected Papers
from IJCNN 2011).

Davison, A. P., Brüderle, D., Eppler,
J., Kremkow, J., Muller, E., Pecevski,
D., et al. (2008). PyNN: a common
interface for neuronal network sim-
ulators. Front. Neuroinform. 2:11.
doi: 10.3389/neuro.11.011.2008

Embedded Microprocessor
Benchmark Consortium EEMBC.
(2012). Coremark benchmark.
Available online at: http://www.

coremark.org
Ehrlich, M., Wendt, K., Zühl,

L., Schüffny, R., Brüderle,
D., Müller, E., et al. (2010). “A
software framework for mapping
neural networks to a wafer-scale
neuromorphic hardware system,” in
Proceedings of the Artificial Neural
Networks and Intelligent Information
Processing Conference (ANNIIP)
2010, (Funchal), 43–52.

Farries, M. A., and Fairhall, A. L.
(2007). Reinforcement learning
with modulated spike timing–
dependent synaptic plasticity. J.
Neurophysiol. 98, 3648–3665. doi:
10.1152/jn.00364.2007. Available
online at: http://jn.physiology.org/
content/98/6/3648.abstract.

Fieres, J., Schemmel, J., and Meier,
K. (2008). “Realizing biologi-
cal spiking network models in a
configurable wafer-scale hardware
system,” in Proceedings of the

2008 International Joint Conference
on Neural Networks (IJCNN), (Hong
Kong).

Florian, R. V. (2007). Reinforcement
learning through modulation of
spike-timing-dependent synaptic
plasticity. Neural Comput. 19,
1468–1502. doi: 10.1162/neco.2007.
19.6.1468

Frémaux, N., Sprekeler, H., and
Gerstner, W. (2010). Functional
requirements for reward-modulated
spike-timing-dependent plasticity.
J. Neurosci. 30, 13326–13337. doi:
10.1523/JNEUROSCI.6249-09.2010

Froemke, R. C., Debanne, D., and Bi,
G.-Q. (2010). Temporal modulation
of spike-timing-dependent plastic-
ity. Front. Synap. Neurosci. 2:19. doi:
10.3389/fnsyn.2010.00019

Furber, S. B., Lester, D. R., Plana,
L. A., Garside, J. D., Painkras, E.,
Temple, S., et al. (2012). Overview
of the SpiNNaker system architec-
ture. IEEE Trans. Comput. 99:1. doi:
10.1109/TC.2012.142

Gerstner, W., and Kistler, W. (2002).
Spiking Neuron Models: Single
Neurons, Populations, Plasticity.
Cambridge: Cambridge University
Press.

Goodman, D., and Brette, R. (2008).
Brian: a simulator for spik-
ing neural networks in Python.
Front. Neuroinform. 2:5. doi:
10.3389/neuro.11.005.2008

Indiveri, G., Chicca, E., and Douglas,
R. (2006). A VLSI array of
low-power spiking neurons and
bistable synapses with spike-timing
dependent plasticity. IEEE Trans.
Neural Netw. 17, 211–221. doi:
10.1109/TNN.2005.860850

Izhikevich, E. M. (2007). Solving the
distal reward problem through
linkage of stdp and dopamine
signaling. Cereb. Cortex 17,
2443–2452. doi: 10.1093/cer-
cor/bhl152. Available online
at: http://cercor.oxfordjournals.org/
content/17/10/2443.abstract

Legenstein, R., Pecevski, D., and
Maass, W. (2008). A learning
theory for reward-modulated
spike-timing-dependent plasticity
with application to biofeedback.
PLoS Comput. Biol. 4:e1000180. doi:
10.1371/journal.pcbi.1000180

Livi, P., and Indiveri, G. (2009). “A
current-mode conductance-based
silicon neuron for address-event
neuromorphic systems,” in

IEEE International Symposium
on Circuits and Systems, ISCAS
2009, (Taipei), 2898–2901. doi:
10.1109/ISCAS.2009.5118408

Mead, C. A. (1990). Neuromorphic
electronic systems. Proc. IEEE 78,
1629–1636. doi: 10.1109/5.58356

Millner, S., Grübl, A., Meier, K.,
Schemmel, J., and Schwartz, M.-O.
(2010). “A VLSI implementa-
tion of the adaptive exponential
integrate-and-fire neuron model,”
in Advances in Neural Information
Processing Systems 23, eds J. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R.
S. Zemel, and A. Culotta (La Jolla,
CA : Neural Information Processing
Systems), 1642–1650.

Morrison, A., Diesmann, M.,
and Gerstner, W. (2008).
Phenomenological models of
synaptic plasticity based on spike
timing. Biol. Cybern. 98, 459–478.
doi: 10.1007/s00422-008-0233-1

Nordlie, E., Gewaltig, M.-O., and
Plesser, H. E. (2009). Towards
reproducible descriptions of neu-
ronal network models. PLoS
Comput. Biol. 5:e1000456. doi:
10.1371/journal.pcbi.1000456

NumPy. (2012). Available online at:
http://numpy.scipy.org

Pfeil, T., Potjans, T. C., Schrader,
S., Potjans, W., Schemmel, J.,
Diesmann, M., et al. (2012). Is
a 4-bit synaptic weight resolu-
tion enough? – constraints on
enabling spike-timing dependent
plasticity in neuromorphic hard-
ware. Front. Neurosci. 6:90. doi:
10.3389/fnins.2012.00090

Potjans, W., Diesmann, M., and
Morrison, A. (2011). An imperfect
dopaminergic error signal can drive
temporal-difference learning. PLoS
Comput. Biol. 7:e1001133. doi:
10.1371/journal.pcbi.1001133

PowerISA. (2010). PowerISA ver-
sion 2.06 revision b. Technical
report. Available online at: http://
www.power.org/resources/reading/

Ramakrishnan, S., Hasler, P. E., and
Gordon, C. (2011). Floating
gate synapses with spike-time-
dependent plasticity. IEEE Trans.
Biomed. Circ. Syst. 5, 244–252. doi:
10.1109/TBCAS.2011.2109000

Roy, K., Mukhopadhyay, S., and
Mahmoodi-Meimand, H. (2003).
Leakage current mechanisms and
leakage reduction techniques in
deep-submicrometer cmos circuits.

Proc. IEEE 91, 305–327. doi:
10.1109/JPROC.2002.808156

Schemmel, J., Brüderle, D., Grübl,
A., Hock, M., Meier, K., and
Millner, S. (2010). “A wafer-scale
neuromorphic hardware system
for large-scale neural modeling,”
in Proceedings of the 2010 IEEE
International Symposium on Circuits
and Systems (ISCAS), (Paris),
1947–1950. doi: 10.1109/ISCAS.
2010.5536970

Schemmel, J., Brüderle, D., Meier,
K., and Ostendorf, B. (2007).
“Modeling synaptic plasticity
within networks of highly acceler-
ated I&F neurons,” in Proceedings
of the 2007 IEEE International
Symposium on Circuits and Systems
(ISCAS) (New Orleans, LA:
IEEE Press), 3367–3370. doi:
10.1109/ISCAS.2007.378289

Schemmel, J., Fieres, J., and Meier,
K. (2008). “Wafer-scale integra-
tion of analog neural networks,” in
Proceedings of the 2008 International
Joint Conference on Neural Networks
(IJCNN), (Hong Kong).

Schemmel, J., Grübl, A., Meier, K., and
Muller, E. (2006). “Implementing
synaptic plasticity in a VLSI
spiking neural network model”
in Proceedings of the 2006
International Joint Conference
on Neural Networks (IJCNN)
(Vancouver, BC: IEEE Press). doi:
10.1109/IJCNN.2006.246651

Scholze, S., Schiefer, S., Partzsch, J.,
Hartmann, S., Georg Mayr, C.,
Höppner, S., et al.(2011). VLSI
implementation of a 2.8GEvent/s
packet based AER interface with
routing and event sorting function-
ality. Front. Neurosci. 5:117. doi:
10.3389/fnins.2011.00117

Seo, J., Brezzo, B., Liu, Y., Parker,
B. D., Esser, S. K., Montoye, R.
K., et al. (2011). “A 45nm cmos
neuromorphic chip with a scal-
able architecture for learning
in networks of spiking neu-
rons,” in Custom Integrated
Circuits Conference (CICC), 2011
IEEE, 1–4. doi: 10.1109/CICC.2011.
6055293

Smith, J. E. (1998). “A study
of branch prediction strategies,”
in 25 years of the International
Symposia on Computer Architecture
(Selected Papers) ISCA ’98 (New
York, NY: ACM), 202–215. doi:
10.1145/285930.285980

Frontiers in Neuroscience | Neuromorphic Engineering September 2013 | Volume 7 | Article 160 | 16

http://www.sciencedirect.com/science/article/pii/S0893608012000470
http://www.sciencedirect.com/science/article/pii/S0893608012000470
http://www.sciencedirect.com/science/article/pii/S0893608012000470
http://www.coremark.org
http://www.coremark.org
http://jn.physiology.org/content/98/6/3648.abstract
http://jn.physiology.org/content/98/6/3648.abstract
http://cercor.oxfordjournals.org/content/17/10/2443.abstract
http://cercor.oxfordjournals.org/content/17/10/2443.abstract
http://numpy.scipy.org
http://www.power.org/resources/reading/
http://www.power.org/resources/reading/
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Friedmann et al. Reward-based learning under hardware constraints

Smith, J. E., and Pleszkun, A. R.
(1985). Implementation of Precise
Interrupts in Pipelined Processors.
Vol. 13. Los Angeles, CA: IEEE
Computer Society Press.

Stallman, R. (2012). Using the GNU
Compiler Collection. For gcc ver-
sion 4.5.4 edition Boston, MA:
Free Software Foundation. Available
online at: http://gcc.gnu.org

Sutton, R. S., and Barto, A. G. (1998).
Reinforcement learning: An intro-
duction. Vol. 1. Cambridge, MA:
Cambridge University Press.

Victor, J. D., and Purpura, K. P. (1996).
Nature and precision of temporal
coding in visual cortex: a metric-
space analysis. J. Neurophysiol. 76,
1310–1326.

Vogelstein, R. J., Tenore, F., Philipp,
R., Adlerstein, M. S., Goldberg, D.
H., and Cauwenberghs, G. (2003).
“Spike timing-dependent plasticity
in the address domain,” in Advances

in Neural Information Processing
Systems 15, eds S. Thrun, S. Becker,
and K. Obermayer (Cambridge,
MA. MIT Press), 1147–1154.

Wendt, K., Ehrlich, M., and Schüffny,
R. (2008). “A graph theoretical
approach for a multistep mapping
software for the facets project,”
in CEA’08: Proceedings of the 2nd
WSEAS International Conference
on Computer Engineering and
Applications (Wisconsin: World
Scientific and Engineering Academy
and Society), 189–194. ISBN
978-960-6766-33-6

Wijekoon, J. H. B., and Dudek, P.
(2008). Compact silicon neuron
circuit with spiking and bursting
behaviour. Neural Netw. 21, 524–
534. doi: 10.1016/j.neunet.2007.
12.037. Available online at: http://
sciencedirect.com/science/article/
08-4RFSCV3-5/2/c005fcc0c2482bfB
6T724210a079932484e (Advances

in Neural Networks Research:
IJCNN ’07, 2007 International Joint
Conference on Neural Networks
IJCNN ’07).

Wijekoon, J. H. B., and Dudek, P.
(2011). “Analogue cmos circuit
implementation of a dopamine
modulated synapse,” in 2011 IEEE
International Symposium on Circuits
and Systems (ISCAS) (IEEE),
877–880. doi: 10.1109/ISCAS.2011.
5937706

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 26 March 2013; accepted:
19 August 2013; published online: 20
September 2013.

Citation: Friedmann S, Frémaux N,
Schemmel J, Gerstner W and Meier
K (2013) Reward-based learning under
hardware constraints—using a RISC
processor embedded in a neuromorphic
substrate. Front. Neurosci. 7:160. doi:
10.3389/fnins.2013.00160
This article was submitted to
Neuromorphic Engineering, a section of
the journal Frontiers in Neuroscience.
Copyright © 2013 Friedmann,
Frémaux, Schemmel, Gerstner and
Meier. This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction
in other forums is permitted, provided
the original author(s) or licensor are
credited and that the original publication
in this journal is cited, in accordance
with accepted academic practice. No
use, distribution or reproduction is
permitted which does not comply with
these terms.

www.frontiersin.org September 2013 | Volume 7 | Article 160 | 17

http://gcc.gnu.org
http://www.sciencedirect.com/science/article/B6T08-4RFSCV3-5/2/c005fcc0c2482bf724210a079932484e
http://www.sciencedirect.com/science/article/B6T08-4RFSCV3-5/2/c005fcc0c2482bf724210a079932484e
http://www.sciencedirect.com/science/article/B6T08-4RFSCV3-5/2/c005fcc0c2482bf724210a079932484e
http://www.sciencedirect.com/science/article/B6T08-4RFSCV3-5/2/c005fcc0c2482bf724210a079932484e
http://dx.doi.org/10.3389/fnins.2013.00160
http://dx.doi.org/10.3389/fnins.2013.00160
http://dx.doi.org/10.3389/fnins.2013.00160
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

	Reward-based learning under hardware constraints—using a RISC processor embedded in a neuromorphic substrate
	Introduction
	Materials and Methods
	Using an Embedded Processor for Plasticity
	System overview
	Implementing plasticity
	Embedded micro-processor

	Model for Reinforcement Learning
	Network model
	Synaptic plasticity model
	Learning task
	Simulated hardware constraints
	Discrete weights
	Baseline model with added noise
	Thresholded readout
	Analog drift
	Delayed reward

	Measuring performance

	Results
	Baseline
	Discretized Weights
	Baseline with added noise
	Effect on weights

	Thresholded Readout
	Effect on weights

	Analog Drift
	Delayed Reward
	Toward Hardware Implementation

	Discussion
	Weight Resolution
	Implementation of the Eligibility Trace
	Impact of Real-World Timings
	Scalability and Flexibility
	Comparison to Other STDP Implementations
	Limitations

	Acknowledgments
	References

