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Abstract

Background: Several prediction problems in computational biology and genomic medicine are characterized by both big
data as well as a high imbalance between examples to be learned, whereby positive examples can represent a tiny minority
with respect to negative examples. For instance, deleterious or pathogenic variants are overwhelmed by the sea of neutral
variants in the non-coding regions of the genome: thus, the prediction of deleterious variants is a challenging, highly
imbalanced classification problem, and classical prediction tools fail to detect the rare pathogenic examples among the
huge amount of neutral variants or undergo severe restrictions in managing big genomic data. Results: To overcome these
limitations we propose parSMURF, a method that adopts a hyper-ensemble approach and oversampling and undersampling
techniques to deal with imbalanced data, and parallel computational techniques to both manage big genomic data and
substantially speed up the computation. The synergy between Bayesian optimization techniques and the parallel nature of
parSMURF enables efficient and user-friendly automatic tuning of the hyper-parameters of the algorithm, and allows
specific learning problems in genomic medicine to be easily fit. Moreover, by using MPI parallel and machine learning
ensemble techniques, parSMURF can manage big data by partitioning them across the nodes of a high-performance
computing cluster. Results with synthetic data and with single-nucleotide variants associated with Mendelian diseases and
with genome-wide association study hits in the non-coding regions of the human genome, involhing millions of examples,
show that parSMURF achieves state-of-the-art results and an 80-fold speed-up with respect to the sequential version.
Conclusions: parSMURF is a parallel machine learning tool that can be trained to learn different genomic problems, and its
multiple levels of parallelization and high scalability allow us to efficiently fit problems characterized by big and
imbalanced genomic data. The C++ OpenMP multi-core version tailored to a single workstation and the C++ MPI/OpenMP
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hybrid multi-core and multi-node parSMURF version tailored to a High Performance Computing cluster are both available at
https://github.com/AnacletoLAB/parSMURF.

Keywords: high-performance computing tool for genomic medicine; parallel machine learning tool for big data; parallel
machine learning tool for imbalanced data; ensemble methods; machine learning for genomic medicine; machine learning
for imbalanced genomic data; prediction of deleterious or pathogenic variants; high-performance computing; Mendelian
diseases; GWAS

Background

High-throughput biotechnologies, and the development of ar-
tificial intelligence methods and techniques, have opened up
new research avenues in the context of genomic and personal-
ized medicine [1, 2]. In particular machine learning [3], whole-
genome sequencing technologies [4,5], and large population
genome sequencing projects [6, 7] play a central role for the de-
tection of rare and common variants associated with genetic dis-
eases and cancer [8, 9].

In this context, while disease-associated variants falling in
the protein-coding regions of the genome have been widely
studied [10–12], this is not the case for disease-associated vari-
ants located in the non-coding regions of the genome, where
our understanding of their impact on cis- and trans-regulation
is largely incomplete. Nevertheless, several studies found that
most of the potential pathogenic variants lie in the non-coding
regions of the human genome [13].

Driven by the aforementioned motivations many efforts have
been devoted in recent years by the scientific community to de-
veloping reliable tools for the identification and prioritization of
“relevant” non-coding genetic variants. CADD is one of the first
machine learning–based methods applied for this purpose on
a genome-wide scale [14]. By combining different annotations
into a single measure for each variant using first an ensemble
of support vector machines and in the current version a fast
and efficient logistic regression classifier, CADD likely represents
the most used and well-known tool to predict deleterious vari-
ants [15].

Starting from this work other machine learning–based meth-
ods for the detection of deleterious or pathogenic variants have
been proposed, ranging from multiple kernel learning tech-
niques [16] to deep neural networks [17, 18], multiple ker-
nel learning integrative approaches [16], unsupervised learn-
ing techniques to deal with the scarcity of available annota-
tions [19], and linear models for functional genomic data com-
bined with probabilistic models of molecular evolution [20].
Other approaches predicted the effect of regulatory variation di-
rectly from sequence using gkm-SVM [21] or deep learning tech-
niques [22]. More details are covered in 2 recent reviews on ma-
chine learning methods for the prediction of disease risk in non-
coding regions of the human genome [23, 24].

All these tools are faced with relevant challenges related
to the rarity of non-coding pathogenic mutations. Indeed neu-
tral variants largely outnumber the pathogenic ones. As a con-
sequence the resulting classification problem is largely unbal-
anced toward the majority class and in this setting it is well-
known that imbalance-unaware machine learning methods fail
to detect examples of the minority class (i.e., pathogenic vari-
ants) [25]. Recently several methods showed that by adopting
imbalance-aware techniques we can significantly improve pre-
dictions of pathogenic variants in non-coding regions. The first
one (GWAVA) applied a modified random forest [26], where its
decision trees are trained on artificially balanced data, thus re-
ducing the imbalance of the data [27]. A second one (NCBoost)

used gradient tree boosting learning machines with partially
balanced data, achieving very competitive results in the prior-
itization of pathogenic Mendelian variants, even if the compari-
son with the other state-of-the-art methods has been performed
without retraining them, but using only their pre-computed
scores [28]. The unbalancing issue has been fully addressed by
ReMM [29] and hyperSMURF [30], through the application of
subsampling techniques to the “negative” neutral variants, and
oversampling algorithms to the set of “positive” pathogenic vari-
ants. Moreover a large coverage of the training data and an im-
provement of the accuracy and the diversity of the base learners
is obtained through a partition of the training set and a hyper-
ensemble approach, i.e., an ensemble of random forests that in
turn are ensembles of decision trees. hyperSMURF achieved ex-
cellent results in the detection of pathogenic variants in the non-
coding DNA, showing that imbalance-aware techniques play a
central role to improve predictions of machine learning meth-
ods in this challenging task.

Nevertheless these imbalance-aware methods have been
usually implemented with no or very limited use of parallel com-
putation techniques, thus making problematic their application
to the analysis of big genomic data. Furthermore, the hyper-
SMURF method is computationally inten.sive and characterized
by a large number of learning parameters that need to be tuned
to ensure optimal performance, thus requiring prohibitive com-
puting costs, especially with big genomic data.

To address the aforementioned limitations, in this article
we propose parSMURF, a novel parallel approach based on hy-
perSMURF. While other methods suitable for the assessment
of the impact of variants located in protein-coding regions are
able to run in parallel environments [31], this is not true for
the assessment of non-coding variants. The main goal in the
design and development of parSMURF is to make available to
the scientific community a general and flexible tool for ge-
nomic prediction problems characterized by big and/or highly
imbalanced data while ensuring state-of-the-art prediction per-
formance. The high computational burden resulting from the
proper tuning and selection of the learning (hyper)-parameters
is addressed through a scalable and parallel learning algorithm
that leverages different levels of parallelization, and a Bayesian
optimizer (BO) for their automatic and efficient tuning.

In the remainder we present the parSMURF algorithm, its
relationships with its sequential version hyperSMURF, and its
2 different implementations, respectively, for multi-core work-
stations and for a highly parallel high-performance computing
cluster.

In the Results section experiments with big synthetic and ac-
tual genomic data show that parSMURF scales nicely with big
data and substantially improves the speed-up of the compu-
tation. Finally experiments with Mendelian data and genome-
wide association studies (GWAS) hits at whole-genome level
show that parSMURF considerably outperforms its sequential
counterpart hyperSMURF, by exploiting its multiple levels of
parallelism and the automatic tuning of its learning hyper-
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parameters through a grid search or a Bayesian optimization
method. parSMURF1 multi-thread and hybrid multi-thread and
multi-process MPI C++ parSMURFn implementations are well-
documented and freely available for academic and research pur-
poses.

Methods

Parallel SMote Undersampled Random Forest (parSMURF) is a
fast, parallel, and highly scalable algorithm designed to detect
deleterious and pathogenic variants in the human genome. The
method is able to automatically tune its learning parameters
even with large datasets and to nicely scale with big data.

Starting from the presentation of the characteristics and lim-
itations of hyperSMURF [30], in this section we introduce the
parallel algorithm parSMURF and its 2 variants named ”multi-
core parSMURF” (parSMURF1) and ”multi-node parSMURF”
(parSMURFn). The first one is suitable for execution on a single
workstation that features 1 or more multi-core processors, while
the second one is designed for a high-performance comput-
ing cluster, where the computation is distributed across several
interconnected nodes. Although developed for different hard-
ware architectures, they both share the same core paralleliza-
tion concepts and the same chain of operations performed on
each parallel component of the algorithm. Finally, we discuss
the computational algorithms proposed to automatically learn
and tune the parSMURF hyper-parameters in order to properly
fit the model to the analysed genomic data.

From hyperSMURF to parSMURF

hyperSMURF is a supervised machine learning algorithm specif-
ically designed to detect deleterious variants where variants as-
sociated with diseases are several orders of magnitude less fre-
quent than the neutral genetic variations. hyperSMURF tackles
the imbalance of the data using 3 learning strategies:

� balancing of the training data by oversampling the minority
class and undersampling the majority class;

� improving data coverage through ensembling techniques;
� enhancing the diversity and accuracy of the base learners

through hyper-ensembling techniques.

The high-level logical steps of the hyperSMURF algorithm are
summarized in Fig. 1. At step 1 hyperSMURF creates several sets
of training data by using all the available examples of the mi-
nority (positive) class and partitioning the set of the majority
(negative) class; as a result each set includes all the positive ex-
amples and a subset of the majority (negative) class. From this
point on, each training set is processed independently. In step
2, examples of the minority class are oversampled through the
SMOTE algorithm [32] while examples of the majority class are
undersampled according to a uniform distribution. Each train-
ing set is now formed by a comparable number of positive and
negative examples, and it can be used in step 3 to train the ran-
dom forest. This process is applied to all the parts of the parti-
tion of the original training set, thus generating an ensemble of
random forest models. At step 4 all the predictions separately
computed by each trained model are finally combined to obtain
the “consensus” prediction of the hyper-ensemble.

The behavior of the algorithm strongly depends on the learn-
ing hyper-parameters, reported in Table 1, which deeply influ-
ence the hyperSMURF performance, as shown in [33]; fine tuning
of the learning parameters can dramatically improve prediction
performance. Because hyperSMURF is an ensemble of random

forests that in turn are ensembles of decision trees, its sequen-
tial implementation undergoes a high execution time, especially
on large datasets, thus limiting a broad exploration of the hyper-
parameter space. Moreover hyperSMURF cannot be easily ap-
plied to big data, owing to its time and space complexity issues.

Nevertheless, looking at Fig. 1, we can observe that hyper-
SMURF is characterized by the following features:

(1) the same operations (over- and undersampling, data merg-
ing, training, and model generation and prediction evalua-
tion) are performed over different data belonging to differ-
ent partitions;

(2) the operations performed over different data are indepen-
dent; i.e., there is no interaction between the computation
of 2 different partitions;

(3) the algorithm does not require any explicit synchronization
during the elaboration of 2 or more partitions.

Putting together these observations, we can redesign hyper-
SMURF, leveraging its intrinsic parallel nature and using state-
of-the-art parallel computation techniques. The resulting newly
proposed parSMURF algorithm is schematically summarized in
Algorithm 1. The parallelization is performed by grouping parts
of the partition in ”chunks” (see also Fig. 2). The parSMURF pa-
rameter q (number of chunks) determines at high level the par-
allelization of the algorithm, i.e., how many chunks can be pro-
cessed in parallel.

Algorithm 1 parSMURF algorithm (training)

Input:
P : positive examples set
N : negative examples set
n, f p, ratio, k, nTrees, mtry: parameters described in Table 1
q: number of partition chunks
Output:
M = {m1, .., mn}: set of trained RF models

{N1, ..,Nn} ← partitioning(N , n)
{C1, .., Cq} ← chunkGroups({N1, ..,Nn}, q)
idx ← {1, .., q}
j ← 0
M ← ∅
for all i ∈ idx parallel do

for N ′ ∈ Ci (parallel) do
j ← j + 1
P ′ ← SMOT E (P, f p, k)
N ′′ ← undersample(N ′, ratio)
T ← P ∪ P ′ ∪ N ′′

mj ← RFtrain(T, nTrees, mtry)
M ← M ∪ mj

end for
end for
return M = {m1, .., mn}

During training, the main activities of the parSMURF algo-
rithm are executed in parallel for each chunk (outer ”for” loop
in Algorithm 1). A further level of parallelism can be realized
through the inner ”for” loop, where each part Ni of the chunk
Ci undergoes a parallel execution. Note however that “parallel”
in the inner ”for” loop is in brackets to highlight that this second
level of parallelization can or cannot be implemented, according
to the complexity of the problem and the available underlying
computational architecture.
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Figure 1: High-level scheme of hyperSMURF. Step 1: partitioning of the training set (the minority/positive class is represented in blue, while the majority/negative class
is in green). Step 2: application of oversampling and undersampling approaches, and assembling of the training set. Step 3: training of the random forest models. Step
4: testing and aggregation of prediction outcomes.

Table 1: hyperSMURF learning hyper-parameters

Parameter Description

nParts Number of parts of the partition
fp Multiplicative factor for oversampling the minority class. For instance with fp = 2 two novel examples are

synthesized for each positive example of the original dataset, according to the SMOTE algorithm
ratio Ratio for the undersampling of the majority class. For instance, ratio = 2 sets the number of negative examples as

twice the total number of original and oversampled positive examples
k Number of the nearest neighbours of the SMOTE algorithm
nTrees Number of trees included in each random forest
mTry Number of features to be randomly selected at each node of the decision trees included in the random forest

Figure 2: Comparison between the sequential hyperSMURF (top) and multi-core parSMURF1 (bottom) execution schemes.
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Algorithm 2 parSMURF algorithm (testing)

Input:
M = {m1, .., mn}: set of trained RF models
T : test set
Output:
H S: prediction score for each example t in test set T

idx ← {1, .., n}
for all i ∈ idx parallel do

for all t ∈ T do
Pi (t) ← P(t is positive |mi )

end for
end for
for all t ∈ T do

H S(t) ← 1
n

n∑

i=1

Pi (t)

end for

Algorithm 2 also shows that hyper-ensemble predictions
conducted during testing can be easily performed through par-
allel computation: each model can be tested independently over
the same test set and the consensus prediction is computed by
averaging the ensemble output.

Multi-core parSMURF1

The idea on which multi-core parSMURF builds is that all op-
erations performed on the different parts of the partition can
be assigned to multiple core/threads and processed in parallel.
Namely, given q threads, the data parts N1, . . . , Nn are equally dis-
tributed among threads so that thread i receives a subset (chunk)
Ci of parts, and processes its assigned parts in sequence. Be-
cause each partition chunk is assigned to its own thread, chunk
processing is performed in parallel with architectures featuring
multiple processing cores.

In Fig. 2 (top) a scheme of the execution of the sequen-
tial hyperSMURF is shown: each partition is processed sequen-
tially and the output predictions are accumulated as the com-
putation goes on. On the contrary, with parSMURF1 (Fig. 2, bot-
tom), chunks of partitions are assigned to different execution
threads and are processed in parallel. To avoid data races, each
thread accumulates partial results, and then the master thread
collects them once the computation of each thread is ended.
Moreover, each thread keeps only a local copy of the subset
of the data that is strictly required for its computation; this
minimizes memory consumption and, at the same time, does
not impose any need for synchronization between concurrent
threads.

This scheme is expected to show a remarkable speed-up with
the increase of processing cores and the available local mem-
ory of the system. Because parallelization occurs at “partition
chunk” level, instances of parSMURF1 with a reduced partition
size benefit only partially from a multi-core execution. On the
other hand, partitions characterized by a very high number of
parts can theoretically scale well with the number of processing
cores, but, unfortunately, current processors have constraints in
the number of available cores. Moreover, big data computation
may exceed the storage capacity of a single workstation, thus
making the application of parSMURF1 in this experimental con-
text problematic.

Multi-node parSMURFn

This version of parSMURF has been designed to process big data,
to both improve speed-up and make feasible computations that
exceed the storage capacity of a single workstation. Moreover
parSMURFn allows the fine tuning of the model parameters even
when big data are analysed.

Architecture
As for the multi-core version, parSMURFn exploits paralleliza-
tion at partition level, but it also introduces a second level of par-
allelization: the higher level is performed through the comput-
ing nodes of a cluster, i.e., a set of computing machines intercon-
nected by a very fast networking infrastructure; the lower level is
realized through multi-threading at single-node level by exploit-
ing the multi-core architecture of each single node of the clus-
ter. In this novel scheme, each node receives a partition chunk,
which is processed in parallel with the other chunks assigned
to the remaining nodes. Chunks in turn are further partitioned
in sub-chunks, distributed among the computing cores available
at the local node. Finally an optional third level of parallelization
is available by assigning multiple threads to the random forests
that process the different parts of the partition (recall that a ran-
dom forest is in turn an ensemble of decision trees).

The higher level of parallelization leverages the MPI program-
ming paradigm and standard [34] to transfer information among
nodes. This programming paradigm requires that several in-
stances of the same program be executed concurrently as differ-
ent processes (MPI processes) on different nodes interconnected
by a network. Being different instances of the same program,
each MPI process has its own memory space; therefore inter-
communication, i.e., data exchange between processes, occurs
explicitly by invoking the corresponding actions, as required by
the MPI standard.

parSMURFn adopts a master–slave setting, with a master
process coordinating a set of MPI slave processes, also called
”worker processes,” which in turn manage the partition com-
putation. Master and worker roles are described below:

� the ”master process” is responsible for processing the com-
mand line parameters, loading data in its memory space,
generating partition and chunks, sending the proper subset
of data to each worker process (including the test set and the
proper fraction of the training set), and finally collecting and
averaging their output predictions.

� each ”worker process” realizes the computation on the as-
signed chunk of partitions, generates sub-chunks of its own
chunk, and processes them through multi-threading—i.e.,
distributes the computation of the sub-chunks over the avail-
able computing threads—and sends the output predictions
back to the master process.

We point out that in principle parSMURFn can also be exe-
cuted on a single machine, where multiple copies of the same
program are processed by the available cores, but in this case it
has the same limitations as parSMURF1. Fig. 3 provides a high-
level scheme of the execution of parSMURFn.

parSMURFn intercommunication
Fig. 4 shows a schematic view of the intercommunication be-
tween parSMURF MPI processes.

The computation in the worker processes is performed as in
the multi-core version of parSMURF, except for a slight differ-
ence in the subsampling of the majority class, because this op-
eration is no longer executed by the worker processes but by the
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Figure 3: High-level scheme of the multi-node parSMURFn implementation.

Figure 4: High-level intercommunication scheme between MPI processes in

multi-node parSMURFn. Blue arrows represent data flows from the master pro-
cess to worker processes (different chunks of partitions and the same test set)
and yellow arrows represent data flows from the worker processes to the master
(output predictions).

master instead. Indeed, by observing that subsampling requires
some examples to be discarded, there is no need of sending to
the worker processes an entire part of the partition but only the
selected subset of examples. This design choice minimizes the
amount of data to be sent to a worker process because for each
partition only the positive samples (that are going to be over-
sampled in the worker process) and the already undersampled
negative examples are sent to the worker processes.

In an ideal parallel application, computing nodes should
never interact because every data exchange creates latencies
that affect the overall ”occupancy”—i.e., the ratio between the
amount of time a computing node is processing data and the to-
tal execution time. However, in real applications this rarely hap-
pens, and data have to be exchanged between processes. As a
general rule, communication should be minimal in number and
maximal in size because the following equality holds:

ttot = tstart + d × ttrn,

where ttotis the total time for the data send, d is the amount
of data in bytes to be transferred, ttrn is the time required to
transfer 1 B of data, and tstart is the time required by the in-
terconnecting networking system for beginning a communica-
tion between nodes. tstart is constant; therefore transferring data
as a big chunk is generally faster than for several smaller ones
because the tstart penalty is paid only once in the former case.
However, in real-world MPI parallel applications, the main ob-
jective is to parallelize computation to speed up execution, and
maximum efficiency is achieved by overlapping data transmis-
sion and computation. This is easier to obtain when data are
”streamed,” i.e., sent in small chunks that are consumed as soon
as they reach the receiver MPI process; in this way we can min-
imize the inactivity time of a node, waiting for data to be re-
ceived.

Maximizing parSMURFn performance
For maximizing performance, parSMURFn adopts the following
strategies to find the optimal balance between the size and num-
ber of data transmissions:

� maximize occupancy,
� reduce the amount of data sent or broadcast,
� minimize latency.

To maximize occupancy, the master process does not send
the entire chunk of partitions to each worker process in a big
data send; instead, parts are sent one by one. This choice is ideal
in the context of multi-threading in worker processes: suppos-
edly, given a partition with n parts and a number x of computing
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threads assigned to a working process, the master at first sends
to each worker process x parts of its assigned chunk. When a
worker thread finishes the computation of a part, another one
is sent by the master for processing. This process goes on until
the chunk is exhausted.

To reduce the amount of data sent or broadcast—i.e., 1 MPI
process sending the same data to all the other processes—for
each part, the master process assembles an array having all the
relevant data required for the computation, i.e., the positive and
negative examples (already subsampled, as stated earlier) and
the parameters needed for the computation. Hence with just 1
MPI send operation, a part of the partition with its parameters
is transferred to the worker process. Also, partial results of the
predictions are locally accumulated inside each worker and sent
to the master once the jobs for the assigned chunk are finished.

To minimize latency, the assembly of the data to be sent is
multi-threaded in the master process. In instances character-
ized by relatively small datasets and a high number of parts in
the partition, it may happen that the master could not prepare
and send data fast enough to keep all the worker processes busy.
For instance, a thread in a worker process may finish the com-
putation for a part before data for the next one arrive, leaving
the thread or the entire process inactive. This has been solved
by spawning a number of threads in the master process equal
to the number of worker processes the user has requested, each
one assigned for preparing and sending the data to the corre-
sponding worker. However, because memory usage in the mas-
ter process can be greatly affected, an option is provided for dis-
abling multi-threading in the master. In this case, only 1 thread
takes care of this task and parts are sent in round-robin fashion
to the working processes; this has been experimentally proven
to be effective for those instances that require a particularly high
memory usage.

Hyper-parameter tuning

As in most machine learning methods, the accuracy of the pre-
dictions of the parSMURF models is directly related to the set S
of hyper-parameters that control its learning behaviour. Hence,
to maximize the usefulness of the learning approach, the value
of each hyper-parameter of the set S must be chosen appro-
priately. In parSMURF the hyper-parameter set is composed of
the 6-tuple of parameters reported in Table 1. Each parameter
is discretized and constrained between a maximum and mini-
mum value; hence the hyper-parameter space H is a discrete 6-
dimensional hypercube. The validation procedure for the evalu-
ation of each h ∈ H is the internal cross-validation (CV) process,
and the objective function (performance metrics) that has to be
maximized is the area under the precision recall curve (AUPRC).

parSMURF features 2 modes for automatically finding the
combination of hyper-parameters h0 ∈ H that maximizes the
model accuracy (parameter auto-tuning). The first strategy is a
grid search over H, where each h ∈ H is evaluated by internal CV.
This strategy is generally capable of finding values close to the
best combination of hyper-parameters, but it is very computa-
tionally intensive and is hindered by the curse of dimension-
ality. The second strategy is based on a BO, which iteratively
builds a probabilistic model of the objective function f : H →
R+ (in parSMURF, the AUPRC) by evaluating a promising hyper-
parameter combination at each iteration and stopping when a
global maximum of f is obtained. This procedure is less com-
putationally intensive than the grid search and may also out-

Algorithm 3 Automatic hyper-parameters tuning in parSMURF
featuring Bayesian Optimization.

Input:
T : P ∪ N (data for training and validation)
H: Hyper-parameter space
n: number of CV folds
maxI ter: maximum number of iterations
ε: Bayesian Optimization (BO) error tolerance
Output:
H ′: set of best combination (one for each fold) of hyper-
parameters

{T1, .., Tn} ← foldSubdivision(T , n)
for i ∈ {1, .., n} do

TestSet ← Ti

TrainingSet ←
⋃

j 
=i

T j

{T ′
1 , .., T ′

n−1} ← foldSubdivision(TrainingSet, n − 1)
i ter ← 1
H ← ∅
while (error > ε) ∧ (i ter < maxiter) do

h ← BO generate(H)
for k ∈ {1, .., n − 1} do

ValidationSet ← T ′
k

TrainingSet′ ←
⋃

l 
=k

T ′
l

model ′ ← parSMURF train(TrainingSet′, h)
predictions′

k ← parSMURF test(model ′, ValidationSet)
end for
predictions′ ←

⋃

k

predictions′
k

eval ← AUPRC(predictions′)
H ← H∪ (h, eval)
error ← BO errorEval(H)
i ter ← i ter + 1

end while
hi ← argmaxh∈H {(h, eval)}
model ← parSMURF train(TrainingSet, hi )
predictions ← parSMURF test(model, TestSet)

end for
H ′ ←

⋃

k

hk

perform the latter in terms of prediction effectiveness. The BO
is based on [35] and its implementation “Spearmint-lite” [36] is
included in the parSMURF package.

The whole procedure is summarized in Algorithm 3.
Briefly, parSMURF provides the automatic tuning of the hyper-
parameters in a context of internal n-fold CV, and the BO is
invoked in the while loop. At each iteration, a new hyper-
parameter combination h ∈ H is generated by taking into ac-
count all the previously evaluated h. A new model is then trained
and tested in the internal CV procedure by using the newly gen-
erated h. The quality of the prediction is evaluated by means of
AUPRC, and the tuple (h, eval) is submitted back to the BO for the
generation of the next h. The while loop ends when the BO finds
a probable global maximum (no further improvement in the er-
ror evaluation) or when the maximum number of iterations is
reached. Grid search works in a similar way, but all h ∈ H are ex-
haustively tested in the internal CV phase.
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Results and Discussion

We applied parSMURF to both synthetic and real genomic data
to show that the proposed method is able to:

� scale nicely with big data;
� auto-tune its learning parameters to optimally fit the predic-

tion problem under study;
� improve on hyperSMURF as well as other state-of-the-

art methods in the prediction of pathogenic variants in
Mendelian diseases and of regulatory GWAS hits in the GWAS
Catalog.

All the experiments have been performed on the Cineca Mar-
coni Supercomputing system [37], specifically using its Lenovo
NeXtScale architechture, with 720 nodes, each one having 128
GB of RAM and 2 × 18-cores Intel Xeon E5-2697 v4 (Broadwell)
CPUs at 2.30 GHz. The interconnecting infrastructure is an Intel
Omnipath featuring 100 GB/s of networking speed and a fat-tree
2:1 topology.

Datasets

Genomic data are highly imbalanced toward the majority class
because the single-nucleotide variants (SNVs) annotated as
pathogenic represent a tiny minority of the overall genetic vari-
ation. Synthetic data have also been generated to obtain a high
imbalance between positive and negative examples, in order to
simulate the imbalance that characterizes several types of ge-
nomic data.

Synthetic data have been randomly generated using a spher-
ical Gaussian distribution for each of the 30 features. Among
them only 4 are informative in the sense that the means of posi-
tive and negative examples are different, while all the other fea-
tures share the same mean and standard deviation with both
positive and negative examples. Synthetic data, as well as the R
code for their generation, are available from the GitHub reposi-
tory [38].

As an example of application of parSMURF to real genomic
data, we used the dataset constructed in [29] to detect SNVs in
regulatory non-coding regions of the human genome associated
with Mendelian diseases. The 406 positive examples are man-
ually curated and include mutations located in genomic regu-
latory regions such as promoters, enhancers, and 5′ and 3′ un-
translated regions (UTRs). Neutral (negative) examples include
>14 millions of SNVs in the non-coding regions of the reference
human genome differing, according to high-confidence align-
ment regions, from the ancestral primate genome sequence
inferred on the basis of the Ensembl Enredo-Pechan-Ortheus
whole-genome alignments of 6 primate species [39], and not
including variants present in the most recent 1000 Genomes
data [6] with frequency >5% to remove variants that had not
been exposed for a sufficiently long time to natural selection.
The imbalance between positive (mutations responsible for a
Mendelian disease) and negative SNVs amounts to ∼1:36,000.
The 26 features associated with each SNV are genomic attributes
ranging from G/C content and population-based features to con-
servation scores, transcription, and regulation annotations (for
more details, see [29]).

We finally analysed genome-wide association studies
(GWAS) data to detect 2,115 regulatory GWAS hits downloaded
from the National Human Genome Research Institute (NHGRI)
GWAS catalog [40], and a set of negatives obtained by randomly
sampling 1/10 of the negative examples of the Mendelian
dataset, according to the same experimental set-up described

in [30], thus resulting in an imbalance between negative and
positive examples of ∼1:700. We predicted chromatin effect
features directly from the DNA sequence using DeepSEA con-
volutional networks [18]; in this way we obtained 1,842 features
for each SNV, as described in [30], and we used those features
to train parSMURF.

Table 2 summarizes the main characteristics of both the syn-
thetic and genomic data used in our experiments.

parSMURF scales nicely with synthetic and genomic
data

Experiments reported in this section follow the classic experi-
mental set-up for the evaluation of the performance of parallel
algorithms [41]. In particular, because our executions use multi-
ple CPUs concurrently, we use speed-up and efficiency to anal-
yse the algorithm performance by measuring both the sequen-
tial and parallel execution times.

By denoting with Ts the run-time of the sequential algorithm
and with Tp the run-time of the parallel algorithm executed on P
processors, the speed-up and efficiency are defined, respectively,
as

S = Ts

Tp
and E = Ts

Tp × P
.

Speed-up and efficiency analysis with synthetic data
Experimental set-up For every synthetic dataset, we run
parSMURF1 and parSMURFn several times by varying the
number of threads (for both the multi-core and multi-node
versions) and the number of MPI worker processes assigned to
the task (for the multi-node version only). More precisely the
number of threads n.thr varied in n.thr ∈ {1, 2, 4} for synth 1
and synth 2 datasets, while for synth 3 n.thr ∈ {1, 2, 4, 8, 16,
20}. Moreover we considered a number of MPI processes n.proc
in the range n.proc ∈ {1, 2, 4, 8} for synth 1 and synth 2, and
n.proc ∈ {1, 2, 4, 6, 8, 10} for synth 3.

For each run we collected the execution time and evaluated
the speed-up and efficiency: the Ts sequential time of formu-
las (1) and (2) has been obtained by running parSMURF1 with 1
thread, hence obtaining a pure sequential run.

All experiments were executed using a 10-fold CV setting.
The learning hyper-parameters used in each experiment are the
following:

� synth 1: nParts = 128, fp = 1, ratio = 1, k = 5, nTrees = 128,
mTry = 5;

� synth 2: nParts = 64, fp = 1, ratio = 1, k = 5, nTrees = 32, mTry
= 5;

� synth 3: nParts = 128, fp = 1, ratio = 5, k = 5, nTrees = 10,
mTry = 5

For each synthetic dataset we run experiments considering
all the different numbers of threads n.thr for parSMURF1, while
for parSMURFn we run different hyper-ensembles considering
all the possible combinations of n.thr and n.proc.

Results and discussion Fig. 5 reports the results for the batch of
executions with the synth 1 and synth 2 datasets. Results are
grouped by the number of MPI working processes (each line rep-
resents 3 runs obtained by keeping the number of MPI processes
fixed and by varying the number of threads per process).

Both graphs show that the multi-core and the multi-node
implementation of parSMURF introduce a substantial speed-up
with respect to the sequential version (the point in the black line
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Table 2: Summary of the datasets used in the experiments

Name No. of samples No. of features No. of positive samples Imbalance ratio

synth 1 106 30 400 1:2,500
synth 2 107 30 400 1:25,000
synth 3 5 × 107 30 1,000 1:50,000
Mendelian 14,755,605 26 406 1:36,300
GWAS 1,477,630 1,842 2,115 1:700

Datasets are highly imbalanced towards the negative class.

Figure 5: Execution time of parSMURF1 and parSMURFn on the synthetic datasets synth 1 (left) and synth 2 (right). The x-axis shows the number of threads for each
MPI process; the y-axis, execution time in seconds; experiments are grouped by the number of MPI processes. The black line represents the multi-thread version, while

orange, grey, yellow, and light blue show the MPI version with 1, 2, 4, and 8 MPI processes, respectively.

Table 3: Execution time and speed-up of parSMURFn with synth 1
and synth 2 datasets.

Aggregated
threads

synth 1
time (s)

synth 1
speed-up

synth 2
time (s)

synth 2
speed-up

1 3,768.59 9,981.82
2 1,910.19 1.97 5,020.18 1.99
4 571.56 3.88 2,539.10 3.93
8 542.35 6.95 1,329.74 7.51
16 288.82 13.05 788.31 12.66
32 248.84 15.18 686.41 14.54

Threads are counted as “aggregated” in the sense that they are the product of
the number of MPI processes with the number of threads for each process. All

executions have been performed with a 10-fold cross-validation setting.

with 1 thread in the abscissa). Note that in Fig. 5 the black line
represents parSMURF1, and the orange line, parSMURFn; their
execution time is very similar because both use the same over-
all number of threads, with a small overhead for the MPI version
due to the time needed to set up the MPI environment. Table 3
shows that the speed-up achieved by parSMURFn is quasi-linear
with respect to the overall number of aggregated threads (i.e., the
product n.thr × n.proc) involved in the computation, at least up
to 16 threads. By enlarging the number of aggregated threads we
have a larger speed-up, but a lower efficiency, due to the lower
number of parts of the partition assigned to each thread and to
the larger time consumed by the MPI data intercommunication.

Results with the synthetic dataset synth 3, which includes
50 million examples, confirm that parSMURF scales nicely
also when the size of the data is significantly enlarged.
Indeed Fig. 6 (left) shows that by increasing the number
of processes and threads we can obtain a considerable re-
duction of the execution time. These results are confirmed
by grouping the execution time with respect to the aggre-
gated number of threads, i.e., the product n.thr × n.proc
(Fig. 6 right).

Fig. 7 shows the speed-up (left) and efficiency (right) obtained
with this dataset; results are again grouped by the aggregated
number of threads. Note that with this large dataset we can ob-
tain a larger speed-up, even if, as expected, it is at the expense
of the overall efficiency.

Different research works showed contradictory results for
the comparison of the performance of pure multiprocess MPI,
pure multi-thread OpenMP, and hybrid MPI-OpenMP implemen-
tations of the same algorithm, showing that several factors, such
as algorithms, data structures, data size, hardware resources,
and MPI and OpenMP library implementations, influence their
performance [42–49].

Regarding our experiments, from Figs 6 and 8, we can
notice how, in some cases, a pure MPI implementation
may outperform a heterogeneous MPI-multi-thread or a pure
OpenMP-multi-thread implementation. However, more in gen-
eral, parSMURFn allows a higher degree of parallelism, thus re-
sulting in a larger speed-up and efficiency with respect to the
pure multi-thread parSMURF1 (Figs 7 and 9).
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Figure 6: Execution time of parSMURF1 and parSMURFn on the synthetic dataset synth 3. Left: The x-axis shows the number of threads for each MPI process; the y-axis,
execution time in seconds. Experiments are grouped by the number of MPI processes. The black line represents the multi-thread version, while orange, grey, yellow,
light blue, green, and blue show the MPI version with 1, 2, 4, 6, 8, and 10 MPI processes, respectively. Right: Results are grouped by total number of threads (n.thr ×
n.proc). When a combination is obtainable in >1 way only the best time is considered.

Figure 7: Left: Speed-up of parSMURF1 and parSMURFn on the synthetic dataset synth 3. The x-axis shows the “aggregated” number of threads; the y-axis, speed-up.
Right: Efficiency of parSMURF with the synthetic dataset synth 3. The x-axis shows the aggregated number of threads; the y-axis, efficiency in percentage.

Speed-up and efficiency analysis with genomic data
To show how parSMURF performs in term of speed-up and effi-
ciency on a real genomic dataset, we carried out the same batch
of experiments as in the previous section using this time the
Mendelian dataset.

Fig. 8shows the execution time of parSMURF1 and
parSMURFn as a function of the “aggregated number of
threads,” i.e., the product of the number of MPI processes and
the number of threads per process. As expected, the results
show a substantial decrement in execution time with respect to
the number of the aggregated threads.

Fig. 9 shows the speed-up and efficiency of parSMURF: on
the x-axis of both graphs, threads are counted as “aggregated”;
i.e., the total number of threads is computed by multiplying
the number of processes by the number of threads assigned
to each process. For the evaluation of speed-up and efficiency,

parSMURF1 with only 1 computing thread has been used as ref-
erence for obtaining the computation time of the sequential ver-
sion.

The maximum speed-up of parSMURF1 is ∼17 times, with
the execution time decreasing from 97,287 seconds for the se-
quential version to 5,695 seconds for the multi-threaded ver-
sion using 24 cores. The speed-up of parSMURFn is even bet-
ter, with a maximum speed-up of 80 times (1,181 seconds ex-
ecution time) obtained using 10 MPI processes with 20 comput-
ing threads each. The graph shows that both parSMURF1 and
parSMURFn follow the same trend in the increment of the speed-
up, but the multi-thread version is limited to 24 threads (each
assigned to a different core), while parSMURFn continues this
trend up to 288 threads, reaching a speed-up saturation level of
80 times. As just observed with synthetic data (Fig. 7), the effi-
ciency tends to decrease with the number of aggregated threads.
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Figure 8: Execution time of parSMURF1 and parSMURFn on the Mendelian dataset. Left: The x-axis shows the number of threads for each MPI process; the y-axis,
execution time in seconds. Experiments are grouped by number of MPI processes. The black line represents the multi-thread version, while orange, grey, yellow, light

blue, green, blue, and brown show the MPI version with 1, 2, 4, 6, 8, 10, and 12 MPI processes, respectively. Right: Results are grouped by total number of threads (n.thr
× n.proc).

Figure 9: Left: Speed-up of of parSMURF1 and parSMURFn with the Mendelian dataset. The x-axis shows the “aggregated” number of threads; the y-axis, speed-up.
Right: Efficiency of parSMURF with the Mendelian dataset.The x-axis shows the aggregated number of threads; the y-axis, efficiency in percentage.

To summarize, both experiments with synthetic and ge-
nomic data show that parSMURF scales nicely with large data
and achieves a considerable speed-up that allows its application
to big data analysis and to the fine tuning of learning parame-
ters.

Auto-tuning of learning parameters improves
prediction of pathogenic non-coding variants

The speed-up introduced by parSMURF allows the automatic
fine tuning of its learning parameters to improve predictions on
real genomic data. Indeed, as preliminarily shown in [33], fine

tuning of hyperSMURF learning parameters can boost the per-
formance on real data.

To this end we run parSMURFn on the Cineca Marconi cluster
using auto-tuning strategies to find the best learning parame-
ters for both the prediction of pathogenic non-coding SNVs in
Mendelian diseases and for the prediction of GWAS hits that
overlap with a known regulatory element.

We compared the auto-tuned results only with those ob-
tained with the default learning parameters of hyperSMURF,
because our previous studies showed that hyperSMURF out-
performed other methods, such as CADD [14], GWAVA [27],
Eigen [19], and DeepSea [18] with both Mendelian diseases and
GWAS hits data [30], and, above all, because we are more inter-
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Table 4: Hyper-parameter spaces for grid search (Hg) and Bayesian
optimizer (Hb) used for the auto-tuning on the Mendelian dataset

Parameter Hg Hb

nParts {10, 50, 100, 300} [10, 300]
fp {1, 2, 5, 10} [1, 10]
ratio {1, 2, 5, 10} [1, 10]
k {5} {5}
nTrees {10, 20, 100} [10, 100]
mTry {2, 5, 10} [2, 10]

ested in showing a proof-of-concept of the fact that auto-tuning
of learning parameters may lead to better performance in a real
genomic problem.

Experimental set-up
Generalization performance has been evaluated through an ex-
ternal 10-fold “cytogenetic band-aware” CV setting. This CV
technique ensures that variants occurring nearby in a chromo-
some (i.e., in the same cytogenetic band) do not occur jointly
in the training and test sets and thereby bias results, because
nearby variants may share similar genomic features [30]. Learn-
ing parameters were selected through a grid search realized
through a 9-fold internal CV; i.e., for each of the 10 training sets
of the external CV, their 9 cytogenetic band-aware folds have
been used to select the best learning parameters and to avoid
putting contiguous variants located in the same cytoband both
in training and in the validation set.

This experimental set-up is computationally demanding, but
by exploiting the different levels of parallelism available for
parSMURFn we can obtain a sufficient speed-up to experiment
with different hyper-ensembles having different sets of learning
parameters.

Performance of the prediction is evaluated via the area un-
der the receiver operator characteristic curve (AUROC) and the
area under the precision-recall curve (AUPRC). Because data are
highly unbalanced, we outline that it is well-known that in this
context AUPRC provides more informative results [50, 51].

Improving predictions of pathogenic Mendelian variants
We at first executed hyperSMURF with default parameters
(specifically, nParts = 100, fp = 2, ratio = 3, k = 5, nTrees = 10,
and mTry = 5) in a context of 10-fold cytogentic-band aware CV
because this experiment is used as reference for the next steps.

We tested the auto-tuning feature by performing a grid
search over the hyper-parameter space Hg defined in Table 4,
col. 2. Such hyperspace provides 576 possible hyper-parameter
combinations h ∈ Hg. Then, we applied the auto-tuning strategy
based on the BO, by defining the hyper-parameter space Hb as in
Table 4, col. 3.

To fully exploit the scalability of parSMURF, we launched the
grid search with the following configuration: 10 instances of
parSMURFn, one for each fold of the external CV, each one having
10 worker processes, with 6 dedicated threads for processing the
different parts of the partition plus a further 4 threads for each
random forest training and testing. Hence, for the grid search,
we used a total of 2,400 CPU cores. Because the Bayesian auto-
tuning procedure is less computationally intensive, we chose a
more conservative approach on resource utilization for this ex-
perimental set-up: we launched 1 instance of parSMURFn hav-
ing 24 worker processes with 16 threads for the partitions and
1 for the random forest training and testing. Folds of the exter-

nal CV are processed sequentially. Therefore, for the Bayesian
optimization set-up we used 384 CPU cores.

At the end of this phase, for each optimization strategy,
parSMURF returns the best hyper-parameter combination for
each fold. We then executed 10 repetitions of the external CV us-
ing the default parameters, 10 using the best hyper-parameters
found by the grid search, and 10 using the best hyper-parameters
found by the BO. Performance in terms of AUROC and AUPRC is
measured for each repetition and then averaged.

Performance improvements relative to the above parameter-
tuning experiments and their execution times are summarized
in Table 7. Results in cols 4 and 5 show a significant improve-
ment in the prediction performance in terms of AUPRC using
both optimization strategies (Wilcoxon rank sum test, α = 10−6).
On the other hand, AUROC is very high in all the experiments,
confirming that this metric is not sufficient for the evaluation
of prediction performance in the context of highly unbalanced
datasets. Supplementary Figs S1 and S2 show the computer ROC
and precision-recall curves of both hyperSMURF and parSMURF.
Also, the BO proves to be effective in both improving the pre-
diction performance and reducing the computational time: al-
though slightly lower, predictions are comparable to the grid
search, but they are obtained at a fraction of the computa-
tional power required by the latter. As a matter of fact, the CPU
time required by the entire grid search counted >120,000 hours,
compared with 16,000 hours used by the Bayesian optimization
strategy.

Table 7 reports mean AUROC and AUPRC measured on the
training sets: results show that the ratio between training and
test AUROC or AUPRC is quite similar between hyperSMURF and
parSMURF, and even if, as expected, results on the training sets
are better, they are comparable to those obtained on the test
data. These results show that performance improvement is not
due to overfitting but to a proper choice of the hyper-parameters
well-fitted to the characteristics of the problem.

To assess whether the difference in performance between
hyperSMURF and parSMURF can be related to their different
capacity of selecting the most informative features, we mea-
sured the Spearman correlation between both hyperSMURF and
parSMURF scores with each of the 26 features used to train
the hyper-ensembles for all the examples of the dataset. Ta-
ble S3 in the Supplementary Information reports the correla-
tion between the true labels of the examples and the predic-
tions obtained by hyperSMURF using the default set of hyper-
parameters, and parSMURF with the default, grid-optimized,
and Bayesian-optimized set of hyper-parameters. We found that
hyperSMURF and parSMURF achieved very similar Spearman
correlation on each feature (the Pearson correlation between the
vectors of Spearman correlations of hyperSMURF and parSMURF
is ∼0.98). Both hyperSMURF and parSMURF obtained the largest
Spearman correlation coefficients for features related to the evo-
lutionary conservation of the site (e.g., vertebrate, mammalian,
and primate PhyloP scores) and for some epigenomic features
(histone acetylation, methylation, and DNAse hypersensitivity).
Again, these results show that it is unlikely that the improved
performance of parSMURF can be explained through its better
capacity to select the most informative features, but instead by
its capacity of auto-tuning its learning hyper-parameters and its
capacity to find a model that better fits the data.

In addition, in Table 6 some examples of pathogenic vari-
ants that have been ranked remarkably better by parSMURF
than hyperSMURF are reported. Further details about these
variants are presented in Table S6 of the Supplementary
Information.
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Table 5: hyperSMURF and parSMURF (with grid search and Bayesian
optimization) prediction performance obtained over a fully indepen-
dent Mendelian test set composed of newly annotated pathogenic
variants (positive examples) and common neutral variants (negative
examples)

Model AUROC AUPRC

hyperSMURF 0.945216 0.098153
parSMURF, grid search 0.941026 0.409067
parSMURF, Bayesian
optimizaion

0.928158 0.192568

Prediction performance of parSMURF with an independent
Mendelian test set
We collected novel Mendelian pathogenic variants by adding 64
newly positive (pathogenic) non-coding variants manually an-
notated according to a comprehensive literature review. We in-
cluded only those variations and publications judged to provide
plausible evidence of pathogenicity (Supplementary Table 7). As
negative examples we used common variants downloaded from
NCBI [52], i.e., variants of germline origin and having a minor-
allele frequency ≥0.01 in ≥1 major population, with ≥2 unre-
lated individuals having the minor allele, where major popula-
tions are those included in the 1000 Genomes Project [53]. We
selected only those variants that lie in non-coding regions us-
ing Jannovar [54]. The final number of negatives (∼3 million ex-
amples) has been randomly sampled in such a way that the ra-
tio positives/negative in the original and in the new Mendelian
dataset used for validation is approximately the same. Both the
positive and negative examples have been annotated with the
same 26 genomic and epigenomic features used for the origi-
nal Mendelian dataset. We trained hyperSMURF and parSMURF
on the overall original Mendelian dataset, and then we tested
the resulting models on the unseen separated new Mendelian
dataset used for validation. Because the new positive set also
contains small insertions and deletions, similarly to [29], to pre-
dict the pathogenicity of the deletions, we used the maximum
score of any nucleotide included in the deleted sequence, while
for insertions we used the maximum score computed for the
2 nucleotides that surround the insertion. Results with the in-
dependent Mendelian test set show that the models are able to
obtain relatively high AUPRC results, especially when parSMURF
is applied, showing that our models can nicely generalize. Also
with this new independent dataset parSMURF significantly out-
performs hyperSMURF (Table 5).

Improving predictions of GWAS hits
A similar experimental set-up has been used for improving the
predictions of GWAS hits. At first we executed parSMURF with
the default parameters as reference for the next batches of ex-
periments. Then, we tested the auto-tuning feature by perform-
ing a grid search over the hyper-parameter space Hg defined
in Table 8, col. 2. Such hyperspace provides 256 possible hyper-
parameter combinations h ∈ Hg. Next, we tested the BO by defin-
ing the hyper-parameter space Hb as in Table 8, col. 3.

Results are reported in Table 9. As for the Mendelian dataset,
AUROC is very high in all experiments. On the other hand, test
results show a significant increase of AUPRC with both auto-
tuning strategies, with the grid search leading to a better out-
come than the BO. Supplementary Figs S3 and S4 show the ROC
and precision-recall curves of hyperSMURF and parSMURF.

These results further show that fine tuning of learning pa-
rameters is fundamental to significantly improving prediction

Table 6: Examples of pathogenic Mendelian variants better ranked
by parSMURF with respect to hyperSMURF

chr pos
hS rank −Hg

rank hS rank −Hb rank

1 100,661,453 2,308,597 169,786
3 12,421,189 663,054 421,027
X 138,612,889 194,290 111,499
13 100,638,902 70,175 69,069
6 118,869,423 63,078 55,789
16 31,202,818 50,539 103,623
12 121,416,444 21,848 65,773

The first 2 cols report the chromosomal coordinates, while the last 2 the differ-
ence in ranking between, respectively, parSMURF with grid search (Hg) and with
Bayesian optimizer (Hb) with respect to hyperSMURF. The larger the absolute dif-
ference, the greater the improvement (see also Supplementary Table S6 for more

information).

performances, showing also that parSMURF is a useful tool to
automatically find “near-optimal” learning parameters for the
prediction task under study.

Assessment of the effect on prediction performance of the variants
imbalance across regulatory regions
As recently pointed out by Caron et al. [28], pathogenic scores
predicted by several state-of-the-art methods are biased to-
wards some specific regulatory region types. Indeed also with
Mendelian and GWAS data the positive set of variants is located
in different functional non-coding regions (e.g., 5′ UTR, 3′ UTR,
or promoter) and is not evenly distributed over them. This is also
the case for the negative set (see Supplementary Tables S4 and
S5). Because of this imbalance, performance in different cate-
gories is different as already mentioned by Smedley et al. for
the ReMM score on the Mendelian data [29]. It is possible that
our parSMURF parameter optimization will favour different cat-
egories because of the number of available positives and the dif-
ferent imbalance between positives and negatives across differ-
ent genomic regions. To show that the optimization is robust
to this characteristic of the data we compared performances on
each genomic category before and after parameter optimization.
Variant categories have been defined through Jannovar [54] us-
ing the RefSeq database.

Then we retrained and re-optimized the parameters on a
training set using cytoband-aware CV, where all categories have
the same imbalance by subsampling negatives to the smallest
imbalance of the categories. In more detail, we used the follow-
ing strategy: (i) subsample the negatives to the same imbalance
in all categories. Mark the variant if it is in this new subset; (ii)
partition the whole dataset into 10 folds as done previously; (iii)
for each training step select only the previously marked variants
of the 9 training folds; (iv) subsample the test set using the same
categorization and ratios as in (i). To take into account the vari-
ability between runs, we repeated this process 10 times for the
Mendelian dataset and 5 times for the GWAS dataset. Using this
strategy both training and test sets are equally “per region bal-
anced,” so that category unbalance is kept under control and we
can correctly evaluate whether our approach may unnaturally
inflate predictions towards a specific region owing to the origi-
nal per-region imbalance of both datasets.

Results are shown in Supplementary Figs S5 and S6: for all
variant categories we see a performance gain or similar perfor-
mance in parSMURF with respect to hyperSMURF for both the
Mendelian and GWAS dataset, suggesting that parSMURF is ro-
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Table 7: Summary of performance improvements obtained by parSMURF by tuning the learning parameters on the Mendelian dataset

Parameters
Training set mean (SD) Test set mean (SD)

AUROC AUPRC AUROC AUPRC

Default parameters 0.99958 (0.00005) 0.53143 (0.02714) 0.99281 (0.00032) 0.42332 (0.00391)
Grid search 0.99986 (0.00009) 0.60023 (0.15977) 0.98968 (0.00140) 0.47025 (0.00585)
Bayesian optimizer 0.99989 (0.00011) 0.65388 (0.22123) 0.99264 (0.00043) 0.46153 (0.00302)

Results are averaged across 10 repetitions of the 10-fold cytoband-aware CV. AUROC and AUPRC are averaged across the 10 folds; standard deviation (SD) in parentheses.

Default parameters: nParts 100, fp 2, ratio 3, nTrees 10, mTry 5.

Table 8: Hyper-parameter space for grid search and Bayesian opti-
mization used for auto-tuning parSMURF on the GWAS dataset

Parameter Grid search
Bayesian

optimization

nParts {10, 20, 30, 40} [10, 40]
fp {1, 2, 5, 10} [1, 10]
ratio {1, 2, 5, 10} [1, 10]
k {5} {5}
nTrees {10, 20, 50, 100} [10, 100]
mTry {30} {30}

bust to the categorical composition of the variants. Moreover in
the “per region balanced” setting AUPRC results are systemati-
cally better with the Mendelian dataset (Supplementary Fig. S5)
and always better than or comparable to the GWAS data (Sup-
plementary Fig. S6). These experimental results show that both
hyperSMURF and parSMURF can properly handle different im-
balances of variant categories, by using ”smart” balancing tech-
niques on the training set able to both balance and at the same
time maintain a large coverage of the available training data.
The increase of performance of parSMURF with respect to hy-
perSMURF is not driven by the under- or overrepresentation of
variants belonging to a particular region type but by its capac-
ity of automatically fine tuning the set of its hyper-parameters,
according to the given task at hand.

Analysis of the hyper-parameters
Because we adopted CV techniques to estimate the generaliza-
tion performance of the models, we averaged the best parame-
ter values separately estimated for each fold, in order to obtain
a single set of optimal parameters. Tables S1 and S2 of the Sup-
plementary Information show the sets of best hyper-parameters
found by both the optimization techniques with the Mendelian
and GWAS datasets.

Of the 6 hyper-parameters, we noticed that nParts, fp, and
ratio are the main factors that drive the performance improve-
ment. The fp and ratio hyper-parameters provide the rebalanc-
ing of the classes. A larger fp value translates into a larger num-
ber of positive examples generated through the SMOTE algo-
rithm (see Methods), thus reducing the imbalance between pos-
itive and negative examples in the training set: Supplementary
Tables S1 and S2 show that by enlarging the ratio of novel pos-
itive examples parSMURF improves results over hyperSMURF,
and confirm that fine-tuned balancing techniques can improve
the results.

The ratio hyper-parameter controls the ratio between neg-
ative and positive examples of the training set. Results in Ta-
bles S1 and S2 show that values larger than the default ones im-
prove performance, because in this way we can both reduce the
imbalance between negatives and positives (for the Mendelian

datasets we move from 36,000:1 to 10:1, and for GWAS from 700:1
to 10:1), and at the same time we maintain a relatively large cov-
erage of the negative data (in each partition negative examples
are sampled in such a way to obtain 10 negatives for each posi-
tive of the training set).

The results also show that a larger coverage of negative ex-
amples is obtained by incrementing the nParts hyper-parameter,
because by increasing the number of partitions, fewer nega-
tives are discarded. Moreover more random forests are trained,
thus improving the generalization capabilities of the hyper-
ensemble. Finally, for the GWAS dataset, the mTry hyper-
parameter plays a fundamental role in the increment of the per-
formance, due to the high number of features of the dataset.
Overall, the analysis of the hyper-parameters confirms that their
fine tuning is fundamental to improving the performance of the
hyper-ensemble.

Conclusion

In this article we present parSMURF, a high-performance com-
puting tool for the prediction of pathogenic variants, designed to
deal with the issues related to the inference of accurate predic-
tions with highly unbalanced datasets. We showed that hyper-
SMURF, despite its encouraging results with different genomic
datasets, is hindered by 2 major drawbacks: a very demand-
ing computing time and the need of a proper fine tuning of
the learning parameters. The proposed parSMURF method pro-
vides a solution for both problems, through 2 efficient parallel
implementations—parSMURF1 and parSMURFn—that scale well
with, respectively, multi-core machines and multi-node HPC
cluster environments.

Results with synthetic datasets show that parSMURF scales
nicely with large datasets, introducing a sensible speed-up
with respect to the pure sequential version. Especially for large
datasets, as expected, we should prefer the hybrid MPI-multi-
thread version parSMURFn, while for relatively smaller datasets
we can obtain a reasonable speed-up also with the pure multi-
thread version parSMURF1 that can run also with an off-the-
shelf laptop or desktop computer, by exploiting the multi-core
architecture of modern computers.

parSMURF features 2 different strategies for the auto-tuning
of the learning parameters, both of them effective: the first
is based on an exhaustive grid search, which proves to be ef-
fective in finding the best combination of hyper-parameters
in terms of maximizing the AUPRC rating but turns out to
be very computing-intensive. The other strategy is Bayesian
optimization–based and aims to find a near-optimal hyper-
parameter combination in a fraction of the time compared to the
grid search strategy. Experimental results with Mendelian dis-
eases and GWAS hits in non-coding regulatory regions show that
parSMURF can enhance hyperSMURF performance, confirming
that fine tuning of learning hyper-parameters may lead to sig-
nificant improvements of the results.
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Table 9: Summary of the performance improvements obtained by parSMURF by tuning its learning param-
eters with the GWAS Catalog dataset

Parameters
AUROC mean

(SD)
AUPRC mean

(SD)

Default parameters 0.99426 (0.00169) 0.48058 (0.07138)
Grid search 0.99459 (0.00174) 0.72533 (0.03616)
Bayesian optimizer 0.99346 (0.00193) 0.71945 (0.03675)

Results are averaged across 10 repetitions of the 10-fold cytoband-aware cross-validation. AUROC and AUPRC are averaged
across the 10 folds. Default parameters: nParts 100, fp 2, ratio 3, nTrees 10, mTry 5.

The high level of parallelism of parSMURF, its auto-tuning
hyper-parameters capabilities, and its easy-to-use software in-
terface allow the user to apply this tool to ranking and classi-
fication problems characterized by highly imbalanced big data.
This situation commonly arises in genomic medicine problems
because only a small set of “positive” examples is usually avail-
able to train the learning machines. For this reason parSMURF
can be a useful tool not only for the prediction of pathogenic
variants but also for any imbalanced ranking and classification
problem in genomic medicine, provided that suitable big data
are available for the problem at hand.

Availability of Source Code and Requirements

Project name: parSMURF
Project home page: https://github.com/AnacletoLAB/parSMURF
RRID:SCR 017560
Operating system(s): Linux
Programming language: C++, Python 2.7
Requirements for parSMURF1: Multi-core x86-64 processor, 512
MB RAM, C++ compiler supporting OpenMP standard.
Requirements for parSMURFn: Multi-core x86-64 processor, 1,024
MB RAM, implementation of MPI library (i.e., OpenMPI or In-
telMPI) installed on each node of the cluster, a reasonably fast
interconnecting infrastructure.
License: GNU General Public License v3

Availability of Supporting Data and Materials

Datasets used for the assessment of scalability and prediction
quality are available via the Open Science Foundation project
[55]. Supporting data are available at GigaDB data repository [56].

Additional Files

Supplementary Figure S1. Plot of Receiver Operating Character-
istic curve of the predictions for the Mendelian dataset using 3
sets of hyper-parameters.

Supplementary Figure S2. Plot of Precision-Recall curve of
the predictions for the Mendelian dataset using 3 sets of hyper-
parameters.

Supplementary Figure S3. Plot of Receiver Operating Charac-
teristic curve of the predictions for the GWAS dataset using 3
sets of hyper-parameters.

Supplementary Figure S4. Plot of Precision-Recall curve of
the predictions for the GWAS dataset using 3 sets of hyper-
parameters.

Supplementary Figure S5. Prediction performances (AUROC
and AUPRC) of HyperSMURF and parSMURF for the Mendelian
dataset, with both the Original imbalanced Mendelian data set
and with the separated “per-region balanced” Mendelian data.

Supplementary Figure S6. Prediction performances (AUROC
and AUPRC) of HyperSMURF and parSMURF for the GWAS
dataset, with both the Original imbalanced GWAS data set and
with the separated “per-region balanced” GWAS data.

Supplementary Table S1. Optimal sets of hyper-parameters
returned by the optimizers embedded in parSMURF while train-
ing the model with the Mendelian dataset.

Supplementary Table S2. Optimal sets of hyper-parameters
returned by the optimizers embedded in parSMURF while train-
ing the model with the GWAS dataset.

Supplementary Table S3. Spearman correlation between Hy-
perSMURF and parSMURF scores for each of the 26 features of
the Mendelian dataset.

Supplementary Table S4. Imbalance of the number of neg-
ative and positive examples across different regulatory region
types in the Mendelian dataset.

Supplementary Table S5. Imbalance of the number of neg-
ative and positive examples across different regulatory region
types in the GWAS dataset.

Supplementary Table S6. Examples of pathogenic Mendelian
single nucleotide variants where parSMURF sensibly outper-
formed hyperSMURF.

Supplementary Table S7. List of newly annotated pathogenic
variants used as independent test set to assess the generaliza-
tion capabilities of parSMURF.
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AUPRC: area under the precision-recall curve; AUROC: area un-
der the receiver operating characteristic curve; CADD: Com-
bined Annotation-Dependent Depletion; CV: cross-validation;
FATHMM-MKL: Functional Analysis through Hidden Markov
Models and Multiple Kernel Learning; G/C: guanine-cytosine;
gkm-SVM: Gapped k-mer Support Vector Machine; GWAS:
genome-wide association study; GWAVA: Genome-Wide An-
notation of Variants; MPI: Message Passing Interface; NCBI:
National Center for Biotechnology Information; NGS: next-
generation sequencing; OpenMP: Open Multi-Processing; RAM:
random access memory; SLURM: Simple Linux Utility for Re-
source Management; SMOTE: Synthetic Minority Over-sampling
Technique; SNV: single-nucleotide variant; UTR: untranslated
region.
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