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Abstract

Machine-learning techniques are shifting the boundaries of feasibility in many fields of ethological research. Here, we de-
scribe an application of machine learning to the detection/measurement of hygienic behaviour, an important breeding trait
in the honey bee (Apis mellifera). Hygienic worker bees are able to detect and destroy diseased brood, thereby reducing the re-
production of economically important pathogens and parasites such as the Varroa mite (Varroa destructor). Video observa-
tion of this behaviour on infested combs has many advantages over other methods of measurement, but analysing the
recorded material is extremely time-consuming. We approached this problem by combining automatic tracking of bees in
the video recordings, extracting relevant features, and training a multi-layer discriminator on positive and negative exam-
ples of the behaviour of interest. Including expert knowledge into the design of the features lead to an efficient model for
identifying the uninteresting parts of the video which can be safely skipped. This algorithm was then used to semiautomat-
ically identify individual worker bees involved in the behaviour. Application of the machine-learning method allowed to
save 70% of the time required for manual analysis, and substantially increased the number of cell openings correctly identi-
fied. It thereby turns video-observation of individual cell opening events into an economically competitive method for
selecting potentially resistant bees. This method presents an example of how machine learning can be used to boost etho-
logical research, and how it can generate new knowledge by explaining the learned decision rule in form of meaningful
parameters.
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Introduction

Social insects are dominant species in many ecosystems. They
are thought to represent more than 50% of global insect bio-
mass, although they only account for approximately 2% of spe-
cies diversity [1]. The key to this success is cooperation, based
on division of labour and the exchange of materials and infor-
mation (reviewed, e.g. in Refs [2, 3]). The study of the self-orga-
nization and decision-making in insect societies has not only
been an important topic of ethological and sociobiological re-
search. ‘Swarm intelligence’ has also inspired new approaches
to optimizing algorithms in fields as diverse as learning theory,
chemical engineering and business management [4–7]. In recent
years, this debt is beginning to be paid back, through the devel-
opment of computer-based methods of analysis for complex in-
sect behaviours and behavioural networks. Decision-making in
insect societies is almost always a decentralized process,
depending on multiple interactions and events of stimulus per-
ception (reviewed in Refs [2, 8]). A particularly fruitful approach
has been the computer-based recognition of behavioural pat-
terns derived from video footage: algorithms can find uncapped
cells [9] or interactions of bees [10–14] in videos of a bee comb,
they analyse the nursing behaviour of bees [15], the movements
of ants [16–18] and the task allocation of social insects [19, 20].
Often animals are first tracked manually [21] or automatically
[10, 17, 19, 22] before the recorded location and orientation data
are evaluated by data analysis algorithms [10, 13, 14, 16, 17, 22]
and machine-learning methods [11, 18], but extracting more
features from the video [11, 12, 15, 20, 23] can improve the dis-
crimination of different behaviours and/or different individuals.

Here, we show how a similar approach can be used success-
fully for an applied purpose. We describe the example of a ma-
chine learning-based method to assess an important resistance
mechanism of honeybee (Apis mellifera) workers against the par-
asitic mite, Varroa destructor. Pollination by honeybees is crucial
to many ecosystems as well as the agricultural production of
many crops [24–27]. Varroosis is one of the most important
causes of colony losses nearly worldwide [28–30]. The mite
reproduces inside capped honeybee brood. Hygienic behaviour,
that is the detection, uncapping and removal of diseased brood,
can efficiently reduce the reproduction of the parasite [31–33]. It
is also seen as an important element of social immunity with
regard to other economically important bee diseases such as
American foulbrood, chalkbrood and tropilaelapidosis [34–36].
Over the last decades, it therefore has become an important
breeding trait (see e.g. [37–43]). The most widespread bioassays
for measuring brood hygiene involve damaging brood by freez-
ing or transpiercing, placing it back into its colony of origin and
visually assessing removal by worker bees after a given period
of time (reviewed in Ref. [44]). These assays are relatively easy
to perform and have been used successfully. However, the cor-
relation between their results and the natural stimuli emanat-
ing from infested/infected brood is not always strong [45]. We
have recently described an assay for honeybee brood hygiene
that has the advantage of involving the natural stimulus,
infested brood and also allows for the identification of the indi-
vidual worker bees involved in the two components of hygiene,
that is detection and removal [46]. This assay uses video obser-
vations of tagged bees on an artificially infested comb. It also
enables the detection of incomplete hygiene, that is openings of
brood caps that are later closed by other worker bees. This so-
called ‘re-capping’ can mask the presence of hygienic bees
when hygiene is measured using the traditional assays. In the
case of Varroa-infestation, recapping itself is thought to

contribute to a reduced fertility and fecundity of the female
mites [31]. Manual analysis of the video footage turned out to be
very time-consuming, so that an algorithm for automatically
detecting uncapped cells was developed [9]. However, bees of-
ten occlude the cells and thereby delay the detection in practise
[47].

The aim of the present study was therefore to develop and
validate a machine-learning solution to automate the detection
of the hygienic behaviour itself. For this purpose, we have to
select an appropriate learning algorithm which can be trained
on a limited amount of training data and optimally balances
detection quality with computation speed. In recent years,
deep learning algorithms have become the state of the art as a
powerful integrative method for learning both the model and
the feature vector based on the training data alone. While they
deliver impressive results in a number of image and video clas-
sification tasks, the number of examples necessary for fully au-
tomatized learning from video data, which is typically required
for deep learning algorithms, is often hard or impossible to ob-
tain [48–50]. One way to approach situations with limited train-
ing data is to integrate prior knowledge of domain experts into
the learning process. This allows to reduce the complexity of
the problem in such a way that the algorithm is able to learn
and generalize from the available examples [51, 52]. This is an
active research topic also in non-deep learning [53, 54].
Integration in conventional machine learning is typically
achieved through appropriate regularization with modified loss
functions or adaptions of prior probabilities in a Bayesian con-
text. In our case, we use the biological expert knowledge in or-
der to manually design an informative low dimensional
feature space. Then a Bayesian model is used to incorporate
this prior information into the learning process: The nonpara-
metric Gaussian processes (GPs) not only allow us to efficiently
learn nonlinear relationships from few training data points,
but also offer a straightforward way to automatically infer the
influence of the explainable features by hyperparameter learn-
ing, which is an advantage over non-Bayesian machine-learn-
ing methods like the popular support vector machine [55]. The
interpretability of importance and relationship of the individ-
ual feature components is an advantage compared with often
used black-box methods, for example generic deep neural net-
works, especially for modelling more complex relationships
like interactions and social behaviour [54, 56]. For our applica-
tion, we learn an ensemble of GPs on different time frames
and use the posterior predictions in order to train a final detec-
tion discriminator. Here, we choose a boosting algorithm with
a mean-squared error loss, which despite its simplicity gives
very good results in practice.

Materials and methods
Video recordings of hygienic behaviour

The protocol used is described in detail in Ref. [46]. Around
2,000 worker bees are individually tagged with numbered plastic
tags. On a comb of freshly capped brood, 70 cells are artificially
infested by inserting one female Varroa destructor-mite through
a small cut in the cell cap. The cells are closed again with a
brush. The comb is placed inside a wire mesh cage, one side of
which is replaced with a glass pane. The cage with the comb is
then introduced into a full-sized colony for climatization. The
bees on the comb are observed for 2–6 days through an opening
in the side of the hive under near infrared illumination
(650 nm), at a resolution of 2432 � 864 pixels and a framerate of
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10/s. The volume of data produced for each round is of the order
of 10–17 TB. The desired output from analysing these data is

• for each of the 50–70 infested cells on the comb, an assessment

of whether it is uncapped during the experiment or not,
• in case it is uncapped, the identity of the bee who performed the

uncapping, as well as of the first bee continuing it,
• the time of occurrence of these events (position in the video).

In the past, the identity of the bees opening infested cells
(the bee initiating the uncapping as well as the first two bees
continuing this task) was determined by human observers, us-
ing the following method:

• determine which of the infested cells have been opened within

the course of the experiment, by checking on the last frames of

the recordings, as well as at irregular intervals in earlier posi-

tions of the video,
• for each emptied cell, jump backwards and forwards in the video

file to identify the moment when the first small opening occurs

in the cap,
• identify the bee producing the first hole and continue viewing

the recording from this position at about two times the natural

speed until the first ‘continuer’ has been found.

Development of the machine-learning algorithm for de-
tection of hygienic behaviour

Modelwise, detecting honeybee brood hygiene in video record-
ings is an instance of rare event detection in large, high-dimen-
sional data sets. Models of this type are typically characterized
by three main challenges [57, 58]:

• Learning a model on the basis of a very limited amount of rare

event observations.
• Reliably detecting the rare events in question while keeping the

amount of false positives to a minimum.
• Analysing data fast enough for real-world usage.

In order to meet these objectives, we first define a low di-
mensional feature set, which maps the input data into a low di-
mensional feature space, while retaining the relevant
information for discriminating the rare events form all other
events. The specific features used in our application are manu-
ally designed based on biological expert knowledge about brood
hygiene behaviour of honey bees.

Once the feature vector is calculated, we analyse the data in
a three step process:

1. Selection step: In the first step, we use a hidden Markov chain
as a fast preselection tool in order to filter out all data which
clearly do not pertain to an opening process.

2. Analysis step: Next, the remaining data are separately ana-
lysed by GPs over different time windows. GPs are computa-
tionally more costly than hidden Markov chains, but allow
for complex nonlinear data modelling.

3. Decision step: The final decision for a cell opening is com-

puted by an optimal combination of the analysis step results
determined by a boosting algorithm.

We will start by giving a short overview about the tracking
algorithms, then take a closer look at the specific feature vector
and data analysis components used and finally describe the la-
belling process.

Tracking

Collecting the input data for learning the relevant underlying
behavioural pattern presupposes a robust and efficient identifi-
cation of all bees in a given frame as well as their tracking in
consecutive frames. In order to identify individual bees, we use
the fact that the numbered tags have a standardized size and
can be clearly identified due to their light colour against the
dark background of the bee’s thorax. Specifically, we employ bi-
nary thresholding in order to highlight the relevant areas and
subsequently detect tag sized connected regions in the binary
image [59, 60]. This approach turns out to be very robust even
under slight variations of lighting situations and produces al-
most no false positives. Once the locations of the tags are iden-
tified, we track the corresponding bees over time by using a fast
approximate nearest neighbour algorithm, which matches the
detected connected regions over consecutive frames [61].
Although the algorithm occasionally looses bees moving at fast
speed, in practice the tracking has a high accuracy around the
relevant cell opening events, since these situations are charac-
terized by bees moving at low velocity and exhibiting small tho-
rax motion. For the purpose of gathering relevant head motion
information, we first have to identify the head location for each
corresponding tag. We accomplish this by searching for the
eyes, which are characterized by their dark colour, using inverse
binary thresholding in a circular shaped region centred around
the tag and with a diameter defined by the distance between a
bee’s head and its tag. Once the eyes are identified, we employ
an optical flow algorithm for the detection of moving connected
fields between consecutive frames [59], where the head motions
are recorded as either left or right movements relative to the
bee’s thorax motion.

In order to gather more concrete data for our cell opening de-
tection task, we additionally connect motion information of
bees with location information on cells. Here, the underlying
idea is that beginner cell openings are characterized not only by
a bee staying a certain period of time at the cell but more pre-
cisely staying at a very specific point on the cell cap during the
opening process. We model this behaviour by dividing each cell
into a regular grid of 24 squares, where for each frame we record
which of the squares are (partially) covered by a bee’s head. In
cases of cell opening events, the data yield characteristic distri-
butions of grid square coverings over the relevant time frame.
The collected data for a detected bee are only stored if its tag is
currently located inside a circular region around one of the
Varroa infested cells, otherwise the information is discarded.
For cases where two or more bees are detected around a partic-
ular cell at a given time frame, the values are added.

It is important to emphasize that the input data are analysed
with respect to the individual Varroa infested cell in questions
and not with respect to individual bees. Therefore, only the sub-
set of recorded data relevant to the problem will be stored and
inspected. Also, this approach is robust against a temporary loss
of a bee from the tracking process (i.e. due to full or partial occlu-
sion of its tag by other bees), since after recovery the data can eas-
ily be matched to the correct cell without expensive tag analysis.
We did not include an automatic tag recognition in our applica-
tion, since in our semi-automatic system all potentially interest-
ing events detected by the algorithm are inspected by a human
expert, so for each identified cell opening event the correspond-
ing numbered tag can directly be read off without extra effort.

Figure 1 shows an example of thorax and head movement
input data collected by the tracking algorithm on the left and
spatial head motions on the cell cap on the right.
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Feature vector

The feature vector contains different statistics computed from
the collected data of each infested cell over a fixed time hori-
zon. For each new video frame, the features are recomputed
according to a sliding window approach, where the data of the
current frame are included in the feature computation and
data from the oldest frame are discarded if outside of the cor-
responding time window. Specifically, we use three different
sets of feature vectors with time windows of 1, 2 and 5 s, re-
spectively. Here, the underlying idea is that different time res-
olutions each contribute different informational aspects about
the event in question, which in combination should lead to
better detection results. Since individual head shaking move-
ments which indicate an uncapping event are shorter than the
shortest of our time windows, we can reasonably expect to
capture these basic ‘building blocks’ in the feature vector. On
the other hand, the chosen time windows are typically rela-
tively short compared with the duration of a complete

uncapping event and therefore allow for extracting multiple
observations from one event. The 16 different features used
are given in Table 1. In Figure 2, an example of feature
collection over time by the tracking algorithm at an infested
cell is shown.

Specifically, the features include thorax statistics (features 1,
4, and 10), head motion statistics (features 2; 3; 5; 6;11–15) and
covariance statistics between thorax and head (features 7–9).
While features 2, 3, 5 and 6 provide simple head motion inten-
sity statistics, features 11–15 contain information on spatially
resolved head motion intensity on the cell grid area, capturing
high activity on locally confined subregions of the cell cap.
Finally, feature 16 indicates the time window length of the cur-
rent feature vector data, denoting if the time window of the
data is shorter than the allotted time horizon for instance due
to loss of tracking.

Figure 1: The plot on the left displays detected tracking data over time t. Here, the coloured trajectories denote the thorax movements of individual bees with the col-

oured circle representing the current position of the tag, while white circles denote the infested cells. The plot on the right shows the head motion intensity at the

infested cells, where green areas denote locations of high activity.

Figure 2: Plot of a feature vector time series snippet of a cell with the first 13 fea-

tures as defined in Table 1. From this figure, the feature vector at some specific

time frame can be found visually by ‘vertically cutting’ the plot and reading off

the corresponding feature values.

Table 1: The table of the 16 features used with short description

1 E[v] Mean velocity (in time window)
2 E[al] Mean head activity left
3 E[ar] Mean head activity right
4 Var[v] Variance velocity
5 Var[al] Variance head activity left
6 Var[ar] Variance head activity right
7 Cov[al, ar] Covariance head activity left and right
8 Cov[al, v] Covariance head activity left and velocity
9 Cov[ar, v] Covariance head activity right and velocity
10 A[x, y] Rectangular area of motion covered in x and

y positions
11 max(cl) � E[cl] Difference between max and mean left head

activity in cell grid
12 max(cl) Max left head activity in cell grid
13 max(cr) � E[cr] Difference between max and mean right

head activity in cell grid
14 max(cr) Max right head activity in cell grid
15 En[c] Mean overall head motion entropy of cell

grid
16 min(n, tw) Length of current trajectory w.r.t. time

window
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For the following discussion, we assume that we have N
observations D ¼ fðxn; ynÞg with n ¼ 1; . . . ;N, where xn denotes
the M dimensional feature input vector for the n-th observation
and yn its corresponding label. Note that yn ¼ z can take on two
values z ¼ 61.

Hidden Markov chain

We first analyse the activity of the bees at each cell using a hid-
den Markov chain [57]. The hidden state yi;t at time point t is bi-
nary, either a bee is opening the cell i (active state yi;t ¼ 1) or not
(inactive state yi;t ¼ �1). The features are treated as observa-
tions xi;j;t with j 2 f1; . . . ;Mg of the hidden state yi;t. We use a
simple ‘transition model’,

Pðyi;tþ1 ¼ 1jyi;t ¼ �1Þ ¼ a
sð1� aÞ ; (1)

Pðyi;tþ1 ¼ �1jyi;t ¼ 1Þ ¼ 1
s
; (2)

which assumes that opening a cell takes s time steps on aver-
age and that without observations the stationary probability to
find any activity is a. In our programme, we use s¼ 300 frames
(� 30 s) and a ¼ 10�3. Note that these prior assumptions can be
rough estimates only used to regularize the model, since nor-
mally the information obtained from the observations will dom-
inate the results [62].

The observation model is learned from positive and negative
examples, where the value of the hidden state yi;t is provided by
the user. We assume that all features are mutually independent
of each other and are drawn from a (possibly truncated)
Gaussian distribution. While the features describing different
aspects of the same motion are certainly not independent, this
is neglected in the model in order to speed up inference and to
reduce the number of parameters to be learned. The parameters
lj;z (mean) and rj;z (standard deviation) of each Gaussian distri-
bution are calculated from the empirical moments of feature j
conditioned on positive (z¼ 1) or negative (z ¼ �1) examples. For
features with only positive values, for example the variance of
the velocity (feature 4), the Gaussian distribution is truncated to
this range and renormalized.

After training the hidden state yi;t of a cell i at time step t can
be predicted from observations by filtering. The goal here is to
calculate the probability pi;t ¼ Pðyi;t ¼ 1jD� tÞ for yi;t ¼ 1 given all
observed features D� t up to time t. At the start of the video,
t¼ 0, the probabilities for all cells are set to pi;0 ¼ a. Then, the
predictions pi;t for time steps t> 0 are calculated iteratively us-
ing the filter equations of the hidden Markov model.

If pi;t reaches at least a threshold b ¼ 0:25, this indicates sig-
nificant activity at position (i, t) which is analysed further using
the GP model described below. That way it is possible to disre-
gard a large part of the video without interesting activity
quickly. But due to the simplified assumption of independence
between the features, it is not possible to find cell openings
(without producing a lot of false positives) using this filter alone.
Hence, we further analyse the remaining data with the help of
GP methods.

Gaussian processes

A GP is a nonparametric Bayesian inference tool for regression
and classification tasks [55]. It has been successfully applied to
problems from a variety of different backgrounds. Due to its

nonlinearity, the GP is also able to capture more complex func-
tional relationships between its input and output variables.

Although detecting cell openings with labelled data 61 natu-
rally lends itself to a GP classification model, for computational
reasons we decided to use GP regression instead, since due to
its analytical tractability GP regression predictions can be com-
puted significantly faster than their GP classification counter-
parts. Moreover, carrying out regression directly on the labels
has been shown to give results comparable to classification for

GP estimators applied in a frequentist context [63].
In a regression framework, we assume that a label y is gener-

ated by the underlying functional mapping f ðxÞ from a M di-
mensional input space to an one-dimensional output space
plus observation Gaussian error term with zero mean and vari-
ance r2. Using vector notation for labels y ¼ ðy1; . . . ; yNÞT and
function values f ¼ ðf ðx1Þ; . . . ; f ðxNÞÞT and defining I as identity
matrix, the likelihood for the complete observations has the
form pðyjfÞ ¼ N ðyjf ; r2IÞ.

As prior function pðfÞ over the set of functions f we use a GP,
which for any finite collection of function variables f ¼
ðf ðx1Þ; . . . ; f ðxNÞÞ defines a Gaussian distributed joint probability
with mean zero and covariance K: pðfÞ ¼ N ðf j0;KÞ. The covari-
ance matrix K defines the pairwise covariance of the input loca-
tions X ¼ ðx1; . . . ;xNÞ. Its components, covariances between x
and x0, are given by the ‘kernel’ function kðx;x0Þ.

For our application we use the ‘radial basis function’ (RBF)
kernel for ‘automatic relevance determination’ (ARD) defined as

kðx;x0Þ ¼ h exp �
XD

i¼1

ðxi � x0iÞ
2

2l2i

( )
; (3)

which has a characteristic length scale li for each feature i.
Predictions in this framework can be calculated quickly using
linear algebra [55].

Another benefit of the GP framework is that all the free
parameters (usually called ‘hyperparameters’) H ¼
ðh; l1; . . . ; lM; rÞ of the model can be learned from the data in a
straightforward way by optimizing the marginal probability
pðyjHÞ with respect to H. In case of the kernel (3), this optimiza-
tion includes ARD as the optimal values of the length scales l�i
indicate the relative importance of each feature xi for the predic-
tion of y. Using ARD can help to discard data dimensions which
have little influence on the result and more generally gain an
insight into how much each dimension contributes to the actual
prediction.

For our application, we independently train three different
GPs GP1;GP2;GP3 on the three different time windows and use
these for prediction. In a last step, we use a boosting algorithm
in order to combine these predictors to arrive at a final classifi-
cation decision.

Boosting

Techniques that combine different classification or prediction

models in order to improve the overall performance relative to
each individual member are known as ‘boosting methods’ in
the machine-learning community [62]:

EFinalðyjxiÞ ¼
X3

i¼1

aiEGPi
ðyjxiÞ: (4)

The values of the weights a1; a2; a3 are determined by mini-
mizing a suitable loss function on the training data.
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Since the predictions of the GPs GP1;GP2;GP3 are regression
outputs, we use the ‘mean-squared loss’ function between the
label and prediction on the training data set D:

LMSEðxiÞ ¼
1
n

Xn

i¼1

�
yi � EFinalðyijxiÞ

�2
: (5)

Further details can be found in Ref. [62]. We then classify
data xi;t as cell opening, if the trained booster satisfies
FBðxi;tÞ > cBoostthresh . For a discussion of different boosting algo-
rithms and different loss functions, which can also be custom-
ized for rare-event applications, see Refs [48, 64].

Labelling

Now, training the machine-learning classifier requires data of
cell opening examples in form of feature vectors as defined
above. Since in our case the cell opening examples were pro-
vided as a list of time stamps for each of the 50 marked cells in
the bee hive video, we implemented a graphical user interface
in order to facilitate the labelling process. It allows the user to
load a video of the bee comb and jump to an arbitrary time
point, generating a training example with corresponding feature
vectors for the different time windows by simply clicking on a
specific bee at one of the cells. The user can then decide if the
recorded example counts as an example of a cell opening or an
example which is not directly related to a cell opening. For the
negatively labelled examples, we used bees at randomly chosen
cells and time points, which nonetheless exhibited behavioural
patterns not too dissimilar from cell opening motions. Thus,
providing informative negative examples allows the trained
classifier to decide more reliably in ambiguous cases.

User interface for semi-automatic analysis of behaviour

Already early in the process of validation, the number of false
positives, that is peaks which could not be attributed to cell
uncapping behaviour, proved to be relatively high. The most fre-
quent source of these unqualified peaks was trophallactic be-
haviour, that is the exchange of food between bees, which is
accompanied by turnings of the head similar to those used for
training of our discriminator. Additionally, the signal-to-noise
ratio varied from cell to cell, so that it was difficult to decide
which threshold should be applied to the height of the peaks for
fully automatic classification. This lack of specificity prompted
us to renounce to the idea of a fully automatic detection of
uncapping and instead opt for a computer-aided, semi-auto-
matic system.

The software analyses the probability of the learned event
(in our case, head nodding and shaking associated with cell
uncapping) separately for different areas of the picture (in our
case, different infested brood cells). The user interface displays
these probabilities over time, for an area that can be chosen by
the user, in the form of a diagram (Fig. 3).

The user designates an area where the probability for uncap-
ping activity is high with the mouse arrow, upon which an ex-
tract of the original video sequence, corresponding to the time
and screen area chosen, is displayed, enabling the user to
quickly verify the correctness of the accession. Confirmed cases
of the behaviour are then directly written into a text file using
the ‘comma separated values’ (CSV) format, which is readable
by practically all spreadsheet applications and data processing
software.

Results
Training of the discriminator

As training data we used video material of worker bees on a
brood comb with 50 marked (artificially mite-infested) cells,
from which we collected N¼ 2049 observations. Each observa-
tion is represented by a 16-dimensional feature vector for each
of the three time windows. Out of the 2049 observations, 1060
are from cell opening events and the remaining 989 observa-
tions from non-cell opening events. The fact that we were able
to collect multiple cell opening observations per marked and
opened cell is due to two circumstances: most cell openings are
significantly longer than our defined time windows of up to 5 s
and many recorded cell opening observations are partially over-
lapping. With the help of the label interface, we were able to
generate the training set in around 5 h.

Performance

The software processes about 8 frames per second using 8
threads on a machine with Intel i7 processor. Therefore, its run
time is approximately 20% slower than real time for videos
recorded with 10 frames per second.

Feature discriminatory power

In order to gain insight into the discriminatory power of the in-
dividual features used, we compared the corresponding empiri-
cal distributions for the cell opening labels and non-cell
opening labels for each feature. Figure 4 shows the box plots for
the longest (5 s) time window. For many features, a notable dif-
ference in the corresponding distributions is visible both in
terms of their means as well as variances, indicating that
the particular feature contains relevant information for discrim-
inating a cell opening event from the remaining bee activity
near this cell. An overview of the sixteen features is given in
Table 1.

Feature influence

Next, we considered the feature influence in the three GPs by
inspecting the corresponding length scales learned by the

Figure 3: Screenshot of the user interface for verifying the results of automatic

detection. Upper part: diagram of the discriminator score (y-axis) with time on

the x-axis. Lower left part: zoomed segment of the diagram. Lower right part:

corresponding section of the video showing the cell cap in question.
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ARD. Specifically we look at (normalized) weights defined
as the empirical standard deviation divided by the learned
length scale lm for each feature. Large weights denote a large
influence of the corresponding feature in the kernel matrix
and consequently in the computation of the prediction.
Table 2 shows the three most predictive features for each
of the three time windows: for all three vectors, the three
most important features are a combination of thorax and
head information. In the two shorter time windows, the
GP selects movement information both at the cell itself
(rectangular area of motion) and on the cell grid (head motion
entropy) at higher resolution as discriminating features. For
the longest time window, different variance statistics are dom-
inating, although here the weights are more evenly distributed
(smallest weight 0.03) than in the two shorter vectors (smallest
weight < 0.01).

Feature design

Note that in our algorithm, the user can use any features, either
off-the-shelf or specifically designed for the particular applica-
tion, and subsequently evaluate their specific influence in the
GP regression just by inspecting the corresponding learned
weight as seen in Table 2. So one straightforward way to use
this approach in practice is to start with many different fea-
tures, learn the normalized GP feature weights with the ARD
method and subsequently remove all features, whose weight is
less than some small threshold value.

Time interval influence

After computation of the GPs for the three time windows, we
combine these learners by boosting in order to get the final clas-
sification. The influence of the different time windows on this
decision can be read directly from the learned booster weights
for the corresponding GPs. For our data, the weights (which sum
up to one) are 0.21 for the 1 s time window, 0.22 for 2 s and 0.57
for 5 s. The GP for the 5 s time window is clearly the dominating
component in the booster, although the other two GPs contrib-
ute a non-negligible proportion to the final decision.

Learning curve

We also analysed the influence of the number of examples on the
quality of the prediction. For this purpose, the collected examples
were split into 5 groups and all 75 combinations of one group as
test set and one to four other groups as training set were tried out
in a procedure similar to five-fold cross-validation [62]. Figure 5
shows two different measures as a function of the number of
examples in the training set. The graph on the left displays the ac-
curacy while the graph on the right shows the Matthew correlation
coefficient (MCC). The MCC is often used in machine learning as a
measure in rare event detection to better take different class sizes
into account. However, since we trained our algorithm on a roughly
equal number of positive and negative training data, the accuracy
and MCC display the same characteristic with respect to the num-
ber of training data. Since both curves level off after 1200 examples,
we decided to stop collecting further data for the training process.

Figure 4: Comparison of the empirical distributions for cell openings (white box plots) and non-cell openings (gray box plots), calculated on the data for the longest

time window (5 s), for each of the 16 features. For better comparison, we normalized the data set for each feature to mean zero and standard deviation one before split-

ting it according to the labels.

Table 2: For each of the three different time windows (columns), the three most influential features in the GP regression are shown with their
corresponding weight given in parenthesis

1 s 2 s 5 s

Head motion entropy (0.24) Rectangular area of
motion

(0.16) Variance of velocity (0.17)

Rectangular area of
motion

(0.12) Variance of velocity (0.13) Right head activity
variance

(0.09)

Left head activity
mean

(0.10) Head motion entropy (0.11) Left head activity
variance

(0.09)

Notes: Note that the sum of weights for each complete feature vector is one. The automatic feature weight computation is based on the ARD method.
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Validation
Validation of the discriminator

In order to optimize the ratio between time invested for the
checking of results and the completeness of detections, we
tested different probability thresholds of the nodding-and-
shaking-behaviour. The ground truth consisted of two time
intervals for each infested cell in the video denoting the first
(beginner bee) and second (helper bee) uncapping behaviour
found by manual inspection. We then divided the video into
intervals of 450 s and calculated the mean probability score for
each time interval and cell. These values are displayed in the
overview window of the software. For each threshold, we then
counted sections with uncapping behaviour and mean score
over the threshold (‘true positives’: TP), sections with uncapping
behaviour and mean score under the threshold (‘false nega-
tives’: FN), sections without uncapping behaviour and mean
score over the threshold (‘false positives’: FP) and sections with-
out uncapping behaviour and mean score under the threshold
(‘true negatives’: TN). As we did not have manually obtained in-
formation about further uncapping actions, the counting at
each cell was stopped after the first helper bee. Figure 6 shows
the proportion of uncapping events found, the sensitivity, as a
function of the proportion of the video (not containing uncap-
ping events) skipped, the specificity. In the literature, this is
known as the ‘receiver operating characteristic’ curve [65].

The results clearly show that using this simple decision rule
a large part of the video can be skipped without missing many
uncapping events. Often the area under the curve is used to
score the performance of classification algorithms [65]. While
random guessing would yield the dashed curve and
AUCrandom ¼ 0:50, the best value reachable in this experiment is
AUCbest ¼ 1:00 (dotted line). Our algorithm with a simple thresh-
old for the booster output achieves AUC � 0:91, which is not far
from the ideal case [65].

Validation of the computer-aided method of detection

The semi-automatic method described above, involving a
computer-based detection of likely events that are then checked
by a trained human observer, was validated by twice analysing

three rounds of the experiment, once by an experienced human
observer (‘manual analysis’) and once by largely untrained per-
sonnel using the ‘semi-automatic analysis’. The total number of
uncapping events detected by either one or both methods was
divided up as follows:

• detected by both methods, same initiating bee identified, acting

at the same time;
• detected only by either of the two methods;
• detected by both methods, but at an earlier stage by one than by

the other (with the effect that a bee identified by one method as

a mere ‘continuer’ of uncapping was classified as the initiator by

the other).

In these experiments, false positive peaks produced by the
algorithm were not recorded, but successfully filtered out by the

Figure 5: Accuracy (left) and MCC (right) learning curves of the classifier. In both figures, the dots denote the observed values, the lines are linear interpolations be-

tween observations.

Figure 6: The ROC curve shows the proportion of uncapping-events that can still

be detected when discarding different proportions of the original video material,

judged by the algorithm as being of lesser relevance. The crosses represent com-

binations which were evaluated, the solid lines give linear interpolations be-

tween adjacent evaluations. Random guessing would lead to the dashed line,

while a perfect classifier would reach the dotted line.
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human controllers. We estimate that three peaks had to be
evaluated by the human controller in order to identify the true
positive observation of ‘beginning’. Most false positives peaks
corresponded to the further continuation of earlier cell opening
events, or to instances of trophallactic behaviour (food ex-
change between worker bees, which involves head movements
similar to those used in the feature vector). The total time re-
quired for analysing the video output of three experimental
rounds, with a sum of 189 infested cells and a recording dura-
tion of 231 h, was 86 h for the manual method and 26 h for the
computer-assisted method. In 71:067:9% of uncappings, the
identified initiating bee was identical with both methods
(Fig. 7). 11:767:4% of uncappings were only identified by the
software, against 4:364:5% for the manual method. 11:760:6%

were detected by both methods, but at an earlier stage by the
semi-automatic method, and only 2:063:5% of events were
detected earlier by the manual observer. Overall, manual analy-
sis led to the identification of the correct initiating individual in
77.3% of all detected uncappings, against 94.4% with the semi-
automatic method. False positives produced by the software
were not analysed here because they could be very quickly elim-
inated through the human-based control of the software
output.

Discussion

The example chosen here to evaluate our new approach of ma-
chine learning is of great economic and ecological importance.
Hygienic behaviour is probably the most-used selection trait in
breeding for honeybee resistance to parasitic mites, which in
turn are seen as the most important causative factor for colony
losses in many parts of the world [28, 29, 66]. A great body of

literature describes efforts to measure hygienic behaviour or
closely related traits such as ‘Varroa Sensitive Hygiene’ or
‘Suppressed Mite Reproduction’ (see e.g. [38, 42, 45, 46, 67–71]).
Direct video observation of bees on infested brood is seen as
one of the most pertinent ways to measure the trait [46]. It ena-
bles the use of the natural removal stimulus (mite infestation/
reproduction on brood), as well as the identification of individ-
ual worker bees of the ‘hygienic’ phenotype which can then be
used for identifying genetic markers. Cell opening events that
are later undone through recapping by other worker bees can be
detected. However, analyses of video observations have the
huge disadvantage of being work-intensive. With the semi-
automatic detection method presented here, the amount of hu-
man labour required for the analysis of video material from one
round of the assay is reduced by a factor of 3.2, from 35.7 to
10.8 h, while the quality of the analysis in terms of the number
of detectable events and the correctness of assessments is sub-
stantially increased. The total duration of labour, including not
only video analysis but also the preparation of the bees and
comb, is approximately 75 working hours. Automatization
therefore reduces the time investment required for each round
of the assay by approximately one-third, from 75 to 50 h. As in
one round, bees from up to 30 colonies can be used and the la-
bour required per colony is reduced from 2.5 to 1.7 h. This dura-
tion is still high when compared with the freeze- or pin-killed
brood assay (approximately 7–20 min/colony; [67]). On the other
hand, it is of the same order of magnitude as for other high-
precision assays for measuring honeybee resistance traits, such
as the ‘Suppressed Mite Reproduction/Varroa-Sensitive
Hygiene’-protocol recommended by the Research Network for
Sustainable Beekeeping [72].

Of course, measurement of disease resistance is only one ex-
ample of the application of computer learning to applied and
fundamental questions of social insect behavioural research.
The approach of [10] extracts behavioural and social features
based on position and orientation from tracked honey bees in
an observation hive in order to automatically detect one out of
four different encounter behaviours. For this task, good results
have been achieved by training a classifier based on a single
variable, but often more features are needed for a successful
classification. In Ref. [15], the effects of neonictonoids on the
nursing behaviour and larval development of honey bees are
examined. The analysis is based on complex behavioural fea-
tures pertaining to brood cell visits gathered by a convolutional
neural network (CNN), which was trained on within-hive video
recordings. For the training of the CNN, data from about 6000
manually classified brood care events were used. Other applica-
tions include the analysis of vibroacoustic signals for diagnos-
ing diseases in honeybees [73] and the modelling of ant
displacement patterns [18].

Our algorithm is able to incorporate new expert knowledge
just by expanding the feature space and automatically learning
the corresponding GP hyperparameters by ARD. We note that
the GP hyperparameter learning can deal with an arbitrary
number of features without overfitting, since ARD assigns a
weight close to zero to all uninformative features. It would be
interesting to extend the algorithm to the automatic selection
of the optimal number of GPs and length of time windows in
the final discriminator, which are chosen manually up to now.
Here, one could include the final discriminator into a Bayesian
model and then use model selection for validation.

Understanding insect societies can inspire solutions to di-
verse technological and societal processes, from the optimiza-
tion of production chains to communication strategies within

Figure 7: Results of method validation. ‘Both synonymously’ means that both

the manual and computer-aided analyses led to the identification to the same

individual bee, ‘software only’ means that an uncapping event was detected by

the software (and could be confirmed by post-hoc human analysis), while the

unaided human observer did not detect any opening. ‘Software earlier’ means

that the software enabled detection at an earlier stage, but that the human ob-

server also detected the event (ascribing it to a bee helping in the opening but

not initiating it). Each proportion represents the mean with corresponding error

bars of one standard deviation.
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enterprises [4–7]. We hope that the approach taken here can fa-
cilitate progress in this direction.
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