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Robust optomechanical state 
transfer under composite phase 
driving
C. Ventura-Velázquez1, Benjamín Jaramillo Ávila2, Elica Kyoseva3,4 & B. M. Rodríguez-Lara1,5

We propose a technique for robust optomechanical state transfer using phase-tailored composite 
pulse driving with constant amplitude. Our proposal is inspired by coherent control techniques in 
lossless driven qubits. We demonstrate that there exist optimal phases for maximally robust excitation 
exchange in lossy strongly-driven optomechanical state transfer. In addition, our proposed composite 
phase driving also protects against random variations in the parameters of the system. However, this 
driving can take the system out of its steady state. For this reason, we use the ideal optimal phases to 
produce smooth sequences that both maintain the system close to its steady state and optimize the 
robustness of optomechanical state transfer.

The essence of optomechanical systems (OMS) is the coupling between light and mechanical motion. Advances 
in micro and nano fabrication techniques have led to optical cavities coupled to micro and nano mechanical 
oscillators, where the coupling is provided by the radiation pressure of photons in the optical cavity acting over 
the mechanical elements. These optical cavities are typically pumped by a laser, which serves as a tool to control 
the system. Cavity optomechanical systems evolved from the Fabry-Pérot cavity to a plethora of devices like 
microtoroids and microresonators1, photonic crystals2, superconducting microwave circuits3,4, ultracold atoms5, 
among many others6–8.

Optomechanical systems display a range of physical effects that make them a powerful platform for high-precision  
metrology and quantum-state control. They show bistable behavior9, which is equivalent to that of a Kerr medium10,  
and display selective transfer over narrow wavelength windows, known as optomechanically-induced transpar-
ency11,12. The latter is equivalent to electromagnetically induced transparency in atoms13–15 and its plasmonic 
and metamaterial analogs16–18. In cavity optomechanical systems, the motion of the mechanical oscillator can be 
cooled by tuning the laser that pumps the cavity19–22, leading to experiments where a nano-oscillator is cooled to 
its quantum-mechanical ground state23–25. Previous works propose diverse techniques to enhance optomechani-
cal cooling, for example, by dynamically modifying the damping26, using squeezed light27–30, feedback-controlled 
light31,32, or considering the effects of non-Markovian evolution33. These developments show that optomechanical 
effects allow control over quantum optical and mechanical states leading to exciting proposals to use these sys-
tems as transducers34–39.

In the following, we review the formalism that describes quantum excitation exchange in strongly-driven 
optomechanical systems. The result is a well-known linearized lossy model. Next, we draw from lossless coherent 
control techniques in qubits40,41 and extend them to this linearized effective model of optomechanical systems. 
Our proposal relies on constant-amplitude composite phase-dependent pumping to achieve robust optomechan-
ical state transfer. This phase-dependent driving produces interference in the evolution of cavity and mechanical 
quantum states. We engineer this interference to minimize the effect of deviations in the parameters that charac-
terize the system, i.e. to produce robust optomechanical state transfer. For the sake of completeness, we produce 
a central-limit analysis allowing for random variations in the physical parameters that characterize the optome-
chanical system and compare results from the standard constant-phase sideband state transfer and our method. 
Next, we discuss the effects of composite phase sequences on the semiclassical steady-state of an optomechanical 
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system and show that our original proposal can be used as a recipe to produce more realistic smooth phase 
sequences with potential for experimental implementation. We close with our conclusions.

Results
Quantum excitation exchange.  First we provide a quick review of quantum excitation exchange. Our 
starting point is the standard Hamiltonian describing a laser-driven optomechanical system in a frame rotating 
at the pump laser frequency42,43,

ω ω ω ε
= − + + + + −φ φ−ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † † †H a a b b g a a b b i e a e a( ) ( )
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where the cavity (mechanical) field mode frequency is ωc (ωm) and its annihilation operator is â (b̂), the optome-
chanical coupling is g0, the driving-laser strength is ε, and its frequency is ωp. We focus on the effect of phase 
sequences: The system is driven by a constant-power laser where its phase, φ t( ), is given by a piecewise function 
which takes constant values in each of its pieces. For the sake of space, we use the shorthand φ φ≡ t( ).

It is well known that strong driving allows us to split the dynamics into semi-classical and quantum fluctuation 
components, α= +φˆ ˆa e ci  and β= +ˆ ˆb d44,45. The semi-classical steady state for the cavity (mechanical) mode 
has a coherent amplitude α ε κ ω ω= + −i/[ 2( )]c p  (β α γ ω= − | | +i g i/[ /2 ]m0

2 ), where the cavity (mechanical) 
decay rate is given by κ (γ). The semi-classical boson numbers for cavity and mechanical modes are respectively 
np = |α|2 and nm = |β|2. This mean field approximation allows the linearization of the optomechanical interaction 
and leads to a Hamiltonian for the quantum components,
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where we define a detuning ω ω βΔ = − − g2 Re( )p c 0  and an enhanced optomechanical coupling g = g0 |α|46. 
The auxiliary phase, ϕ ϕ ϕ α≡ = +t( ) arg( ) inherits the time dependence from the driving laser phase.

Under red-detuned driving, ωΔ = − m, a rotating wave approximation leads to beam-splitter-like interaction 
terms, +ϕ ϕ−ˆ ˆ ˆ ˆ† †

e c d e c di i . This interaction allows for quantum excitation exchange between cavity and mechani-
cal modes. The full dynamics is described by the corresponding quantum Langevin equations (QLE)47,48,
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where the quantum Gaussian noise for the cavity (mechanical) mode is described by the operator ξ̂c (ξ̂m) with 
correlation functions ξ ξ δ〈 〉 = −ˆ ˆ†

t s n t s( ) ( ) ( )c m c m th
c m
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parameters nth
c m( , ) are the average occupation numbers in thermal equilibrium for the baths. We define the con-

stants κ γΓ = − g( )/(4 ) and µ κ γ= +( )/4, and introduce the vectors → = µ ω+ ˆ ˆr e c d( , )i t T( )m  and 
κ ξ γ ξ→ = µ ω+ ˆ ˆr e ( , )i t

c m
T
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( )m  to rewrite the QLE,
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where ̂ is a 2 × 2 non-Hermitian matrix,
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and we used the standard definition for Pauli matrices. When the driving-laser phase is constant, it is straightfor-
ward to calculate the evolution of τ→r ( ) for the interval τ = t − t0,
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where ϕÛ  is the constant-phase evolution matrix due to the Hamiltonian ̂,
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Here, we use the notation 2�  for the 2 × 2 identity matrix and introduce an effective Rabi frequency 
Ω = − Γ1 2  that is real for small losses compared to the coupling parameter κ γ−  g( ) . The constant-phase 
evolution, Eq. (7), suggests a time scale τ π= Ωg/(2 )0 , which corresponds to an accumulated interaction area 

τ π=A( ) /20  for quantum excitation exchange. The mean photon and phonon numbers, with constant-phase 
driving,
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depend on the initial-time mean photon and phonon occupation numbers, n0 and m0 respectively, and on the 
decay rates modified by their respective thermal boson numbers, κ κ=


nth

c( ) and γ γ=


nth
m( ). The functions 
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τ τ≡ ϕU U( ) [ ( )]jk j k,  are a shorthand notation for the matrix elements of the evolution operator, and the functions 
∫τ ≡ | |

τ µ−S e U x dx( ) ( )jk
x

jk0
2 2  arise from quantum noise correlations.

Figure 1(a) shows the well-known oscillatory quantum excitation exchange between cavity and mechanical 
modes under continuous-wave driving and losses. Figure 1(b) shows the effect of measuring the mean phonon 
number when the accumulated interaction area deviates from the π/2 value required to obtain the excitation 
exchange; the dashed line shows the ideal case. The parameters in these calculations are ω = . × −g / 1 887 10m0

5, 
κ ω ≈ . × −/ 1 119 10m

2, γ ω = . × −/ 9 434 10m
6, = ×n 180 10p

3, n0 = 0.02, and m0 = 23.25. The temperature of the 
bath is =T mK25 , equivalent to ≈ .n 32 27th

m( )  thermal phonons and a negligible number of thermal photons. 
However, the strong driving of the cavity and the experimental setup allows the cavity to reach thermal equilib-
rium at a higher occupancy number ≈ .n 0 305th

c( ) . These experimental values and considerations were retrieved 
from Lecocq et al.49. We introduce an area deviation, τ δ= +A A A( )0 , by changing the ideal enhanced coupling, g. 
When the effective interaction area is larger than the target, π>A /2, the oscillation period shortens, and when 
it is smaller, π<A /2, the period increases, see Fig. 1(b). In the following, we will show robust excitation 
exchange, against deviations from the ideal accumulated interaction area, using driving that is constant in ampli-
tude but has a piecewise phase structure.

Robust transfer via composite phase sequences.  We note that the quantum Langevin equations for 
the cavity and mechanical excitations, ĉ  and d̂, are similar to those describing a qubit driven by an external coher-
ent electromagnetic field. Then, the well-known Rabi oscillations are observed where the state of the qubit is 
controllably switched between 0 and 1 when the driving is resonant. However, quantum state preparation based 
on Rabi oscillations is imprecise in the presence of the so-called systematic errors in the system such as inaccura-
cies in the field magnitude, frequency, duration, coupling strength, and others. Composite pulses are a very useful 
tool to overcome the sensitivity to errors and to realize robust qubit state preparation. A composite pulse is a train 
of identical pulses (same frequency, strength, and duration) where each has a different, fixed phase. Such compos-
ite pulse sequences have been shown to realize a robust qubit rotation for a closed lossless system40,41,50. In this 
section, we design a composite pulse sequence to induce robust phonon-photon excitation exchange for lossy 
optomechanical state transfer given that there are less photons than phonons in the initial state, <n m0 0.

We assume a phase-tailored composite pulse sequence with constant driving amplitude. Each constituent 
pulse in the sequence has a constant phase and a time duration of τ0 chosen such that the accumulated interaction 
area is π/2. We also require that the first and last phases of the sequence are equal to each other. In consequence, 
the shortest possible sequence has three interactions and a total accumulated interaction area of 3π/2. The phases 
of the first and last interactions of the sequence are fixed, but the phase of the middle interaction is a free parame-
ter that we optimize to stabilize the state transfer of mechanical oscillations with respect to deviations from ideal 
accumulated interaction areas. Under these conditions, the final state of the system, at 3τ0, is provided by the 
vector,
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where τÛ ( )
(3)

0  is a transfer matrix for the three-interaction composite sequence,

τ τ τ τ= ϕ
ˆ ˆ ˆ ˆU U U U( ) ( ) ( ) ( ), (10)

(3)
0 0 0 0 0 0

where the three Û  matrices describe the evolution of the optomechanical system under different driving phases. 
This matrix product produces interference between driving phases, and we exploit this interference to produce 
robust optomechanical state transfer.

Figure 1.  Time evolution of (a) the expectation values for the quantum photon (solid blue) and phonon 
(dashed red) numbers and (b) quantum expectation value for the phonon number considering deviations from 
the ideal accumulated interaction area A(τ0) = π/2 (gray dashed line).
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We calculate the mean phonon number, after application of the phase-tailored composite sequence, by using 
the vector τ→r (3 )0  in Eq. (9). The mean phonon number can be separated in two contributions, one with lossy 
oscillations and one with thermal noise contributions,

τ τ τ〈 〉 = + .ˆ ˆ†
d d n n(3 ) (3 ) (3 ) (11)m m

0 osc
( )

0 noise
( )

0

The oscillatory part depends on the initial mean photon and phonon numbers, n0 and m0 respectively, and is 
independent of the thermal occupation numbers, nth

c( ) and nth
m( ). In contrast, the thermal noise part is independent 

of n0 and m0 but depends on the thermal occupation numbers through the modified decay rates κ κ=


nth
c( ) and 

γ γ=
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m( ). The oscillatory part is responsible for the excitation exchange, which is similar to the qubit Rabi 

oscillations. It has the form
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where the matrix elements of τÛ ( )
(3)

0  can be written in terms of the matrix τϕU ( )0 , in Eq. (7), with ϕ = 0,
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The quantum noise part has a more complicated expression, which we omit in the interest of space. In order to 
achieve optimal excitation exchange, we need to minimize the component τ| |U ( )22

(3)
0

2 around the single-interaction 
accumulated area π/2, or, alternatively, maximize τ| |U ( )21

(3)
0

2. By minimizing the derivative of τ| |U ( )22
(3)

0
2 with 

respect to the accumulated interaction area, we obtain a condition for the optimal phase,

ϕ =
Γ −cos( ) 3 1

2
, (14)opt

2

which for a lossless system yields ϕ π= ±2 /3opt . The latter is consistent with the result reported by Torosov  
et al.40,41 for a qubit coherently driven on resonance and without losses.

In order to introduce visual cues, physical insight, and show that the derived optimal phase sequence produces 
robust transfer, we numerically calculate the evolution using the linearized optomechanical model, Eq. (2), under 
Lindblad’s phenomenological approach in Fig. 2. We use Schwinger’s two-oscillator representation of angular 
momentum, = +ˆ ˆ ˆ ˆ ˆ† †

J c d cd( )/2x , = − −ˆ ˆ ˆ ˆ ˆ† †
J i c d cd( )/2y , and = −ˆ ˆ ˆ ˆ ˆ† †

J c c d d( )/2z , to visualize the effect of a 
three-interaction composite sequence with the optimal phase derived from Langevin approach, Eq. (14). In all 
cases shown, the initial state has a single quanta in the mechanical oscillator and vacuum in the cavity. The base-
line values of the parameters are ω = × −g/ 5 10m

2, κ ω = × −/ 4 10m
3, γ ω = × −/ 8 10m

3, = =n n 0th
c

th
m , and 

ωΔ = − m. Here, we introduce a deviation of −10%; that is, the switching time is 0.9 τ0 instead of the ideal trans-
fer time τ0. Figure 2(a) shows evolution under constant driving. We can see that the effect of measuring before 
complete state transfer in the evolution from the initial state (0) to the end of the first incomplete interval (1). 
Figure 2(b) shows the same evolution but where the driving phase is changed by ϕopt during the second interac-
tion. We can see that the first leg of the interaction is identical to that in Fig. 2(a). Then, the phase induces a 
change of meridian in the trajectory that takes us to a different point (2) in the sphere. Returning to the original 

Figure 2.  Angular momentum representation of optomechanical state transfer. (a) Displays a three-interaction 
evolution with a −10% deviation and constant driving phase. (b) Displays the same evolution under a 
composite driving sequence that maximizes robustness. (c) Displays the same evolution as (b), but where 
additional time-dependent white-noise fluctuations are added on g, ωm, Δ, κ, and γ.
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phase, the system performs its third interaction and arrives to a state that is closer, to a pure cavity oscillation, that 
what we would expect from the constant-phase state transfer in Fig. 2(a). Figure 2(c) adds time-dependent ran-
dom white noise to all parameters in the simulation, g, ωm, Δ, κ, and γ. This is done by generating a sequence of 
50 random numbers in the range from 0.95 to 1.05 for each of the parameters. This sequence is then used to gen-
erate a smooth interpolated function that multiplies the baseline value of each parameter. As we can see, even in 
the presence of a wrong measuring time, time-dependent random noise in the parameters of the system, and 

Figure 3.  (a) Coherent and (b) thermal noise contributions to the phonon number as a function of the 
deviation from ideal interaction width and driving phase at time tf = 3τ0 for parameter values: 
g0/ωm = 1.54 × 10−4, κ/ωm = 1.15 × 10−4, γ/ωm = 5.36 × 10−4, np = 90 × 103, (n0, m0) = (0.02, 23.25) and 

= .n (0 21, 32)th
c m( , )  51.

Figure 4.  (a) Phonon number expectation value after the composite sequence for driving phases ϕ = 0 (black), 
ϕ = ±2π/3 (blue). (b) Time evolution of the phonon number expectation value as a function of the deviation 
from ideal parameters with a driving phase ϕ = 2π/3. The optimal phases ϕopt = ±2π/3 are signaled by vertical 
dashed lines. Parameter values are equal to those in Fig. 3.

Cohen et al.51 Lecocq et al.49 Gröblacher et al.52

Constant Composite Constant Composite Constant Composite

Central values (no random variation)

〈 〉n̂m 0.871 0.870 0.337 0.627 0.0454 0.0456

1% σ in random variations in g, κ, γ

nm 0.917 0.870 0.340 0.627 0.0950 0.0456

σ 0.0665 0.00845 0.0305 0.0128 0.0705 0.000323

2% σ in random variations in g, κ, γ

nm 1.06 0.870 0.346 0.629 0.247 0.0456

σ 0.274 0.0173 0.0614 0.0263 0.289 0.000653

5% σ in random variations in g, κ, γ

nm 2.06 0.871 0.385 0.638 1.20 0.0456

σ 1.592 0.0420 0.1474 0.0718 1.481 0.00164

Table 1.  Mean value, nm, and standard deviation, σ, of phonon number expectation value samples resulting 
from randomly-variated parameters g, κ, and γ. We use three sets of central values, Cohen et al.51, with 
g/ωm = 4.62 × 10−2, κ/ωm = 1.15 × 10−4, γ/ωm = 5.36 × 10−4; Lecocq et al.49, with g/ωm = 8.01 × 10−3, 
κ/ωm = 1.12 × 10−2, γ/ωm = 9.43 × 10−6; and Gröblacher et al.52, with g/ωm = 0.434, κ/ωm = 2.27 × 10−3, 
γ/ωm = 1.48 × 10−4; We set the following initial values n0 = 0.01, m0 = 23.25, = .n 0 21th

c( ) , = .n 32 0th
m( )  and use 

3000 instances in each sample.

https://doi.org/10.1038/s41598-019-40492-y


6Scientific Reports |          (2019) 9:4382  | https://doi.org/10.1038/s41598-019-40492-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

evolution under Lindblad phenomenological master equation, we obtain robust state transfer after the composite 
phase sequence is applied, Fig. 2(c).

Now, let us come back to the analysis of the oscillatory and thermal noise contributions to the mean phonon 
number in Eq. (11). In Fig. 3, we consider deviations in the accumulated interaction area and the whole range of 
values for the phase parameter ϕ. For these physical parameters, the lossy optimal phase is almost identical to the 
lossless one, ϕ π≈ ±2 /3opt  within 10−3 %. The vertical dashed lines show the phases that produce optimally 
robust state transfer. For photon and phonon numbers, the oscillatory, Fig. 3(a), and thermal noise, Fig. 3(b), 
contributions are invariant to sign exchange in the phase parameter. The effect of these behaviors is seen in 
Fig. 4(a), where we add oscillatory and thermal noise contributions to get the total phonon number. Figure 4(b) 
shows the full time evolution for the phonon number under the optimal composite sequence considering devia-
tions in the accumulated interaction area. There is a minimum phonon number region at the intersection between 
the ideal parameter set (horizontal dashed line) and the endtime of the sequence (vertical dashed line).

Figure 5.  Mean value (dots) and standard deviation (bars) of samples of phonon number expectation value 
samples after three interactions, nm. Again, each of the physical parameters, g, κ, γ, is generated using a normal 
distribution with standard deviation determined as a percentage of the central value of the corresponding 
parameter. Red points and bars correspond to constant-phase evolution and blue points and bars correspond to 
evolution under composite phase driving and Here, the experimental values are the same as those in Fig. 1 and 
Lecocq et al.49. We used a sample consisting of 5000 instances for each point.

Figure 6.  Phonon number expectation value after N = 1, 3, 5, 7 interactions as a function of the deviation 
from the ideal interaction area. Solid curves show the phonon number when the driving phase is kept constant 
throughout the evolution. Dashed curves show the phonon number with a nontrivial phase sequence that 
minimizes the effect of deviations. In this low-loss scenario we use the driving phases from the lossless case. 
Physical parameters have the same values as in Fig. 3.
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In addition, we perform a central-limit statistical analysis to validate whether or not our composite phase 
driving proposal produces robust optomechanical state transfer under random variations in its physical parame-
ters. In the following, the mean values and standard deviations are calculated from the resulting quantum mean 
phonon value samples and do not correspond to the quantum average mean phonon number and its uncertainty. 
For our analysis, we calculate a large sample of simultaneous random variations on the physical parameters g, κ, 
γ, each of them under a normal distribution with fixed mean and standard deviation. Next, we calculate the 
phonon-number expectation value after three interactions, τ〈 〉n̂ (3 )m 0 , for each of these sets. We use two scenarios: 
Evolution under the standard red-sideband state transfer and our composite phase driving proposal. While the 
parameters g, κ, γ have random variations, the driving sequence is determined by the central values that charac-
terize the system and, therefore, it is constant and does not suffer from random variations. Table 1 collects the 
mean value of the phonon number and its standard deviation for samples calculated with experimental parame-
ters reported in the literature. We find that composite driving produces samples that are more robust against 
Gaussian deviations in their physical parameters; i.e. the standard deviation of the sample of phonon numbers is 
much smaller under our custom phase driving than under constant-phase driving. In addition, the mean phonon 
number is centered around a minimum, which means that random variations are more likely to produce an 
increase in the average phonon number than a decrease. Table 1 and Fig. 5 show that, as the standard deviation 
for the random variation of the physical parameters g, κ, γ increases, the average phonon numbers increase, but 
the increase is more dramatic under constant-phase driving.

Our technique can be extended from three interactions to longer sequences with more interactions. The evo-
lution under these sequences can be calculated by composing the evolution vector in Eq. (6) under successive 
driving phases. Like in the three-interaction case, phonon and photon number expectation values can be written 
as the sum of two contributions, a lossy oscillatory part and a thermal noise part. Following coherent control 
techniques in lossless qubits40, we restrict ourselves to sequences with an odd number of interactions, N, where 
the initial and final phases are zero, and where the phases are symmetric around the central interaction in the 
composite sequence,
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Under these restrictions a sequence has −N 1
2

 free phase parameters, φ2, …, φ +N 1
2

. These can be used to nullify 
the first −N 1

2
 derivatives of the phonon number with respect to deviations in the ideal interaction area, π

2
. There, 

the phonon number is evaluated at the endtime of the sequence, t = N τ0. This produces a more robust optome-
chanical state transfer by increasing the region of parameters where the phonon number is stable against devia-
tions, see Fig. 6. The values of the phases that optimally enhance the robustness of optomechanical state transfer 
can be calculated numerically. A tradeoff of long composite sequences is that decoherence plays a more important 
role. Therefore, in high-loss scenarios, long driving sequences should be avoided.

Robust transfer with smooth phase-sequences.  In the previous section, we discussed the effect of a 
constant-amplitude driving field with a time-dependent phase that is constant in the intervals τ τ< <t 20 0, 
τ τ< <t2 30 0, … but is discontinuous at τ τ τ= …t , 2 , 3 ,0 0 0 . This abrupt change in the driving phase can take the 

optomechanical system out of its semiclassical steady-state amplitude values, α and β. On the other hand, if a 
sufficiently-smooth phase sequence is applied, α and β change smoothly over time and return to their steady-state 
values once the phase returns to its initial value. Suppose a phase sequence is applied between time τk 0 and 

τ+k( 1) 0. If the phase is sufficiently smooth and symmetric around the half sum of the initial and final times, 
τ+k( 1/2) 0, then the changes in the detuning, Δ, and the interaction area between τk 0 and τ+k( 1) 0 are 

negligible.
We verify this assertion by numerically calculating the evolution of α and β driven by a smooth phase 

sequence for the parameters given in Fig. 1. From τ0 to 2τ0 we set the phase to be given by

φ ϕ θ τ σ θ τ σ= − . . −t f t t( ) [ (1 2) , ] [(1 8) , ], (15)s sopt 0 0

where we assume that the driving amplitude has a smooth step function based on the error function, 
θ σ σ= +t t( , ) [erf( / ) 1]/2s . We introduce two parameters, σ τ= 25 0 and f. The former controls the smoothness 
of the pulse, and the latter is a dimensionless parameter of order one that keeps the average value of the phase φ t( ) 
at its optimal value ϕopt. In our case, the average phase between τ0 and 2τ0 is approximately −1.89 rad; we used the 
negative value of the optimal phase in our simulations. Following this procedure, the electromagnetic field ampli-
tude, |α|, smoothly decreases and increases within 8% of its steady-state value. This leads to a change in the 

https://doi.org/10.1038/s41598-019-40492-y


8Scientific Reports |          (2019) 9:4382  | https://doi.org/10.1038/s41598-019-40492-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

interaction area of less than 0.2% and keeps the detuning, Δ, within 0.005% of its value. The smooth 
three-interaction phase sequence described in this section, and the corresponding evolution of the semiclassical 
field-amplitude value, α(t), are displayed in Fig. 7(a). We extend this calculation to a seven-interaction smooth 
sequence, Fig. 7(b). The average phase values for the seven interactions are − − − − −π π π π π{ }0, , , , , , 06

7
4
7

8
7

4
7

6
7

. 
Under this sequence, the semiclassical amplitudes remain within 10% of their steady-state values, and these 
amplitudes return to their steady-state values after the sequence is over. Additionally, the phase sequence keeps 
the interaction area within 0.1% of its ideal value. All of this can be observed in Fig. 7(b).

In general, if the changes in detuning and interaction area are negligible, our results for discontinuous phase 
sequences should remain unaltered for smooth phase sequences as long as the following two conditions are ful-
filled: First, the interaction area in each part of the composite sequence remains the same, A = π/2, and, second, 
the phase changes are smooth enough to keep the system in its steady state.

Conclusions
Cavity optomechanical systems in the red-detuned regime display lossy oscillatory transfer between photon and 
phonon quantum excitations. We demonstrate robust optomechanical state transfer using constant-amplitude 
laser driving with a phase-tailored composite sequence.

We focus on a three-interaction composite sequence, where each component produces an accumulated inter-
action area π/2. The sequence has a free phase parameter that we use to minimize the effect of deviations from the 
ideal behavior. The optimal phase depends on the loss rates of the system and generalizes previous results for loss-
less systems. The dominant contribution to the phonon number is an even function of the phase. Consequently, 
two phases minimize this contribution with respect to deviations.

We demonstrate our optimization scheme using discontinuous piecewise phase sequences. Such abrupt com-
posite sequences might take the system out of its semiclassical steady state. For this reason, we show that the the-
oretical optimal phase values can be used to generate a sufficiently-smooth phase sequence producing equivalent 
robust transfer. These smooth continuous sequences keep the average phase at the optimal value within each 
component of the sequence. They also produce negligible changes in the accumulated interaction area.

Our method can be extended to more complicated and longer composite pulse sequences containing more 
free parameters. For an N-parameter sequence, the free parameters can be used to nullify the first N derivatives 
of the final phonon number. This produces maximally robust transfer (in the dominant contribution) of phonon 
to photon excitations. Unlike lossless systems, the duration of phase sequences is limited by the loss rates, which 
exponentially reduce the amplitude of the oscillatory transfer.
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