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Abstract

Understanding the fundamental laws that govern complex food web networks over large eco-

systems presents high costs and oftentimes unsurmountable logistical challenges. This way, it

is crucial to find smaller systems that can be used as proxy food webs. Intertidal rock pool envi-

ronments harbour particularly high biodiversity over small areas. This study aimed to analyse

their food web networks to investigate their potential as proxies of larger ecosystems for food

web networks research. Highly resolved food webs were compiled for 116 intertidal rock pools

from cold, temperate, subtropical and tropical regions, to ensure a wide representation of envi-

ronmental variability. The network properties of these food webs were compared to that of estu-

aries, lakes and rivers, as well as marine and terrestrial ecosystems (46 previously published

complex food webs). The intertidal rock pool food webs analysed presented properties that

were in the same range as the previously published food webs. The niche model predictive suc-

cess was remarkably high (73–88%) and similar to that previously found for much larger marine

and terrestrial food webs. By using a large-scale sampling effort covering 116 intertidal rock

pools in several biogeographic regions, this study showed, for the first time, that intertidal rock

pools encompass food webs that share fundamental organizational characteristics with food

webs from markedly different, larger, open and abiotically stable ecosystems. As small, self-

contained habitats, intertidal rock pools are particularly tractable systems and therefore a large

number of food webs can be examined with relatively low sampling effort. This study shows, for

the first time that they can be useful models for the understanding of universal processes that

regulate the complex network organization of food webs, which are harder or impossible to

investigate in larger, open ecosystems, due to high costs and logistical difficulties.
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Introduction

Comparative analysis of food webs from different habitats has revealed generalities in the sub-

jacent network structure of trophic interactions. Estuarine, marine, stream, lake, and terrestrial

ecosystems all seem to share similar general properties of complex food web network structure

[1–5].

Initially, food web networks from marine ecosystems were thought to be different from

those of other ecosystems [6, 7], in that they presented higher average links per species, chain

lengths and connectivity than non-marine ecosystems. Yet, [3] showed that those differences

were due to different scales used in the analyses. Food web network properties are scale-depen-

dent, changing as diversity and complexity change [8, 9] and thus direct comparisons can be

misleading. In fact, [3] demonstrated that marine food webs are not different from non-

marine food webs, by comparing their fit to the theoretical niche food web model [1]. The

niche model incorporates scale-dependence, hence allowing the comparison of food webs with

different diversity and complexity.

Intertidal rocky shores are among the most intensely studied ecosystems in the world. They

provide a natural laboratory where abiotic stress, biotic interactions and biological patterns

can be easily examined [10–13]. However, intertidal rock pools have received much less atten-

tion than the surrounding emergent intertidal bedrock, and thus much less is known about

their community dynamics [14–16]. This is mainly due to their high structural variability,

which makes proper replication of sampling units very challenging [14, 17].

Intertidal rock pools are isolated mesocosms of permanently immersed habitat, surrounded

by intermittently emerged rock surfaces. Environmental conditions in these pools are much

less harsh than in the surrounding environment (e.g. high temperature amplitudes, desiccation

stress). They allow many organisms to extend their upper vertical limits [18–22], provide ref-

uge [22–24], feeding habitats [25, 26] and nursery grounds [26–28] for many marine species.

It is also generally acknowledged that the use of intertidal rock pools during early ontogeny

(e.g. fish, shrimp) is likely to enhance growth, fitness and the survival chances of the individu-

als that use them [29–31].

Intertidal rock pools are ubiquitous features of rocky shores in many parts of the world and

can harbour rich biodiversity [16]. Studies have been carried out focusing on their community

structure [12, 15, 17], and the roles of herbivory on community structure [32–34] competition

[34, 35] predation [36–38] and recruitment [35]. However, to the best of our knowledge, the

network structure of food webs that occurs in intertidal rock pools remains unknown. The

issue of whether complex food web networks can develop in such small and abiotically variable

environments is yet to be uncovered. Given their accessibility and easy manipulation, these

natural mesocosms could be useful models for the understanding of universal processes that

regulate the complex organization of food webs, which are harder or impossible to investigate

in open ecosystems.

The aim of the present study is to analyse, for the first time, the complex network structure

of food webs occurring in intertidal rock pools and compare it to the ones of other habitats, by

estimating their network properties and fit to the theoretical niche food web model (the net-

work from each pool was compared to 1000 automatically generated food web networks). For

this purpose, a significant number (n = 116) of intertidal rock pools were investigated in differ-

ent biogeographic regions of the world, to encompass a wide range of potential variability, and

compared to 46 other previously published food webs, from estuarine, marine, stream, lake,

and terrestrial ecosystems. By doing this, we aim to investigate the potential use of rock pools

as proxies of larger ecosystems for food web networks research.

Tide pool food web networks as proxies for larger open ecosystems
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Results

The data assembled for the intertidal rock pool food webs resulted in lists of 11 to 68 taxa per

pool. These taxa corresponded to lists of 7 to 52 trophic species per pool. Some biological com-

partments needed to be aggregated due to low definition of predator’s diet, which impeded the

construction of prey-predator links at the taxonomic species level. This was particularly evi-

dent for phytoplankton, zooplankton, oligochaeta and polychaeta.

The comparison of the range of food web network properties among intertidal rock pools

and other ecosystems, reported in previous works (Table 1), showed that intertidal rock pools’

properties are generally within the range estimated for other ecosystems.

The number of food web structural networks reported in the present work, n = 116, is

remarkably higher than those previously reported for all other ecosystems combined, n = 46

(Table 1). The number of trophic species (S) observed in intertidal rock pools was considerably

lower, 7–52, than that reported for all other ecosystems, 25–245, however such number of tro-

phic species refers to much smaller areas (Table 1). Connectance in some intertidal rock pools

was higher than that reported for other ecosystems (Table 1). Links per species (L/S) was

lower, 1.6–7.0, than previously observed for marine systems, 7.0–17.8, but within the range

reported for most non-marine ecosystems, 2.0–25.1. The percentage of intermediate species

Table 1. Ranges of commonly reported structural food-web properties for food webs from rock intertidal pools and a variety of other ecosystem types.

Ecosystem N S C L/S T I B Can Omn TL Chain Path Source

Rock tide pools (all pools) 116 7–52 0.11–

0.39

1.6–7.0 0–46 14–

88

7–43 14–

60

43–

84

1.68–2.5 1.57–

2.00

1.27–

1.97

Present

work

Rock tide pools 48˚N, Gulf St. Lawrence–

Canada

28 7–15 0.19–

0.29

1.6–4.0 7–43 14–

71

20–

43

14–

50

43–

73

1.68–

2.16

1.57–

1.80

1.48–

1.78

Rock tide pools 50˚N, UK 8 15–25 0.24–

0.32

5.0–7.0 0–10 75–

88

12–

20

33–

60

65–

84

2.17–

2.30

1.80–

1.88

1.44–

1.56

Rock tide pools 38˚N, Portugal-west coast 32 15–52 0.11–

0.29

4.0–7.0 0–20 65–

87

7–21 20–

38

53–

84

1.99–

2.36

1.79–

1.96

1.47–

1.97

Rock tide pools 32˚N, Portugal-Madeira 14 11–24 0.20–

0.39

3.0–5.0 0–10 62–

79

16–

27

31–

58

62–

79

2.05–

2.35

1.73–

1.84

1.27–

1.72

Rock tide pools 23˚S, Brazil-SP 18 10–26 0.13–

0.24

3.0–7.0 0–19 55–

88

15–

30

27–

47

57–

83

2.00–

2.50

1.73–

1.88

1.38–

1.64

Rock tide pools 3˚S, Brazil-CE 16 11–26 0.19–

0.33

2.0–3.0 8–46 27–

77

12–

27

11–

33

64–

84

1.90–

2.41

1.7–2.0 1.59–

1.93

Seagrass beds 16 53–68 0.17–

0.23

11.4–

12.9

13–

18

58–

65

21–

26

13–

19

70–

75

1.8–2.0 1.9–2.0 2.0–2.3 [39]

Marine 4 29–

245

0.05–

0.24

7.0–17.8 0–4 93–

98

2–7 4–42 76–

87

2.9–3.2 6.4–15.3 1.6–1.9 [3, 7, 40, 41]

Estuarine 12 48–

117

0.03–

0.14

2.0–10.1 7–52 31–

86

4–20 1–24 53–

84

2.4–2.9 4.0–6.6 2.0–2.7 [5, 42–47]

Lake/pond 5 25–

172

0.12–

0.32

4.3–25.1 0–9 66–

92

4–32 12–

32

38–

60

2–2.7 4.0–10.7 1.3–1.9 [3, 48–50]

Stream 5 31–

109

0.07–

0.13

3.7–7.6 6–25 22–

86

7–56 1–2 6–10 1.5–3.4 3.1–3.2 2.3–2.3 [51, 52]

Terrestrial 4 29–

155

0.03–

0.31

1.6–9.0 0–31 56–

90

13–

18

0–66 21–

76

2.4–3 3.2–8.4 1.4–3.7 [53–56]

S = number of trophic species, C = connectance, L/S = links per species, T = % top species, I = % intermediate species, B = % basal species, Can = % cannibalistic species,

Omn = % omnivorous species, TL = mean trophic level, Chain = mean number of links in every possible food chain or sequence of links connecting top species to basal

species, Path = characteristic path length (ranges that do not totally overlap with those of other non-marine ecosystems are presented in bold; ranges that do not totally

overlap with those of other marine ecosystems are underlined).

https://doi.org/10.1371/journal.pone.0200066.t001
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(I) showed lower bottom values, 14%, when compared to all other systems, 22–98%, due to the

very low values reported for some pools in Canada. The highest values found for the percent-

age of basal species (B) and cannibal species (Can), 43% and 60%, respectively, were higher

than those found for other marine systems, 26% and 42% respectively, however B was within

the previously reported range for non-marine ecosystems, 4–56%, unlike Can which was not,

since the percentage of Can in non-marine systems ranges between 1 and 32% (Table 1, Fig 1).

The lowest values found for the percentage of omnivorous species (Omn), 43%, were lower

than reported for other marine systems, 70%, but within the ranges for non-marine ecosys-

tems, 6–84% (Table 1, Fig 1). Mean trophic level (TL), mean number of links in every possible

food chain (Chain) and mean shortest path length between species pairs (Path) were within

the values reported for non-marine ecosystems, however their lower values were lower than

those reported for other marine ecosystems (Table 1).

In addition, the taxa most frequently in the top 3 highest trophic level varied greatly among

locations, however Polychaeta were among the top 3 in the UK, Brazil-SP and Brazil-CE, and

the fish Bathygobius soporator in Brazil-SP and Brazil-CE (Table 2). The taxa that was most fre-

quently in the top 3 highest trophic level was Oligochaeta in Canada, Carcinus maenas in the

UK, Nematoda in Portugal-west coast, Pachygrapsus transversus in Portugal-Madeira, Poly-

chaeta in Brazil-SP and in Brazil-CE (Table 2). The highest trophic level varied between 2.3

and 2.9 in Canada, between 2.8 and 2.9 in the UK, between 2.6 and 3.7 in Portugal-west coast,

between 2.7 and 3.1 in Portugal-Madeira, between 2.6 and 3.6 in Brazil-SP and between 2.7

and 3.2 in Brazil-CE.

The taxa most frequently in the top 3 of highest connectivity were “detritus”, albeit not a

taxon, this node was included in the webs and was always among the ones with highest con-

nectivity, in all locations (Table 2). Zooplankton was also in this group in Canada, Portugal-

Madeira, Brazil-SP and Brazil-CE (Table 2), and Polychaeta in Canada, the UK, Brazil-SP and

Brazil-CE (Table 2). The highest values of connectivity varied between 1.5 and 2.0 in Canada,

between 1.6 and 2.2 in the UK, between 1.1 and 3.9 in Portugal-west coast, between 1.4 and 2.1

in Portugal-Madeira, between 1.8 and 2.8 in Brazil-SP and between 1.7 and 2.5 in Brazil-CE.

No significant correlations were found for any of the food web properties and pool depth,

area or height for the pools in Canada, Portugal-west coast, Portugal-Madeira and Brazil-CE.

An important number of correlations (r2>0.5; p<0.05) were found for the pools in the UK,

for area and L/S (r2 = 0.9), area and TL (r2 = 0.8), area and I (r2 = 0.7), area and resource count

(r2 = 0.7), area and S (r2 = 0.6) and area and Omn (r2 = 0.5). In Brazil-SP a correlation between

area and L/S (r2 = 0.5) was found.

The percentage of niche model errors ranged between 12% (Portugal-Madeira) and 27%

(Portugal-west coast) (Fig 2). The value was significantly higher for the intertidal rock pools

surveyed in Portugal-west coast, in comparison to all other sites, with the exception of Brazil-

SP (p<0.001; Fig 2).

The food webs produced by Network3D [57, 58] allowed the visual observation of the com-

plexity of the food web networks analysed. Examples of food web networks that depict various

levels of biodiversity were selected and shown in Fig 3, where the increasing complexity with

increasing S is clear and easy to understand even by a non-specialized audience.

Discussion

The clearest and most important conclusion of this work is that the food webs that occur in

intertidal rock pools, albeit occupying very small areas, share the fundamental organizational

structure of the food webs established over much larger open areas, such as marine areas, estu-

aries, rivers and terrestrial ecosystems, and thus can be useful for food web networks research.

Tide pool food web networks as proxies for larger open ecosystems
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Nevertheless, there were some differences in the ranges of properties found for intertidal rock

pools when compared to other ecosystems. Connectance is usually highest in food webs with a

large proportion of intermediate and omnivorous species, like marine food webs [3]. Intertidal

rock pools had high connectance but a relatively low proportion of intermediate and

Fig 1. Variation in the basic properties of the food web networks of the rock intertidal pools. (a) percentage of top

species (%T), percentage of intermediate species (%I) and percentage of basal species (%B); (b), percentage of

herbivore species (%H), percentage of cannibal species (%Can) and percentage of omnivore species (%Omn) and (c)

Resource and Consumer counts (mean values for all pools).

https://doi.org/10.1371/journal.pone.0200066.g001

Tide pool food web networks as proxies for larger open ecosystems
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omnivorous species. This high connectance was, in the case of intertidal rock pools, related to

a high proportion of top, basal and cannibalistic taxa. This difference may reside in the role

that intertidal rock pools play as refuge and feeding areas for early stages of predatory species,

mostly fish, crabs and shrimp [22, 26, 59]. Such early stages, despite their small size, are often

already predators of smaller animals that also find refuge and food in intertidal rock pools.

The high proportion of cannibalism is also explained by the occurrence of such early stages,

given that often the same species larvae and various juvenile stages will find refuge in the same

pool, and the larger individuals cannibalize the smaller conspecifics [22, 26, 59].

[3] hypothesized that the high proportion of intermediate, omnivorous and cannibal spe-

cies found in marine food webs, when compared to non-marine food webs, could be related

to: i) a resolution bias in marine datasets, that often present higher resolution for omnivorous

commercial fish; ii) to a tendency to overlook cannibalistic relations in non-marine datasets or

to iii) fundamental differences between the marine versus terrestrial food webs (e.g. widespread

Table 2. Taxa most frequently in the top 3 of highest trophic level� and connectivity in the food webs analyzed.

Taxa most frequently in the

top 3 highest trophic level�
Number of webs where the taxa

were in the top 3 highest trophic

level�

Taxa most frequently in the

top 3 highest connectivity

Number of webs where the taxa

were in the top 3 highest

connectivity

Total webs

analysed

Canada 28

Oligochaeta 17 Zooplankton 28

Gammarus oceanicus
(Amphipoda)

13 Detritus 27

Zooplankton 13 Polychaeta 10

UK 8

Carcinus maenas (Crab) 5 Polychaeta 8

Palaemon serratus (Shrimp) 4 Detritus 6

Polychaeta 3 Carcinus maenas (Crab) 6

Portugal-

west coast

32

Nematoda 20 Detritus 32

Nassaridae (Snail) 16 Lypophrys pholis (Fish) 25

Anemonia sulcata (Anemone) 16 Anemonia sulcata (Anemone) 23

Portugal-

Madeira

14

Pachygrapsus transversus
(Crab)

7 Detritus 11

Palaemon elegans (Shrimp) 5 Zooplankton 10

Lypophrys pholis (Fish) 5 Pachygrapsus transversus
(Crab)

4

Brazil-SP 18

Polychaeta 12 Detritus 18

Stramonita haemastoma
(Snail)

9 Zooplankton 18

Bathygobius soporator (Fish) Polychaeta 7

Brazil-CE 16

Polychaeta 10 Polychaeta 16

Bathygobius soporator (Fish) 8 Zooplankton 10

Pagurus sp. (Crab) 7 Detritus 9

� shortweighted

https://doi.org/10.1371/journal.pone.0200066.t002

Tide pool food web networks as proxies for larger open ecosystems
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generality in marine systems based on gape size and the non-selectivity of filter feeding). These

three hypotheses are discussed next.

Because intertidal species are well studied in the locations where the present study was con-

ducted, some of the resolution biases that could be a problem in other marine studies were

avoided, and that could be one of the reasons behind the lower proportion of intermediate and

omnivorous species in intertidal rock pool food webs. The second hypothesis put forward by

[3] that states that non-marine datasets overlook cannibalistic relations and have, therefore, a

lower proportion of cannibalism could still hold true, although in the case of intertidal rock

pools it can be argued the different sized life stages of predatory fish, crabs and shrimp find

themselves together in a very small area, making cannibalism more unavoidable due to the

impossibility of smaller life stages to escape. Pools are environments particularly prone to can-

nibalism [60–63] and the high proportion of cannibalism registered in the present study is

probably an important particular characteristic of these food webs, as can be seen in the pres-

ent study in the comparison between rock pools and large marine ecosystems (Table 1).

The results found for intertidal rock pools, albeit with some differences from other marine

systems, also seem to support the third hypothesis put forward by [3], and previously proposed

by [64], that marine systems have particular fundamental differences from non-marine sys-

tems, like feeding based on gape size and non-selective filter feeding by many primary and sec-

ondary consumers. The feeding based on gape size is the mechanism subjacent to the high

proportion of cannibalism observed in intertidal rock pools [26]. This is well known for fish,

prone to eat any conspecific given that its size fits its mouth opening [26].

The low proportion of basal species in marine food webs, found by [3], was considered a

clear artifact of low resolution of basal taxa and of the consumer links directed towards them.

[3] concluded that an improvement in resolution at the basal level would mitigate, but not

erase, the high levels of intermediate, omnivorous and cannibal species in marine food webs.

In the present study, due to a good knowledge and abundant literature on intertidal macroal-

gae it was possible to eliminate this artifact. This resulted in a proportion of basal species

higher that previously reported for other marine systems, but which in fact should be closer to

the real values for marine systems in general, once higher resolution of basal species is achieved

Fig 2. Percentage of niche model errors for 18 network structure properties (defined in Table 3) that are greater

than |1|.

https://doi.org/10.1371/journal.pone.0200066.g002
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for other marine environments as well. Given that the proportion of intermediate and omnivo-

rous species was lower for intertidal rock pools than previously reported for marine systems, it

can be concluded that the present study supports the hypothesis of [3], apart from cannibal-

ism, which remained high despite the better resolution at the basal level.

The highest trophic level found for Portuguese intertidal rock pools, between 2.6 and 3.7,

confirms a previous isotopic study conducted in the same area over the intertidal platform,

including intertidal rock pools, which placed the highest TL of that food web at 3.3 [65]. The

species that occupied the highest trophic level varied widely among pools and locations,

encompassing oligochaeta, polychaeta, anemones, amphipods, gastropods, crustaceans and

Fig 3. Network3D images of food web networks of selected rock intertidal pools. a–food web with the highest S, b

and c–food webs with average S, d–food web in the lowest S. Green nodes = basal taxa; yellow nodes = invertebrates;

blue nodes = vertebrates). On the left complex food web networks are depicted, on the right are the trophic species

versions of the same food webs. Trophic species are groups of taxa whose members share the same set of predators and

prey and are thus aggregated in single nodes.

https://doi.org/10.1371/journal.pone.0200066.g003

Tide pool food web networks as proxies for larger open ecosystems
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fish. This probably reflects not only the environmental characteristics of each location, but also

individual pool characteristics, such as depth, available prey and algal cover.

The taxon most frequently in the top 3 of highest connectivity, over all locations, was “detri-

tus”. Albeit not technically a taxon it was considered a node in the food web. Its high connec-

tivity confirms the previous findings by e.g. [65, 66, 67], which noted that intertidal food webs

rely heavily on detritus.

Although an important number of correlations were found between pool area and some

network properties in the UK, such size-related trends were not observed in the other loca-

tions, suggesting that limitations for the size and complexity of trophic networks may vary

across ecoregions, and highlighting the need for replicate sampling at different spatial scales

for a better appraisal of general patterns. The niche model predictive success was remarkably

high (73–88%) for intertidal rock pools. This predictive success rate is similar to the 79% previ-

ously found for 7 non-marine food webs [1] and the average 87% found for 3 marine food

webs: the Benguela ecosystem off the coast of South Africa, a Caribbean coral reef ecosystem

from the Puerto Rico—Virgin Islands shelf complex and a shelf ecosystem off the Northeast

US [3].

The overlap in properties’ ranges between the rock pool food webs and previously pub-

lished food webs (from a wide range of ecosystems) and their high fit to the niche model

(among the highest ever published), lead to the conclusion that food web networks from rock

pools have a great potential to be used as proxies of larger ecosystems for food web networks

research. They are small and easy to sample, allowing greater replication and easy manipula-

tion, two of the main challenges when dealing with large open systems. Although this approach

would have some limitations, inherent to the use of one particular environment as proxy for

vastly different environments and the uncertainty thereof, it would allow important advances

resulting from the experimental manipulation of the web components and abiotic variables

(e.g. algal coverage manipulation, predators’ exclusion, temperature, salinity) over many repli-

cate food webs.

Methods

Sampling

The authors declare that the sampling followed the Portuguese, Brazilian, UK and Canadian

legislation. Ethics committees in Portugal and Brazil specifically authorized this work. Autho-

rization document 0421/000/000/2013 from the Portuguese authorities (DGAV) and

13.1.981.53.7 from the Brazilian authorities (CEUA, USP—Ribeirão Preto). The scientific per-

mit delivered by Fisheries and Oceans Canada to Université du Québec à Rimouski, number

100003461, was used in Canada. No specific permissions were required for sampling in the

field sites in the UK. The field work did not involve endangered or protected species in any of

the areas.

Sampling took place always in summer (2013–2015), during spring tides. This time of the

year was chosen, to ensure comparability since it is when biodiversity and species abundance

is highest in the intertidal rock pools, compared to other seasons (personal observation). Six

ecoregions were sampled: Gulf of Saint Lawrence–Canada, Celtic Sea–United Kingdom, South

European Atlantic shelf–Portugal, Madeira Island–Portugal, Northeastern Brazil–Brazil,

Southeastern Brazil–Brazil (Fig 4). Two sites were chosen in Canada (Gulf of St. Lawrence, site

A—Pointe-au-Père– 48˚29’33.0”N 68˚29’33.0”W, site B–Sainte-Flavie—48˚36’43.0"N 68˚

13’44.3"W), United Kingdom (South coast, site A–Mount Baten– 50˚21’24”N 4˚07’43”W, site

B–Wembury– 50˚19’00”N 4˚04’57”W), Portugal-west coast (Portugal mainland, site A–Cabo

Raso—38˚42’38.2"N 9˚29’09"W and site B–Raio Verde—39˚17’11.4"N 9˚20’23"W), Portugal-
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Madeira (Madeira Island, northeast Atlantic, site A–Caniço– 32˚38’44.4”N 16˚49’26.5”W, site

B–Porto da Cruz– 32˚46’32.6”N 16˚49’33.5”W), Brazil-São Paulo (southeast coast, site A–São

Sebastião—23˚49’26"S 45˚25’38"W and site B–Ubatuba—23˚28’01"S 45˚03’36"W) and Brazil-

Ceará (Northeast coast, site A–Flecheiras—3˚13’04"N 39˚15’29"W and site B–Guajirú—3˚

Fig 4. Location of the sampling sites. Red dots mark the location of the sampling sites.

https://doi.org/10.1371/journal.pone.0200066.g004
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14’14"N 39˚13’44"W). Sites A and B distanced between 6 and 60 km from each other. In these

two sites, 2 to 4 beaches were targeted. All sampled intertidal rock pools were located in the

lower intertidal and their size range (depth: 0.05 m—0.80 m; surface area: 0.15 m2–33.00 m2,

as estimated from scaled digital photographs using the software ImageJ) ensured a minimum

patch size for the development of benthic assemblages, while still allowing a complete record

of all macro-organisms found in each pool. In total, 28 pools were sampled in Canada, 8 in the

UK, 32 in Portugal-west coast, 14 in Portugal-Madeira, 18 in Brazil-São Paulo (Brazil-SP) and

16 in Brazil-Ceará (Brazil-CE) (see S1 Table for the main pool characteristics).

Pool height (elevation–vertical distance from the mean sea level) and distance from the

coastline was also registered. Substrate cover was registered, as well as water temperature

(±0.1˚C) and salinity (±1‰). One bottom sediment sample of 50 ml was taken from pools

with an area�0.5 m2, two samples from pools with an area>0.5 m2 and� 2 m2, and three

samples from pools with an area>2 m2, whenever the pool presented sediment at the bottom.

Three quadrats of 5 cm2 of rock pool surface were scrapped. Sediment and scraping samples

were preserved in alcohol 70˚, with Bengal rose, and taken to the laboratory, where all organ-

isms were identified with a stereomicroscope. Fish, shrimp and crabs were collected with

hand-nets. Macroalgae, sponges, cnidarians, polychaetes, molluscs and echinoderms were col-

lected by hand. All macro-organisms present in the pools were identified in situ, but samples

were taken to the laboratory whenever there were taxonomical issues, requiring more detailed

observation. In the latter case, marine organisms were identified with the aid of a stereomicro-

scope, and when necessary by consulting identification keys and taxonomic experts. Micro-

scopic organisms were not included in the food webs, with the exception of zooplankton and

phytoplankton that were included as a group due to low resolution of their predators’ diet.

Highly resolved food webs, depicting who eats whom, were compiled for each pool, based

on published information on each species diet (see S1 Text and S2 Text).

Network structure of food webs

The networks analysed were trophic species versions of the food webs. Trophic species are taxa

that have the same set of prey and predators [68]. Using trophic species is a convention in

structural network studies of food webs, in order to reduce methodological biases of uneven

resolution among food webs [1, 68]. This food web networks consist of nodes connected by

unweighted, directed links that represent prey-predator relations. For each food web, 11 basic

properties of trophic species food webs were calculated (Table 3). A measure of biodiversity

was included: number of trophic species (S). Two standard measures of food-web trophic

interaction richness are reported: links per species (L/S), which indicates the mean number of

links per node; and connectance (C), where C = L/S2. Six properties yielded percentages of

types of species in a food web: top (T) (taxa that lack any predators or parasites), intermediate

(I), and basal species (B) (taxa that lack any prey items); cannibals (Can); omnivores (Omn)

(taxa with food chains of different lengths, where a food chain is a linked path from a non-

basal to a basal species); and herbivores plus detritivores (H). Resource count and consumer

count were also estimated for each trophic species. These are commonly estimated properties

in food web network analyses [1,3].

Seven overall properties of trophic webs structure were also quantified (Table 3): mean

shortweighted trophic level (TL), a trophic level measure which gives the most accurate esti-

mate of trophic level based on binary link information [69]; mean number of links in every

possible food chain, or sequence of links connecting top species to basal species (Chain); char-

acteristic path length (Path), the mean shortest path length between species pairs; standard

deviation of mean generality (GenSD) how many prey items a species has; vulnerability
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(VulSD), how many predators a species has; normalized standard deviation of links

(LinkSD), which estimates links per taxon; and clustering coefficient (Clust), the mean frac-

tion of species pairs connected to the same species that are connected to each other [70–73].

The software Network3D [57, 58] was used for all calculations. The ranges of the properties

of the food webs examined were compared to those of highly resolved food webs published

for other ecosystems (Table 1). The works selected for comparison with the results of the

present work are recent works that apply a similar methodology to the one used in the field

and lab in the present work and have been used for similar purposes in other recent works

dealing with structural food web networks (e.g. [3, 74]). This study includes the same com-

mon trophic aggregations conducted in the other published works on food web networks

used here for comparative purposes, which also rely on published works on diets. Generally,

diet papers aggregate phytoplankton (because it is so difficult to analyse to the species level),

zooplankton (for a similar reason); macroalgae (aggregated into large groups: red, brown

and green macroalgae); oligochaeta and polychaeta (which are both often digested to a

point where species’ identification is not possible). The trophic aggregations are thus

imposed by the establishment of feeding links based on published diet studies. This means

that the level of resolution of the food webs analysed in the present work is as highly

resolved as that previously published by other authors and that direct comparison of the

networks is possible.

Linear regressions were calculated for the variation of food web properties with pool

area, depth and height (for each location). Only significant correlations with a Pearson coef-

ficient above 0.5 were considered. A significance level of 0.05 was used in all test procedures.

All statistical analyses were carried out using the Statistica software (version 12.0, StatSoft

Inc., USA).

Table 3. Definition of the food web properties calculated.

Food web

property

Definition of food web property

S Number of trophic species

L/S Links per species

C Connectance, C = L/S2

T Top species (taxa that lack any predators or parasites)

I Intermediate species

B Basal species (taxa that lack any prey items)

Can Cannibals

Omn Omnivores (taxa with food chains of different lengths, where a food chain is a linked path from

a non-basal to a basal species)

H Herbivores plus detritivores

Resource count Count of all species that serve as resources in the food web

Consumer count Count of all species that serve as consumers in the food web

TL Mean shortweighted trophic level

Chain Mean number of links in every possible food chain or sequence of links connecting top species

to basal species

Path Mean shortest path length between species pairs

GenSD Standard deviation of mean generality, how many prey items a species has

VulSD Standard deviation of mean vulnerability, how many predators a species has

LinkSD Normalized standard deviation of links, which estimates links per taxon

Clust Clustering coefficient, the mean fraction of species pairs connected to the same species that are

connected to each other

https://doi.org/10.1371/journal.pone.0200066.t003
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The niche model

The capacity of the niche model [1] in predicting food web properties was estimated for each

intertidal rock pool food web. The niche model has 2 input parameters: the number of trophic

species (S) and connectance (C) of the food web. The niche model assigns each species a ran-

domly drawn ‘niche value’ (ni) from the interval (1,0). Each species is then limited to consume

all prey species within a range of values (ri) whose randomly chosen centre (ci) is less than the

consumer’s niche value. The niche model allows up to half a consumer’s range to include spe-

cies with higher niche values than the consumer, thus allowing looping (cycles of>1 length

(e.g. A eats B, which eats A, or longer like A eats B, which eats C, which eats A) and cannibal-

ism (cycles of length 1 (A eats A).

Additionally, the consumer must feed on all species that fall within its feeding range (ri).

For each food web, Monte Carlo simulations were used to generate 1000 niche model webs

with the same S and C as the empirical web, allowing the estimation of a model mean and

standard deviation for each of the network properties. If the normalized error (raw error

divided by model SD) between the empirical property and the mean model value for that

property falls with ± 1 model SD, the model is considered to have a good fit to the empirical

data [1]. The software Network3D [57, 58] was used for all previous calculations. The per-

centage of niche model errors (taking into account all food web network properties) was

estimated for each pool. Then the mean percentage of niche model errors was estimated for

each location. A mean percentage of niche model errors <30% was considered a good fit

[3]. Differences in the percentage of niche model errors among locations were analysed

using a 1-way ANOVA, followed by Tukey post-hoc tests. The ANOVA assumptions were

previously investigated. Normality was investigated through the Shapiro-Wilk’s test and

homoscedasticity through a Levene’s test. A significance level of 0.05 was considered in all

test procedures.

Supporting information

S1 Table. General characteristics of the pools surveyed.

(DOCX)

S2 Table. List of all taxa identified in the pools.

(DOCX)

S1 Text. References used to establish feeding links between the taxa.

(DOCX)

S2 Text. References used for the identification of the organisms.

(DOCX)

Acknowledgments

Thanks are due to the institutions and staff that hosted this work: CEBIMAR-USP, Instituto
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