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Glioma is defined as a common brain tumor which causes severe disability or death. Asmany genes are reported to relate with glioma’s
occurrence and development, their prognostic and therapeutic value still remains uncertain. This study aimed at investigating the
association between STAT3/p-STAT3 and glioma prognosis. Nine studies (12 trials) scored ≥5 on the Newcastle-Ottawa scale were
meta-analysed from the Medline, Embase, and Web of Science databases. We found that STAT3/p-STAT3 overexpression in
glioma patients was associated with worse overall survival (hazard ratio ðHRÞ = 1:40, 95%confidence interval ðCIÞ = 1:05 ~ 1:86, P
= 0:020), progression-free survival (HR = 2:05, 95%CI = 1:63 ~ 2:58, P < 0:001), and better recurrence-free survival (HR = 0:37, 95
%CI = 0:15 ~ 0:95, P < 0:039). Subgroup analysis implied that STAT3/p-STAT3 overexpression was associated with worse OS in
standard treatment (HR = 1:80, 95%CI = 1:06 ~ 3:04, P = 0:030), and in China (HR = 2:18, 95%CI = 1:77 ~ 2:70, P < 0:001), and
metaregression analysis indicated countries (P = 0:001) may be the source of heterogeneity in our study. In conclusion, we
suggested STAT3/p-STAT3 was associated with poor prognosis in patients with glioma, which indicated that STAT3/p-STAT3
might be a valuable prognostic biomarker and a promising therapeutic target for glioma.

1. Introduction

Brain malignancy is a grievous type of brain tumor with high
incidence and mortality, while the concentration on brain
malignancy is still poor [1, 2]. Glioma, starting in the glial cells
of the brain or the spine [3], is the most common primary
intracranial tumor, which represents about 30% of all brain
tumors and central nervous system tumors, and 80% of all
malignant brain tumors [2, 4]. Although the etiology of glioma
remain unclear, researches on monogenic Mendelian disorders
[4], hereditary genetic disorders such as neurofibromatoses
(type 1 and type 2), and tuberous sclerosis complex underscore
that genetic factors are strongly associated with the develop-
ment and progression of glioma [5]. Results from genome-
wide association studies have identified common genetic varia-
tion in 7 genes (TERT [6], EGFR [7, 8], CCDC26 [9], CDKN2B

[6], PHLDB1 [10], TP53 [11, 12], and RTEL1 [6]) and germ-
line (inherited) polymorphisms of the DNA repair genes
ERCC1, ERCC2, and XRCC1 increase the risk of glioma [13].
Recent study found that mutations in IDH1/2 may result in
the development of glioma and be independent prognosis
factors of glioma [14]. These indicate altered or deficient repair
of DNA damage and different oncogenes contribute to the
development of glioma [15, 16]. Diet, radiation, and infection
with cytomegalovirus are regarded as potential pathogenic
factors [17, 18]. In addition, certain occupations, such as
farmers, are more susceptible to this disease [19, 20]. The
potential influences of occupational exposures and cell phones
have also been examined, with inconclusive results [2].

Although glioma is relatively rare compared with cerebral
vascular diseases, they both cause severe mortality and
morbidity [21]. Symptoms of glioma depend on the brain
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region where the tumor locates and show as headaches, vomit-
ing, seizures, and cranial nerve disorders as a result of mass
effect and increased intracranial pressure. Although glioma
treatment options have developed, the prognosis remains poor.
Multiple genes have been identified as glioma biomarkers that
may predict patient’s susceptibility and prognosis [21]. STAT3
is a latent cytosolic transcription factor and activates genes in
human chromosome 12 (q13 to q14-1) by phosphorylating
the tyrosine705 in the SH2 domain [22]. STAT3 plays an
important role in multiple malignant cases, especially in glioma
[23–25]. Phosphorylated STAT3 (p-STAT3) dimerizes
spontaneously, migrates into cell nucleus, and activates the
expression of downstream genes to regulate the tumor cell
growth, proliferation, differentiation, and metastasis [26, 27].
In addition, p-STAT3 was reported to affect the occurrence,
development, and even prognosis of glioma [28–31]. Emerging
studies have shown STAT3 and its phosphorylation have sim-
ilar functions in tumors [32–34], including in glioma [35–37],
and given this consideration, we conducted a meta-analysis of
STAT3/p-STAT3 to identify any direct correlations with
glioma patient prognosis.

2. Materials and Methods

2.1. Study Search Strategy.We comprehensively searched for
potential studies from the Medline, Embase, and Web of
Science databases using relevant key words through Decem-
ber 1, 2018, without any language restrictions. The detailed
literature search strategy in Medline was ((STAT3 Transcrip-
tion Factor [Mesh]) OR (((((((APRF Transcription Factor)
OR (Signal Transducer and Activator of Transcription 3))
OR IL6 Response Factor) OR LIF Response Factor) OR
STAT3b Transcription Factor) OR STAT3a Transcription

Factor) OR Transcription Factor, STAT3 [All fields]) OR
((((phosphorylated signal transducer and activator of tran-
scription 3)) OR phosphorylated stat3 transcription factor)
OR phospho-STAT3 [All fields])) AND ((Glioma [Mesh])
OR ((((((Glial Cell Tumors [All fields]) OR Glial Cell Tumor
[All fields]) OR Mixed Glioma [All fields]) OR Tumor, Glial
Cell [All fields]) OR Malignant Glioma [All fields]) OR
Malignant Gliomas [All fields])).

2.2. Study Selection. Studies included in this analysis must
meet some criteria. The participants must have been
diagnosed with glioma via imaging, pathology, or the latest
clinical diagnostic criteria. There was immunohistochemical
analysis with the expression of STAT3/p-STAT3 in the glioma
tissue. The association between STAT3/p-STAT3 and patients’
prognosis, regardless overall survival (OS), progression-free
survival (PFS), or recurrence-free survival (RFS), was investi-
gated, and the adjusted or crude hazard ratio (HR) values could
be calculated. Only studies with a sample size more than 60
were included. When the overlapping or even same data
appears in different studies, the most complete or up-to-date
studywas included. The review and abstract were excluded [38].

2.3. Data Extraction. Two reviewers independently extracted
the following data from remaining studies: the information
about study characteristics (such as the first author, publica-
tion date, country, sample size, treatment, and analytic
method), demographic characteristics (including age, sex,
and diagnostic methods), the expression of STAT3/p-
STAT3, and outcomes. Then, another two reviewers checked
the received data. Inconsistent data were addressed by open
discussion, and consensus was achieved. Finally, all extracted
data were stored in the predesigned excel spreadsheet.

Records identified through database searching
(n = 2,262)

Records a�er duplicates removed
(n = 1,509)

Records pulled following title/abstract screened
(n = 1,509)

Full-text articles assessed for eligibility
(n = 12)

Studies included in qualitative synthesis
(n = 9)

Records excluded with reasons:
Non glioma (n = 296)
No prognosis data (n = 810)
Abstract, letter, review (n = 391)

Full-text articles excluded with reasons:
Can not extract HR (n = 1)
Sample size less than 60 (n = 2)
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Figure 1: The flow chart.
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2.4. Study Quality Assessment. Two investigators conducted
studies quality assessments of the included studies according
to the Newcastle-Ottawa scale (NOS) developed for nonran-
domized controlled trials [39]. The NOS included three
domains: selection, comparability, and outcome, eight items
with nine scores in total [40, 41].

2.5. Statistical Analysis. For all analyses, we used fixed and
random effect models to reduce heterogeneity through Stata
14.0 (Stata Corp., College Station, TX, USA). Depending on
the type of extracted data, we applied subgroup analysis by
country, sample size, study subject (STAT3 or p-STAT3),
treatment, and HR estimate. Moreover, sensitivity analysis
was conducted to assess heterogeneity. We would assign
adjectives of low, moderate, and high to I2 values of 25%,
50%, and 75% as described previously [38, 40, 42]. Lastly,
the funnel plot was implemented to assess the publication
bias and metaregression analysis was applied to trace the
origin of heterogeneity [41].

3. Results

3.1. Study Search Results and Characteristics. The combined
search yielded 1,509 potentially relevant studies after remov-
ing 753 duplicates, and 12 were retained while the title and
abstract were screened. Three studies were close to meet the
threshold but still excluded due to their lack of detailed data
and sample size. Nine studies [43–51] (12 trials) were included

in this study (Figure 1), among which 3 trials evaluated
STAT3, and other three-fourths detected p-STAT3. As for
countries, almost half of studies came from China [43–46,
51], and one each from Brazil [50], Greece [48], Bulgaria
[47], and America [49] (Table 1). With the exception of one
study (NOS score = 5 [49], all other studies had NOS scores
of 7 or above, which were considered a high quality (or low-
bias risk) studies [40, 41] (Table 1).

3.2. Association of STAT3/p-STAT3 with OS. The combined
analysis of 12 trials showed that STAT3/p-STAT3 overexpres-
sion in glioma was associated with worse OS (HR = 1:40, 95%
confidence interval ðCIÞ = 1:05 ~ 1:86, P = 0:020) (Figure 2).
Obviously, there was significant heterogeneity among trials
(I2 = 64:2%, Ph = 0:001), so we conducted subgroup and
metaregression analysis to investigate the possible source of
the heterogeneity. As for STAT3 and its phosphorylation,
there was no association with OS (Figure 3(a)). Furthermore,
we conducted subgroup analysis of STAT3 phosphorylation
site (Tyr705 and Ser727), and the results were consistent
(Figure S1). Treatment subgroup analysis results implied
that STAT3/p-STAT3 overexpression was associated with
worse OS in standard treatment (HR = 1:80, 95%CI = 1:06 ~
3:04, P = 0:030), and there was no significant association
in nonstandard treatment (HR = 1:33, 95%CI = 0:95 ~ 1:84,
P = 0:095) (Figure 3(b)). As for country subgroup analysis,
STAT3/p-STAT3 overexpression was associated with worse
OS in China (HR = 2:18, 95%CI = 1:77 ~ 2:70, P < 0:001),

NOTE: Weights are from random effects analysis

Overall (I2 = 64.2%, P = 0.001)

Bruna (pSTAT3−Ser727)

Trials

Birner (pSTAT3−Tyr705)

Mohamed (pSTAT3−Tyr705)

Bruna (pSTAT3−Tyr705)

Wang (pSTAT3−Tyr705)

Lin (pSTAT3−Ser727)

Piperi (pSTAT3−Tyr705)

Liang (STAT3)

Bruna (STAT3)

Lin (pSTAT3−Tyr705)

Liang (pSTAT3−Tyr705)

Tu (STAT3)

1.40 (1.05, 1.86)

0.99 (0.59, 1.67)

HR (95% CI)

1.40 (0.79, 2.47)

1.20 (0.64, 2.23)

0.85 (0.52, 1.39)

2.40 (1.27, 4.55)

1.80 (1.03, 3.14)

0.61 (0.33, 1.12)

1.48 (0.46, 4.75)

1.05 (0.54, 2.04)

2.12 (1.07, 4.20)

2.30 (1.74, 3.04)

2.36 (0.83, 6.68)

100.00

9.58

Weight (%)

9.02

8.41

9.92

8.23

9.13

8.55

4.17

7.96

7.75

12.42

4.87

1.15 6.68

Figure 2: Association of STAT3/p-STAT3 with OS.
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.15

Trials Weight (%)

NOTE: Weights are from random effects analysis

Overall (I2 = 64.2%, P = 0.001)

Lin (pSTAT3−Tyr705)
Mohamed (pSTAT3−Tyr705)

Subtotal (I2 = 72.3%, P = 0.000)

Lin (pSTAT3−Ser727)

STAT3

Bruna (pSTAT3−Ser727)

Subtotal (I2 = 0.0%, P = 0.432)

pSTAT3

Birner (pSTAT3−Tyr705)

Liang (pSTAT3−Tyr705)

Bruna (STAT3)

Tu (STAT3)

Bruna (pSTAT3−Tyr705)

Piperi (pSTAT3−Tyr705)
Wang (pSTAT3−Tyr705)

Liang (STAT3)

1.40 (1.05, 1.86)

2.12 (1.07, 4.20)
1.20 (0.64, 2.23)

1.39 (1.00, 1.94)

1.80 (1.03, 3.14)
0.99 (0.59, 1.67)

1.35 (0.82, 2.24)

1.40 (0.79, 2.47)

2.30 (1.74, 3.04)

1.05 (0.54, 2.04)

2.36 (0.83, 6.68)

0.85 (0.52, 1.39)

0.61 (0.33, 1.12)
2.40 (1.27, 4.55)

1.48 (0.46, 4.75)

9.54
10.26

100.00

11.03
11.51

100.00

10.92

14.40

57.70

23.53

11.87

10.41
10.06

18.77

HR (95% CI)

1 6.68

(a)

.15

Trials Weight (%)

NOTE: Weights are from random effects analysis

Overall (I2 = 64.2%, P = 0.001)

Mohamed (pSTAT3−Tyr705)

Bruna (STAT3)

Bruna (pSTAT3−Ser727)

Wang (pSTAT3−Tyr705)

Standard treatment

Tu (STAT3)

Subtotal (I2 = 34.7%, P = 0.216)

Subtotal (I2 = 68.5%, P = 0.001)

Birner (pSTAT3−Tyr705)

Lin (pSTAT3−Ser727)

Lin (pSTAT3−Tyr705)
Liang (pSTAT3−Tyr705)
Bruna (pSTAT3−Tyr705)

Liang (STAT3)

Piperi (pSTAT3−Tyr705)

Nonstandard treatment

1.40 (1.05, 1.86)

1.20 (0.64, 2.23)

1.05 (0.54, 2.04)

0.99 (0.59, 1.67)

2.40 (1.27, 4.55)

2.36 (0.83, 6.68)

1.80 (1.06, 3.04)

1.33 (0.95, 1.84)

1.40 (0.79, 2.47)

1.80 (1.03, 3.14)

2.12 (1.07, 4.20)
2.30 (1.74, 3.04)

HR (95% CI)

0.85 (0.52, 1.39)

1.48 (0.46, 4.75)

0.61 (0.33, 1.12)
10.22

9.72

11.46

46.18

6.19

100.00

100.00

53.82

10.99

9.50
14.36
11.82

5.36

10.37

1 6.68

(b)

Figure 3: Continued.
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NOTE: Weights are from random effects analysis

Overall (I2 = 64.2%, P = 0.001)

Tu (STAT3)

Birner (pSTAT3−Tyr705)

Wang (pSTAT3−Tyr705)

Lin (pSTAT3−Ser727)
Liang (pSTAT3−Tyr705)

Subtotal (I2 = 0.0%, P = 0.950)

Lin (pSTAT3−Tyr705)

Bruna (pSTAT3−Tyr705)

China

Piperi (pSTAT3−Tyr705)
Mohamed (pSTAT3−Tyr705)

Liang (STAT3)

Bruna (pSTAT3−Ser727)

America, Brazil, Bulgaria, and Greece 
Bruna (STAT3)

1.40 (1.05, 1.86)

2.36 (0.83, 6.68)

1.40 (0.79, 2.47)

2.40 (1.27, 4.55)

1.80 (1.03, 3.14)

0.98 (0.78, 1.23)

2.30 (1.74, 3.04)

HR (95% CI)

2.18 (1.77, 2.70)

2.12 (1.07, 4.20)

0.85 (0.52, 1.39)

0.61 (0.33, 1.12)
1.20 (0.64, 2.23)

1.48 (0.46, 4.75)

0.99 (0.59, 1.67)
1.05 (0.54, 2.04)

4.16

16.78

11.03

14.42

100.00

57.46

100.00

22.40

14.56
14.00

3.32

20.00
12.26

9.62

1 6.68.15

Trials Weight (%)

(c)

NOTE: Weights are from random effects analysis

Overall (I2 = 64.2%, P = 0.001)

Liang (STAT3)

Subtotal (I2 = 74.0%, P = 0.002)

Birner (pSTAT3−Tyr705)
Lin (pSTAT3−Tyr705)
Mohamed (pSTAT3−Tyr705)

Wang (pSTAT3−Tyr705)

Bruna (pSTAT3−Tyr705)

Sample size ≤ 85

Sample size > 85

Liang (pSTAT3−Tyr705)

Bruna (STAT3)

Lin (pSTAT3−Ser727)
Tu (STAT3)

Piperi (pSTAT3−Tyr705)
Subtotal (I2 = 52.1%, P = 0.064)

Bruna (pSTAT3−Ser727)

1.40 (1.05, 1.86)

HR (95% CI)

1.48 (0.46, 4.75)

1.40 (0.90, 2.17)

1.40 (0.79, 2.47)
2.12 (1.07, 4.20)
1.20 (0.64, 2.23)

2.40 (1.27, 4.55)

0.85 (0.52, 1.39)
2.30 (1.74, 3.04)

1.05 (0.54, 2.04)

1.80 (1.03, 3.14)
2.36 (0.83, 6.68)

0.61 (0.33, 1.12)
1.39 (0.94, 2.04)

0.99 (0.59, 1.67)
8.96

100.00

19.14
16.12
17.68

16.12

18.73
22.29

15.67

19.40
9.67

18.00
100.00

18.22

1.15 6.68

Trials Weight (%)

(d)

Figure 3: Subgroup analysis. (a) STAT3/p-STAT3. (b) Treatment. (c) Country. (d) Sample size.
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0.99 1.401.05 1.86 1.97

Bruna (STAT3)

Bruna (pSTAT3-Tyr705)

Bruna (pSTAT3-Ser727)

Lin (pSTAT3-Tyr705)

Lin (pSTAT3-Ser727)

Liang (STAT3)

Liang (pSTAT3-Tyr705)

Wang (pSTAT3-Tyr705)

Piperi (pSTAT3-Tyr705)

Tu (STAT3)

Birner (pSTAT3-Tyr705)

Mohamed (pSTAT3-Tyr705)

Meta−analysis random−effects estimates (exponential form)
Study ommited

Figure 5: Sensitivity analysis.

Overall (I2 = 0.0%, P = 0.938)

Liang (STAT3)

Lin (pSTAT3−Tyr705)

Liang (pSTAT3−Tyr705)

Wang (pSTAT3−Tyr705)

Lin (pSTAT3−Ser727)

2.05 (1.63, 2.58)

HR (95% CI)

1.85 (0.53, 6.49)

2.16 (1.14, 4.10)

2.00 (1.45, 2.76)

2.63 (1.36, 5.07)

1.83 (1.09, 3.07)

100.00

3.39

12.99

51.35

12.37

19.89

1.154 1 6.49

Trials Weight (%)

(a)

Overall (I2 = 0.0%, P = 0.713)

Bruna (pSTAT3−Tyr705)

Bruna (STAT3)

Bruna (pSTAT3−Ser727)

0.37 (0.15, 0.95)

HR (95% CI)

0.38 (0.12, 1.20)

2.56 (0.02, 346.66)

0.29 (0.05, 1.57)

100.00

66.00

3.60

30.39

.00288 1 347

Trials Weight (%)

(b)

Figure 4: Association of STAT3/p-STAT3 with PFS and RFS. (a) PFS. (b) RFS.
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but no evidences in other countries (HR = 0:98, 95%CI = 0:78
~ 1:23, P = 0:852) (Figure 3(c)). Subgroup analysis results of
sample size showed that STAT3/p-STAT3 expression was not
associated with OS (Figure 3(d)). Moreover, metaregression
analysis indicated countries (P = 0:001) may be the source of
heterogeneity in this study, while STAT3/p-STAT3 (P = 0:863
), treatment (P = 0:423), and sample size (P = 0:996) were not.

3.3. Association of STAT3/p-STAT3 with PFS. The combined
analysis of 5 trials suggested STAT3/p-STAT3 overexpres-
sion in glioma was associated with worse PFS (HR = 2:05,
95%CI = 1:63 ~ 2:58, P < 0:001) (Figure 4(a)). It is clear that

there was no heterogeneity among trials (I2 = 0:0%, Ph =
0:938) (Figure 4(a)).

3.4. Association of STAT3/p-STAT3 with RFS. The combined
analysis of 3 trials showed that STAT3/p-STAT3 overexpres-
sion in glioma was associated with better RFS (HR = 0:37,
95%CI = 0:15 ~ 0:95, P < 0:039) (Figure 4(b)). It is clear that
there was no heterogeneity among trials (I2 = 0:0%, Ph =
0:713) (Figure 4(b)).

3.5. Sensitivity Analysis. We removed each trial and reana-
lysed the data, and the main findings were unchanged
(Figure 5).
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Figure 6: Publication bias.
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3.6. Publication Bias. Funnel plot analysis showed that there
was no statistical evidence of publication bias in this study
(PBegg’s test = 0:631 and PEgger’s test = 0:290, respectively)
(Figure 6).

4. Discussion

Few known risk factors are associated with the brain and
central nervous system cancer, including glioma [52], and
the only consistent correlations resulted from epidemiologi-
cal studies [53, 54]. In our knowledge, this study is the most
comprehensive assessment of the trials regarding STAT3/p-
STAT3 expression and glioma prognosis to date. We system-
atically evaluated survival data for 1,070 glioma patients
included in 12 different trials and came to the conclusion that
the expression of STAT3/p-STAT3 may be a marker of poor
prognosis in glioma. Our study shows that STAT3/p-STAT3
expression is related to poor glioma prognosis. The results of
subgroup analysis further emphasize the importance and
effectiveness of standard treatment and it also highlights the
potential of STAT3/p-STAT3 for the development of valu-
able prognostic biomarkers and therapeutic agents of glioma.

Our study also inevitably has some limitations. Summa-
rized population-level data, rather than individual patient-
level data, was only extracted from the included 9 studies.
The expression and positive rate of STAT3/p-STAT3 were
diverse in different studies while immunohistochemical anal-
ysis was used to detect STAT3/p-STAT3. In addition, the
scope of our research results may be limited as most of
included studies were from China, while our results indicated
that STAT3/p-STAT3 overexpression was associated with
worse OS in China. Unfortunately, this limitation cannot be
improved, given the chosen inclusion criteria. Last of all,
HR and 95% CI were not directly available in some included
studies and we had to apply Engauge Digitizer to obtain them
from the survival curve, and heterogeneity under such
circumstances was so substantial that random effect models
and subgroup analysis could not diminish it; thus, additional
analysis is necessary to clarify these confusing problems.
Glioma is classified by cell type, by grade, and by location,
but we failed to conduct subgroup analysis of classification
due to the limited data included in this study, as well as
meta-analysis of RFS or PFS. Moreover, during the analysis,
we combined STAT3 and p-STAT3 together to analyse. It is
precisely for this reason that this study cannot be more in-
depth and thorough.

In conclusion, our study suggested that STAT3/p-STAT3 is
associated with poor prognosis in patients with glioma, which
indicated that STAT3/p-STAT3might be a valuable prognostic
biomarker and a promising therapeutic target for glioma. Fur-
ther studies with larger sample sizes and multicenter/countries
are needed to shed more light on the more precise correlation
between STAT3/p-STAT3 and glioma.
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