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A B S T R A C T   

Fungal infections are becoming a serious problem of human diseases, being one of the most important fungal 
pathogens the yeast of the genus Candida. So far, fungal infection treatment faces different challenges, including 
the limited number of therapeutic drugs. Scorpions are known to be a valuable source of biologically active 
molecules, especially of peptide-derived molecules with a variety of biological effects and useful, lead com-
pounds for drugs development. Here, we pioneer described the antifungal effect of venom, mucus, and the major 
toxin (Rc1) from Rhopalurus crassicauda scorpion. These results support the potential for Rc1 to be further 
investigated as a novel antifungal therapeutic to treat Candida infections.   
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Candida albicans as well as other emerging non albicans species, 
including Candida glabrata, Candida krusei, Candida tropicalis, and 
Candida parapsilosis, represent an important source of systemic in-
fections throughout the globe. The body sites that Candida spp. prefer-
ably colonizes are the oropharynx, vagina, and skin, especially skin folds 
(axilla, groin, perineum). It can produce proteolytic enzymes (such as 
aspartyl proteinases and phospholipases) and toxins (such as mycotoxin) 
that affect host defenses and enhance their chances of colonizing and 
invading the host (De Bernardis et al., 1990; Schaller et al., 2003). Also, 
under favorable conditions, they can enter the bloodstream leading to 
deep-tissue infections (Conti et al., 2014; Turner and Butler, 2014; 
Whaley et al., 2016). 

Fungal pathogens are a major cause of morbidity and mortality 
among several patient groups, including those hospitalized in the 
intensive care unit, solid organ and stem cell transplant recipients, and 
human immunodeficiency virus (HIV) infected patients. Also, there is a 
deepening appreciation of genetic risk factors, which may predispose to 
complications from fungal pathogens that occur among otherwise 
normal hosts. Most researches regarding novel antifungals have focused 
on patients who are known to be at greatest risk of invasive fungal 
infection, since the opportunistic mycoses are a cause of great concern to 
both clinicians and investigators (Pappas, 2010). The traditional path-
ogens in this group include Aspergillus species, Cryptococcus species, the 
zygomycetes, Fusarium species, and Candida species (Pfaller and Die-
kema, 2010). 

Fungal pathogens cause life-threatening invasive diseases (e.g. fun-
gaemia, meningitis, pneumonia), severe chronic conditions (e.g. chronic 
pulmonary aspergillosis, allergic bronchopulmonary aspergillosis), 
complex chronic respiratory conditions (e.g. asthma, chronic obstructive 
pulmonary disease) and recurrent infections, such as oral and vaginal 
candidiasis (Brown et al., 2012). In general, these infections are asso-
ciated with high mortality, and successful clinical outcome requires 
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early diagnosis and effective antifungal therapy. However, antimycotic 
drugs are few, with chemical classes for invasive disease treatment 
limited to azoles, echinocandins, polyenes, and flucytosine (Odds et al., 
2003). 

Scorpion venoms are known source of components able to inhibit 
microorganism growing. In fact, many antibacterial and antifungal 
compounds have been isolated from scorpion venoms (Almaaytah et al., 
2012; Machado et al., 2016). In a previous work, authors evaluated 11 
scorpion-venom derived non-disulfide-bridged peptides which demon-
strated activity against Cryptococus neoformans, Candida spp., and 
analogous activity against C. albicans biofilms (Guilhelmelli et al., 
2016). 

From Tityus species, Tityus serrulatus venom (Tsv) was capable of 
inhibiting filamentous fungi growth of Aspergillus nidulans, Aspergillus 
terreus, Penicillium corylophilum, and Penicillium verrucosum (Santussi 
et al., 2017). Ts1, the major toxin from Tsv, showed a dose-dependent 
inhibition against A. nidulans (Santussi et al., 2017). From Tityus stig-
murus, two peptides present activity against fungi strains, stigmurin 
which has the ability to inhibit growth of C. albicans, C. krusei and 
C. glabrata (de Melo et al., 2015), and TistH was analyzed towards its 
antifungal properties against different strains of C. albicans, C. tropicalis, 
A. flavus and the filamentous fungus Trichophyton rubrum (Machado 
et al., 2016). 

Inhabiting Amazonian savannah in the Brazilian northern and Guy-
ana Southern (di Caporiacco, 1947; Martins et al., 2021), the scorpion 
Rhopalurus crassicauda Lourenço, 2002 (synonym Rhopalurus amazonicus 
Lourenço, 1986 and Rhopalurus laticauda Thorell, 1876) (Esposito et al., 
2017; Martins et al., 2021) is a poorly studied species. There is only one 
study developed by Abreu et al. (2020) revealing the structure and 
function of the major toxin (Rc1 with ~7 kDa) and the isolation of a 
hyaluronidase. The same study also explored some activities of the 
whole venom (e.g. nociception and enzymatic activities) (Abreu et al., 
2020). However, no antifungal activity has been explored so far. Based 
on these facts, this study aimed to describe a novel antifungal activity for 

R. crassicauda scorpion venom. 
R. crassicauda scorpions were collected in Boa Vista - RR (Brazil, 

2◦49′14.88′′ N and 60◦40′19.20′′ W). The species were kept at Medical 
School of Federal University of Roraima, received water daily and were 
fed with cockroaches or crickets twice a month, normally, 5 days prior to 
venom milking. Venom milking was performed by electrical stimulation 
of venom gland using electrical pulses (18 V) (Abreu et al., 2020). 
Pooled venom was stored at − 20 ◦C until its use. 

All the procedures involving the scorpions were in accordance with 
the ethical principles in animal research adopted by Sistema de 
Autorização e Informação em Biodiversidade (SISBIO), under registration 
number 57491/9. 

The soluble crude venom (supernatant without mucus - 2 mg of 
proteins) was obtained, applied on a reversed-phase C18 column (10 
mm × 250 mm) and the major peak was rechromatographed on another 
C18 column (2.1 mm × 250 mm) to obtain Rc1, as described by Abreu 
et al. (2020). The soluble venom and the toxin Rc1 (which represents 
24% of the total protein of the soluble venom) were submitted to anti-
fungal assays. 

Yeast cells C. albicans (CE022) and C. parapsilosis (CE002) were 
preserved in the Laboratório de Fisiologia e Bioquímica de Microrganismos 
(LFBM), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), 
Campos dos Goytacazes, RJ, Brazil, were cultured in Sabouraud broth 
and quantified in a Neubauer chamber. To monitor the effect of proteins 
on the growth of yeasts, cells (104 in 1 mL Sabouraud broth) were 
incubated in the presence of the venom (10, 50 and 100 μg/mL), toxin 
Rc1 or mucus (100 μg/mL), at 28 ◦C in 200 μL microplates (Broekaert 
et al., 1990). The positive control was performed with fluconazole 100 
μg/mL, getting 100% inhibition (data not shown). 

Through the growth kinetics, it was observed that 100 μg/mL of 
R. crassicauda venom or Rc1 venom (representing 14 μM) were statis-
tically able to inhibit the growth of C. albicans after 24 h, differently 
from mucus, which did not show the ability to inhibit the growth of the 
microorganism (Fig. 1A–D). 

Fig. 1. Inhibition of C. albicans. Kinetic growth inhibition by (A) R. crassicauda venom (100 μg/mL), (B) Rc1 (100 μg/mL, corresponding to 14 μM), and (C) 
R. crassicauda mucus (100 μg/mL). (D) Growth inhibition after 24 h. Non-treated cells were used as controls. All experiments were performed in triplicate and data 
are expressed as the mean ± standard deviation. ***p < 0.001 when compared to control. 
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When the same treatment was performed on C. parapsilosis, it was 
observed that R. crassicauda venom and mucus, as well as Rc1, were 
statistically able to inhibit its growth in 24 h, except for the 10 μg/mL of 
venom (Fig. 2A–D). When at a concentration of 50 μg/mL, C. albicans has 
a higher growth than the control (Fig. 1A). Dimorphic transitions with 
the development of pseudo hyphae could explain our failure to detect 
growth inhibition in this yeast species: pseudo hyphae formation might 
disrupt absorption measurements (Zottich et al., 2011). 

Rc1 showed inhibitory activity in the order of magnitude of micro-
molar concentration, such as those reported for scorpion venom toxins. 
Serrulin, a glycine-rich native peptide of the T. serrulatus scorpion he-
molymph, showed the minimal inhibitory concentration (MIC) of 1.5–3 
μM and 3–6 μM against C. albicans and Aspergillus niger, respectively 
(Oliveira et al., 2019). Ts1, the major toxin from T. serrulatus venom, 
showed 100% inhibition against A. nidulans from 4.36 μM (Santussi 
et al., 2017). Stigmurin from T. stigmurus venom showed MIC of 37.5 μM 
against C. albicans, and its analogues of 4.69–9.38 μM (Parente et al., 
2018). Other manuscripts report that the antifungal activity depends on 
fungal strain (de Melo et al., 2015; Guilhelmelli et al., 2016; Machado 
et al., 2016) and antifungal agent (Ahmadi et al., 2020). The scorpion 
venom D-amino acid analogue dKn2–7 from Mesobuthus martensii 
showed an amphotericin B-like killing kinetics for C. albicans with rapid 
onset of antifungal activity (Snyder et al., 2021). It is interesting to note 
that R. crassicauda venom showed inhibitory activity against C. albicans 
and C. parapsilosis at a concentration 10–50 times lower than that re-
ported for T. serrulatus venom (1 and 5 mg/mL) against the growth of 
A. nidulans, A. terreus, P. corylophilum, and P. verrucosum (Santussi et al., 
2017). 

In conclusion, this study pioneer investigated the venom, mucus, and 
the major toxin of R. crassicauda scorpion for antifungal potential 
against C. albicans and C. parapisilosis strains. The isolated toxin, Rc1, 
exhibited the most potent antifungal efficacy against both strains tested. 
Future studies involving a wider range of R. crassicauda venom-derived 
toxins and analysis of peptide effects on host tissues are required to 
better determine if the scorpion venom could be a source of potential 

and novel antifungal drugs. 
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