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The interaction of SARS-CoV-2 with the human immune system is at the basis of the
positive or negative outcome of the infection. Monocytes and macrophages, which are
major innate immune/inflammatory effector cells, are not directly infected by SARS-CoV-2,
however they can react to the virus and mount a strong reaction. Whether this first
interaction and reaction may bias innate reactivity to re-challenge, a phenomenon known
as innate memory, is currently unexplored and may be part of the long-term sequelae of
COVID-19. Here, we have tested the capacity of SARS-CoV-2 and some of its proteins to
induce innate memory in human monocytes in vitro. Our preliminary results show that the
Spike protein subunits S1 and S2 and the entire heat-inactivated virus have no substantial
effect. Conversely, monocytes pre-exposed to the nucleocapsid N protein react to
subsequent viral or bacterial challenges with an increased production of anti-
inflammatory IL-1Ra, a response profile suggesting a milder response to new infections.
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INTRODUCTION

The novel coronavirus SARS-CoV-2, which suddenly emerged in December 2019, is still haunting
mankind and has affected not only the healthcare systems but also the global socio-economic
balances (1–3). COVID-19, the disease caused by the virus, was designated as a global pandemic by
the World Health Organization, with more than 534 million confirmed cases and over 6.3 million
confirmed deaths, as of June 2022 (4). Taking advantage of the recent progress in virology,
molecular biology and pharmacology, and thanks to an amazing effort of the international scientific
community, both in academia and industry, and a huge resource allocation, we were rapidly able to
dissect and understand the SARS-CoV-2 structure, functions, lifecycle, and pathological
characteristics (5–9). This led in a very short time to vaccine development and to several
pharmacological approaches to treat or reduce the severity of patients’ symptoms (2, 10, 11).

Despite the rapid and huge progress in understanding the interactions between the virus and the
human immune system, much is still unknown to explain/predict the variability of immune
responses that determines different susceptibility to severe effects, reactivity to re-infection, or
response to vaccination.

Specific antiviral immunity is mainly based on the development of neutralizing antibodies and
cytotoxic CD8+ T cells, while innate immune reactions encompass the activation of inflammatory
org July 2022 | Volume 13 | Article 9636271
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protective responses triggered by recognition of viral patterns by
membrane and cytoplasmic pattern-recognition receptors (12).
While vaccination strategies are currently based on the
generation of specific anti-viral immune memory, much less
emphasis has been dedicated to harnessing the protective
potential of innate immunity and its memory capacity.

The concept of innate immune memory, i.e., a change in the
non-specific reactivity to challenges of innate immune cells
previously exposed to various stimuli, is well known in plants,
invertebrates and also in vertebrates (13–15). Thus, it can be
hypothesized that innate memory, induced by previous exposure
to infections or other challenges (including vaccination), may
participate to the effectiveness of subsequent defensive innate
responses in a personalized fashion, which is dependent on
individual history of pathogen/antigen exposure: the
“immunobiography” (16).

While abundant information is available on the specific
functions and kinetics of the adaptive immune response to
SARS-CoV-2 (17–19), less is established regarding the balance
between protective and detrimental effects of innate immune
responses in COVID-19. A general increase in the circulating
levels of inflammatory cytokines has been observed (possibly
secondary to barrier disruption and release of bacterial products)
in parallel to downregulation of myeloid cells’ markers and
function (20). There is clear evidence that the variability in
innate immune system components is a main contributor to
the heterogeneous disease course observed for COVID-19 (20–
22) and in the response to vaccination (23). Thus, it is
fundamental to understand if and how interaction of innate
cells with SARS-CoV-2 induces an innate memory, and whether
such memory may contribute to future protection or to post-
infection pathologies, as suggested by epigenetic studies (24).

Here, we provide preliminary evidence that the SARS-CoV-2
nucleocapsid protein N, as opposed to other viral components,
can induce innate memory in human primary monocytes in
culture. This memory is limited to a significant increase in the
production of the anti-inflammatory cytokine IL-1Ra in
response challenges, suggesting a less inflammatory secondary
reactivity. On this basis, we hypothesize that innate memory to
viral components may contribute to the overall response to
subsequent challenges (viral or bacterial infections or re-
infections), including response to vaccination. The large inter-
individual variability suggests the needs for a personalized
assessment, in order to predict the features of innate/
inflammatory reactivity to future challenges in previously
infected individuals.
MATERIALS AND METHODS

Selection of Stimuli
The human recombinant coronavirus SARS-CoV-2 nucleocapsid
protein (N; ab272107) was expressed in E. coliwith a C-terminal His
tag. Expression in E. coli produces a non-glycosylated protein,
similar to the “natural” protein. Human recombinant Spike glyco-
protein subunit 1 (S1; ab 272105) and subunit 2 (S2; ab272106) were
Frontiers in Immunology | www.frontiersin.org 2
expressed in HEK 293 cells as chimeras with a C-terminal Fc tag.
Recombinant proteins were purchased from Abcam (Milan, Italy).
LPS contamination was checked in-house with the chromo-genic
LAL assay Pyros Kinetix® Flex (Associates of Cape Cod, Inc., East
Falmouth, MA, USA). The endotoxin contamination was 353 EU/
mg for N, 26 EU/mg for S1 and 7 EU/mg for S2. Heat-inactivated
SARS-CoV-2 (ATCC VR-1986HK) was obtained from LGC
standards (Milan, Italy); LPS from E. coli O55:B5 was from Sigma
Aldrich® (Merck KGaA, St. Louis, MO, USA); the TLR7/8 agonist
Resiquimod (R848; cat. tlrl-rR848, purity ≥ 95% by UHPLC) was
purchased from InvivoGen (San Diego, CA, USA). R848 was devoid
of TLR2 (lipoproteins) and TLR4 agonist activity, tested on HEK-
Blue TLR2 and TLR4 cells.

Concentration of viral stimuli to be used in culture was based
on preliminary dose-response experiments, viability assessment
and LAL results, while concentrations of reference stimuli (LPS
and R848) were selected based on previous experience and ad hoc
dose-response assessment (data not shown). Thus, the same
concentration of 1 µg/mL was selected for N, S1 and S2, which
corresponded to an endotoxin contamination of 0.35, 0.03 and
0.01 EU/mL. Since 1 EU roughly corresponds to 100 pg of LPS,
the LPS contamination of N was estimated around 35 pg/mL in
the assay, a concentration unable to induce monocyte activation
in our hands. For the whole heat-inactivated virus, 5x105 RNA
genome copies were used as stimulus in culture, based on
preliminary dose-response experiments (data not shown).

Human Monocyte Isolation
Blood was obtained from anonymized healthy SARS-CoV-2
negative non-vaccinated donors, upon informed consent and in
agreement with the Declaration of Helsinki. The protocol was
approved by the Regional Ethics Committee for Clinical
Experimentation of the Tuscany Region (Ethics Committee
Register n. 14,914 of May 16, 2019). Monocytes were isolated by
CD14 positive selection with magnetic microbeads (Miltenyi
Biotec, Bergisch Gladbach, Germany) from peripheral blood
mononuclear cells (PBMC), obtained by Ficoll-Paque gradient
density separation (GE Healthcare, Bio-Sciences AB, Uppsala,
Sweden). Monocyte preparations used in the experiments were
> 95% viable and > 95% pure (assessed by trypan blue exclusion
and cytosmears).

Monocytes were cultured in culture medium (RPMI 1640 +
Glutamax-I; GIBCO by Life Technologies, Paisley, UK)
supplemented with 50 µg/mL gentamicin sulfate (GIBCO) and
5% heat-inactivated human AB serum (Sigma-Aldrich). Cells
(1x105) were seeded in a final volume of 100 µL in 96-wells flat
bottom plates (Corning® Costar®; Corning Inc. Life Sciences,
Oneonta, NY, USA) at 37°C in moist air with 5% CO2. Monocyte
stimulation was performed after overnight resting.

Human Monocyte Activation and Induction
of Innate Memory
For assessing the primary response to stimulation, monocytes
were exposed for 24 h to culture medium alone (medium/
negative control) or containing LPS (positive bacterial
control, 1 ng/mL), R848 (positive viral control, 0.5 µg/mL),
July 2022 | Volume 13 | Article 963627
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heat-inactivated SARS-CoV-2 virus (5x105 RNA copies), N (1
µg/mL), S1 (1 µg/mL) or S2 (1 µg/mL). Cell viability,
measured both as lack of LDH release (LDH-Cytotoxicity
Colorimetric Assay Kit; BioVision, Inc., Milpitas, CA, USA)
and as metabolic activity (reduction of MTT to formazan) (25)
was unaffected by treatment (data not shown). At the end of
the exposure time, all supernatants were collected. For
memory experiments, cells were then washed and cultured
with fresh culture medium for 7 additional days (one medium
change after 4 days). During this period, after the activation
induced by previous stimulation subsides, cells return to their
baseline status (as determined by evaluation of inflammation-
related cytokines in the supernatant; data not shown). At the
end of the resting phase, the supernatant was collected and
cells were challenged for 24 h with fresh medium alone or
containing 5 ng/mL LPS, 2.5 µg/mL R848, or 5 µg/mL N (i.e., a
5x higher concentration than in the primary stimulation),
according to the standard protocols for in vitro innate
memory assessment (14, 15). All supernatants (after the first
stimulation, after the resting phase and after the challenge
phase) were frozen at -80°C for subsequent cytokine analysis.
By visual inspection, cell viability and cell number did not
substantially change in response to the different treatments.

Cytokine Analysis by Multiplex ELISA
Samples were tested for the presence of cytokines and
chemokines by commercial ELISA-based microarrays that
simultaneously measure multiple proteins in a single sample
aliquot. Multiplex Bio-Plex Pro™ Human Cytokine 8-plex
Assay (cat. M50000007A) was used for assessing the
production of IL-2, IL-4, IL-6, IL-8, IL-10, TNFa, IFN-g,
and GM-CSF. Singleplex for IL-1b (cat. 171B5001M) and
IL-1Ra (cat. 171B5002M) were also included. Samples were
run according to the manufacturer’s instructions. Cytokines
were analyzed with the Bio-Plex200 System using the Bio-Plex
Manager™ software, and data were analyzed by the Bio-Plex
Data Pro™ software, using five-parametric curve fitting. For
each cytokine, assay ranges and LOD were provided by the
manufacturer. All reagents and instruments, including
Washing Station and Shaker Incubator, were from BIO-
RAD Laboratories, Inc. (Hercules, CA, USA). Two repeated
measurements were made for each marker for each donor. The
symbols reported in the figures are the averages of such
repeated measurements.

Statistical Analysis
Data were analyzed using the GraphPad Prism 6.01 software
(GraphPad Inc., La Jolla, CA, USA). For cytokine production,
results are presented as ng produced cytokine/106 plated
monocytes. Results from individual donors are reported as
mean values of 2-3 replicates (each tested with technical
duplicates in ELISA). Average values of individual donors’
data are reported as light grey columns. Statistical significance
of differences is indicated by p values, calculated using one
way ANOVA and Dunnett’s Multiple Comparison.
Frontiers in Immunology | www.frontiersin.org 3
RESULTS

Primary Response of Human Monocytes
to Inactivated SARS-CoV-2 or
Its Components
The primary response of humanmonocytes to different SARS-CoV-2
stimuli was assessed after exposure in vitro for 24 h. Monocytes are
key innate immune cells responsible of inflammatory defensive
responses, and their activation was evaluated in terms of
production of four innate cytokines, the inflammatory factors
TNFa and IL-6, and the anti-inflammatory cytokines IL-10 and
IL-1Ra (Figure 1). As positive control, cells were exposed to LPS or
R848, potent activators of human monocyte innate/inflammatory
responses that mimic bacterial and viral challenges, respectively. The
concentrations of LPS (1 ng/mL) and R848 (0.5 µg/mL) were selected
in order to induce a measurable but not maximal response (data not
shown). The viral agents used were the heat-inactivated SARS-CoV-2
virus (5x105 RNA genomic copies/well; 5:1 vs. monocytes), the
nucleocapsid protein N (1 µg/mL), the S1 subunit of the Spike
protein (responsible for viral binding to target cells; 1 µg/mL) and
the S2 subunit of the Spike protein (responsible for viral entry in
target cells; 1 µg/mL). The endotoxin contamination of the
recombinant viral proteins was below monocyte activation
FIGURE 1 | Primary innate immune primary response to inactivated SARS-
CoV-2 or its proteins in human monocytes. Human monocytes isolated from
blood of four individual donors (green, red, blue, and yellow symbols) were
cultured for 24 h in culture medium alone or containing the inactivated SARS-
CoV-2 virus (5 x105 copies), or the viral proteins N, S1, S2 (all at 1 µg/mL).
The production of TNFa (upper left), IL-6 (upper right), IL-10 (lower left) and
IL-1Ra (lower right) was measured in the 24 h supernatants by ELISA.
Medium alone was used as baseline value, LPS (1 ng/mL) and R848 (0.5 µg/
mL) were used as positive controls. Data are presented as individual donors’
values (colored symbols) and as mean of the individual values (gray columns).
Statistical significance: * p <0.05; ** p <0.01; *** p <0.01; **** p <0.0001.
July 2022 | Volume 13 | Article 963627
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threshold (see Materials and Methods). Monocytes from four SARS-
CoV-2 negative non-vaccinated donors were tested.

As shown in Figure 1, both LPS and R848 were able to induce
a substantial production of the inflammatory factors TNFa and
IL-6 and of the anti-inflammatory cytokine IL-10, although with
a high inter-individual variability (which in some cases did not
allow for reaching statistical significance). For the other anti-
inflammatory cytokine IL-1Ra, as expected, a measurable
constitutive production was evident in unstimulated cells,
which was increased by exposure to LPS or R848. Among the
viral agents, only N showed the capacity to stimulate monocytes
(in 2/3 of 4 donors), whereas the inactivated whole virus and the
two Spike proteins were essentially inactive.

The production by monocytes of other inflammation-related
factors was also examined. Data for the inflammatory cytokine IL-
1b, the chemokine IL-8, the immune interferon IFN-g and the
growth factor GM-CSF are reported in Supplementary Figure S1,
while the production of the T cell cytokines IL-2 and IL-4 was
undetectable (data not shown). Again, N was the only viral factor
able to activate monocyte responses (evident for IL-8 and GM-
CSF production in 3 out of 4 donors), which were in the same
range as those induced by the positive controls LPS and R848.
These results partially confirm a previous report, showing that N
could induce the production of IL-6 and IL-10 in human
monocytes, but not TNFa and IL-1b (26). At variance with the
same study, here we could not see any effect by S1. The differences
in the recombinant protein constructs and in the exposure time (1
vs. 3-5 days), and the fact that the endotoxin contamination was
not assessed in the other study may explain the different result.

Secondary Memory Response of Human
Monocytes Primed With Inactivated
SARS-CoV-2 or Its Components
After the primary response (Figures 1 and S1), cells were washed
and cultured for 7 additional days in fresh culture medium to
allow extinction of activation and return to baseline. The culture
medium was refreshed after 4 days. The extinction of cell
activation was confirmed by examining the production of
cytokines released in the culture medium at the end of the
resting period (representing the cytokine release in the last 3
days of resting) (data not shown). After the extinction period,
cells were either exposed to medium alone (control) or
challenged with 5x higher concentration of LPS (representing a
bacterial challenge) or R848 (representing a viral challenge), in
order to assess the development of a memory response able to
react to more severe challenges. LPS priming was used as control
of LPS challenge, while R848 priming was used as control of
R848 challenge. As for the primary response, the memory
response was assessed in terms of production of inflammatory
and anti-inflammatory cytokines, and the results are reported in
Figures 2 and 3 for the major inflammatory (TNFa, IL-6) and
anti-inflammatory (IL-10, IL-1Ra) cytokines.

As expected, LPS challenge of medium-primed cells showed a
general induction of TNFa, IL-6 and IL-10 production, but no
increase over the substantial baseline production of IL-1Ra
(columns “medium” vs. “Control” in Figure 2). Although the
Frontiers in Immunology | www.frontiersin.org 4
increase did not always reach statistical significance on average,
this was evident at the individual donor’s level. LPS-primed cells
did not show the development of a tolerance memory response
(columns “LPS” vs. “medium”) relative to the inflammatory
cytokine TNFa, while this was small but detectable in 2/4
donors for IL-6, confirming the variability in the development
of LPS tolerance already observed in other subjects (15, 27, 28). A
tendency to a potentiated response could be observed in LPS-
primed cells in terms of production of the anti-inflammatory
factor IL-10 (although not reaching statistical significance), while
a significant increase in IL-1Ra was evident. Priming with the
inactivated virus did not have substantial effects on the response
to the LPS challenge (columns “Virus” vs. “medium”). When
examining the memory-inducing capacity of viral proteins, it was
observed that the S1 and S2 subunits of the Spike protein had no
memory-inducing activity (columns “S1” and “S2” vs.
“medium”), similar to the inactivated virus. Priming with the
nucleocapsid protein N, on the other hand, induced a significant
and considerable potentiation of IL-1Ra production (columns
“N” vs. “medium”). When examining the memory effects of virus
or viral components on other innate immune factors induced by
FIGURE 2 | Innate immune memory response to a bacterial challenge in
human monocytes primed with inactivated SARS-CoV-2 or its proteins.
Human monocytes isolated from blood of four individual donors (green, red,
blue, and yellow symbols) were cultured for 24 h in culture medium alone
(column “medium”) or containing LPS (1 ng/mL, positive bacterial control,
column “LPS”), the inactivated SARS-CoV-2 virus (5 x105 copies, column
“virus”), N, S1, or S2 (all at 1 µg/mL; columns “N”, “S1” and “S2”). Cells were
then washed and rested for 7 days in the absence of stimuli, then challenged
for 24 h in fresh medium alone (column “control”) or containing 5 ng/mL LPS.
The column “control” values from cells that received no challenge are
included in each panel as “control” and encompasses the values from primed
and unprimed cells that received no challenge, i.e., fresh medium alone.
These values did not differ between primed and unprimed cells, confirming
the return to baseline after the resting period. The production of TNFa (upper
left), IL-6 (upper right), IL-10 (lower left) and IL-1Ra (lower right) was
measured in the 24 h supernatants by ELISA. Data are presented as
individual donors’ values (colored symbols) and as mean of the individual
values (grey columns). Statistical significance: * p <0.05; ** p <0.01.
July 2022 | Volume 13 | Article 963627
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the bacterial challenge LPS (Supplementary Figure S2), we
observed that neither LPS nor virus/viral components had
clear effects on the production of the inflammatory cytokine
IL-1b, the chemokine IL-8, the immune interferon IFN-g and the
growth factor GM-CSF, again with inter-individual variability
of response.

We also assessed the capacity of SARS-CoV-2 and its
components to induce innate memory to a viral challenge,
using R848 as prototypical viral agent (Figure 3). As a control,
priming with R848 was included. The results show that
unprimed monocytes respond to R848 challenge with a potent
production of TNFa, IL-6 and IL-10 (in 3/4 donors), generally
higher than that induced by the bacterial challenge. Conversely,
the R848 challenge was completely inactive in modulating the
constitutive production of IL-1Ra (columns “medium” vs.
“Control”). Priming with R848 potentiated the secondary
response to the R848 (columns “R848” vs. “medium”) in all
donors for TNFa, IL-6 and IL-1Ra, and in 2/4 donors for IL-10
(although the average increase reached statistical significance
only for TNFa and IL-1Ra). Priming with the inactivated virus
had little/no effect on the secondary response to the R848 virus-
like challenge (columns “virus” vs. “medium”). Priming with the
Frontiers in Immunology | www.frontiersin.org 5
nucleocapsid protein N showed potentiation of the memory
response to R848 in terms of IL-1Ra production (in all 4
donors), while having limited/no effect of the secondary
production of TNFa, IL-6 and IL-10 (columns “N” vs.
“medium”). The priming with the Spike protein subunits S1
and S2 showed no substantial variations relative to controls
(columns “S1” and “S2” vs. “medium”). We have additionally
examined other four cytokines (IL-1b, IL-8, IFN-g, GM-CSF;
Supplementary Figure S3). All four factors are produced by
medium-primed cells in response to R848 (columns “medium”
vs. “Control”). While the production of IL-8 was never
significantly modified by priming with any agent (upper right
panel), priming with R848 potentiates the production of IL-1b,
IFN-g and GM-CSF (columns “R848” vs. “medium” in the left
and lower right panels). As in other cases, priming with the
inactivated virus had no memory effect (columns “Virus” vs.
“medium”). Priming with N showed a potentiation of the
response to R848 in terms of IL-1b production in all donors
and GM-CSF in 3/4 donors (columns “N” vs. “medium”).

Eventually, we investigated the possibility that exposure to N
could induce a memory response in previously primed cells.
Thus, we have measured the production of cytokines in response
to N (5 µg/mL) in monocytes previously primed with medium
alone or containing LPS (1 ng/mL), R848 (0.5 µg/mL) or N (1 µg/
mL). The data in Figure 4 show that challenge with N could
induce a significant production of TNFa, and measurable levels
of IL-6, IL-10, IL-1b, IL-8 and GM-CSF in unprimed cells (of 3/4
donors), while unable to increase the constitutive production of
IL-1Ra and IFN-g (columns “medium”). None of the priming
agents used (LPS, R848, N) was able to induce a memory that
substantially changed the secondary response (although with
strong inter-individual variability), except in the case of IL-1Ra,
whose production in response to challenge with N was
significantly increased in cells primed with LPS, R848 or N.
DISCUSSION AND CONCLUSIONS

This study provides initial evidence that the major SARS-CoV-2
structural nucleocapsid (N) protein has the ability to induce an
innate memory that changes the monocyte response profile upon
re-challenge. It should be noted that these results are
preliminary, since only cytokine production was examined,
and their interpretation is likewise limited, since only four
non-vaccinated donors are included.

Several studies have pointed to a possible role of innate
memory, induced by live attenuated vaccines such as BCG, for
preventing the severe effects of SARS-CoV-2 infection (29, 30).
On the other hand, the innate immune/memory profile of
monocytes/macrophages from convalescent or vaccinated
subjects revealed that both the whole infective virus and the
Spike protein encoding vaccine are able to induce a
transcriptional and epigenetic reprogramming suggestive of
establishment of innate memory (19, 23, 24). Notably, in vitro
challenge of blood leukocytes from convalescent individuals
showed an increased production of the inflammatory/
activating cytokines IL-1b and IL-6, based on an extensive
FIGURE 3 | Innate immune memory response to a viral challenge in human
monocytes primed with inactivated SARS-CoV-2 or its proteins. Human
monocytes isolated from blood of four individual donors (green, red, blue, and
yellow symbols) were cultured for 24 h in culture medium alone or containing
R848 (0.5 µg/mL, positive viral control), the inactivated SARS-CoV-2 virus (5
x105 copies), or the viral proteins N, S1, and S2 (all at 1 µg/mL). Cells were
then washed and rested for 7 days in the absence of stimuli, then challenged
for 24 h in fresh medium alone or containing 2.5 µg/mL R848. The production
of TNFa (upper left), IL-6 (upper right), IL-10 (lower left) and IL-1Ra (lower
right) was measured in the 24 h supernatants by ELISA. The values from cells
that received no challenge are included in each panel as “control” and
encompass the values obtained from primed and unprimed cells (which did
not differ, confirming the return to baseline after the resting period). Data are
presented as individual donors’ values (colored symbols) and as mean of the
individual values (gray columns). Statistical significance: * p <0.05; ** p <0.01;
*** p < 0.001; **** p <0.0001.
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epigenetic reprogramming of both CD14+ and CD16+
monocytes (24). Indeed, inhibitors of IL-6 (e.g., the anti-IL-6
receptor Tocilizumab) and of IL-1b (Anakinra) have been used
in the therapy of COVID-19. While the treatment with
Tocilizumab showed contradictory results regarding its efficacy
(31–33), the use of the recombinant form of the IL-1 receptor
antagonist IL-1Ra Anakinra showed encouraging results in
decreasing clinical parameters and reducing overall mortality
(34–36).

Bearing in mind that these results are preliminary, the major
finding of our study is that one of the SARS-CoV-2 proteins, the
nucleocapsid protein N, can induce innate memory in human
monocytes (from subjects that were not previously infected by
SARS-CoV-2 or vaccinated), and that this memory was almost
exclusively represented by an increased capacity to produce the IL-1
inhibitor IL-1Ra. While confirming that innate memory is non-
specific (the same memory response in terms of increased IL-1Ra
production is triggered by challenge with LPS, R848 or N), this
finding points to the importance of the N protein in stimulating an
anti-inflammatory compensatory mechanism to control the
Frontiers in Immunology | www.frontiersin.org 6
cytokine storm and the tissue inflammation caused by the
infection. Only in response to a strong viral-like challenge (R848),
priming with N could also result in enhanced production of IL-1b.
This suggests that the memory induced by N is preferentially active
in anti-viral responses and includes the potentiation of a very
important defensive effector molecule while, at the same time,
being able to control unwanted inflammation through the
enhanced production of anti-inflammatory IL-1Ra. Upregulation
of IL-1Ra is expected to inhibit IL-1-dependent inflammation but
also the entire inflammatory cascade initiated by IL-1b (37, 38).
Conversely, a tendency of decreased production of the
inflammatory cytokines TNFa and IL-6 was observed in cells
primed with the two spike protein subunits S1 and S2 and
challenged with the R848. Since only two donors could be
examined for S1 and S2 priming, this tendency cannot be
considered reliable. However, it may suggest that different parts of
the virus can prime the innate immune system towards a milder
secondary reaction by using different mechanisms (increase of anti-
inflammatory reactions induced by N protein priming and a
concomitant decrease of inflammatory responses induced by
FIGURE 4 | Innate immune memory response to a challenge with the N protein in human monocytes primed with bacterial or viral agents. Human monocytes
isolated from blood of four individual donors (green, red, blue, and yellow symbols) were cultured for 24 h in culture medium alone (column “medium”) or containing
LPS (1 ng/mL, column “LPS”, control bacterial agent), R848 (0.5 µg/mL, column “R848”, control virus-like agent) or N (1 µg/mL, column “N”). Cells were then
washed and rested for 7 days in the absence of stimuli, then challenged for 24 h in fresh medium alone or containing 5 µg/mL N. The production of TNFa, IL-6, IL-
10, IL-1Ra (upper panel from right to left) and IL-1b, IL-8, IFN-g, GM-CSF (lower panel from right to left) was measured in the 24 h supernatants by ELISA. The
values from cells that received no challenge are included in each panel as “Control” and encompass the values obtained from primed and unprimed cells (which did
not differ, confirming the return to baseline after the resting period). Data are presented as individual donors’ values (colored symbols) and as mean of the individual
values (gray columns). Statistical significance: * p <0.05; ** p <0.01; *** p < 0.001; **** p <0.0001.
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Spike protein priming). The fact that the whole virus could not
induce any memory response may be explained by the cross-
regulating effects of the different viral components or by changes
induced by the inactivation process.

Table 1 summarizes the findings reported in this study and
highlight the strong and consistent potentiation effect of priming
with the N protein on IL-1Ra production, which may underlie a
less severe response to secondary infections, with a better control
of innate/inflammatory effector mechanisms.
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TABLE 1 | Summary of the capacity of SARS-CoV-2 and its proteins to induce innate memory in human monocytes.

Priming and challenge/memory stimuli Cytokine production*

TNFa IL-6 IL-10 IL-1Ra IL-1b IL-8 IFN-g GM-CSF

Priming with Memory response to
SARS-CoV-2 LPS (bacteria) no no no no no no no no

R848 (viruses) no no no no no no no no

N LPS (bacteria) no no no ↑↑ no no no no
R848 (viruses) (↑) no no ↑↑ ↑ no no (↑)
N (SARS-CoV-2) no no no ↑↑ no no no no

S1 LPS (bacteria) (↑) no no no no no no no
R848 (viruses) (↓) (↓) no no no no no (↓)

S2 LPS (bacteria) no no no no no no no no
R848 (viruses) (↓) (↓) no no no no no (↓)

R848 R848 (viruses) ↑ ↑ no ↑↑ ↑ no ↑ ↑
N (SARS-CoV-2) no no no ↑↑ no ↑ no no
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me 13 | Artic
*Cytokine production is expressed as increase (↑ or ↑↑), indicating increase and strong increase, respectively), decrease (↓) or no change (no) compared to medium-exposed cells.
Symbols within parentheses indicate dubious results, i.e., those in which the trend was observed in 3/4 donors (for N priming) and in which only two donors could be examined (for S1 and
S2 priming).
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