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A B S T R A C T

Objectives: To control epidemics, sites more affected by mortality should be identified.
Methods: Defining epidemic nodes as areas that included both most fatalities per time unit and
connections, such as highways, geo-temporal Chinese data on the COVID-19 epidemic were investigated
with linear, logarithmic, power, growth, exponential, and logistic regression models. A z-test compared
the slopes observed.
Results: Twenty provinces suspected to act as epidemic nodes were empirically investigated. Five
provinces displayed synchronicity, long-distance connections, directionality and assortativity – network
properties that helped discriminate epidemic nodes. The rank I node included most fatalities and was
activated first. Fewer deaths were reported, later, by rank II and III nodes, while the data from rank I–III
nodes exhibited slopes, the data from the remaining provinces did not. The power curve was the best
fitting model for all slopes. Because all pairs (rank I vs. rank II, rank I vs. rank III, and rank II vs. rank III) of
epidemic nodes differed statistically, rank I–III epidemic nodes were geo-temporally and statistically
distinguishable.
Conclusions: The geo-temporal progression of epidemics seems to be highly structured. Epidemic
network properties can distinguish regions that differ in mortality. This real-time geo-referenced
analysis can inform both decision-makers and clinicians.
© 2020 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
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Introduction

The challenges associated with the COVID-19 pandemic may
require novel approaches. Given the numerous asymptomatic
infections reported in this disease, actions that focus on
symptomatic individuals are prone to fail (Nishiura and Linton,
2020). Some classic concepts – e.g., ‘recovered’ and ‘contact
tracing’ � may not apply: patients regarded as recovered may be
test-positive and people without a travel history may be infected
(Lan et al., 2020; CDC, 2020). To avoid these ambiguities, here an
unambiguous metric was explored: mortality. To that end, geo-
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referenced data were investigated using a procedure grounded on
Network Theory (Meyers, 2007).

A network may be defined as a set of lines that connects circles
(nodes). Accordingly, an epidemic node could be categorized as the
smallest surface that (i) includes an explicit connection, (ii)
captures most infections per time point, and (iii) reports secondary
deaths (Rivas et al., 2012). Infected cities that possess road,
railroad, and/or air travel networks fit that definition. Networks
possess several properties, including directionality, assortativity,
synchronicity, and smallworld (long-distance) connections
(Meyers, 2007; Rivas et al., 2012; Watts and Strogatz, 1998).
Directionality refers to the temporal sequence and geographical
location of outbreaks. Assortativity distinguishes the magnitude of
infections reported by epidemic nodes of different influence on
epidemic dispersal. Synchronicity reveals epidemic nodes that are
activated at the same time and exhibit similar number of infections
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per unit of time. Smallworld connections are those that, regardless
of the distance between nodes, may induce outbreaks (e.g., air
travel connections).

While earlier studies have documented network properties in
rapidly disseminating epidemics that affect non-human species,
such properties have not yet been explored in human epidemics
(Rivas et al., 2012). Hence, this study pursued to: (i) elucidate
whether the early COVID -19 epidemic revealed network-like
properties; (ii) distinguish epidemic nodes; and (iii) using real-
time assessments, confirm or reject the properties and classi-
fications previously mentioned.

Material and methods

Data

Epidemic and georeferenced data were collected from public
sources as well as ESRI Data and Maps for ArcGIS (2019) and
ArcGIS Living Atlas of the World (ESRI Inc., Redlands, CA, USA)
(JHU, 2020; Harvard University, 2020; NBSC, 2020; GHS, 2020).
Earlier epidemic data (reported before January 21, 2020) were
extracted from a published study (Huang et al., 2020). While the
detection of epidemic nodes may require an operation described
elsewhere (Rivas et al., 2012), the absence of high-resolution
(point-based) georeferenced data prevented the use of that
procedure. In light of this limitation, an empirical analysis was
conducted on sites suspected to be acting as epidemic nodes, that
is, to determine whether they expressed network properties.
Epidemic nodes were differentiated by data patterns: those that
reported more fatalities were assigned the lowest ranks and those
presenting with fewer or no secondary deaths received the
highest rank. Therefore, one epidemic rank could include more
than one province.

Disease mapping

Maps were produced with ArcGIS Pro 2.5.0 (ESRI, Redland, CA,
USA). Analyses and figures were conducted or made with
commercial packages (IBM SPSS Statistics 24, IBM Corp, Armonk,
NY; and Minitab 18, Minitab LLC, State College, PA, USA).

Statistical analysis

Data patterns distinguished three epidemic nodes: (1) rank I
(Hubei only), (2) rank II (the sum of deaths reported in
Heilongjiang and Henan provinces), and (3) rank III (the sum of
deaths reported in Anhui and Chongqing provinces). To determine
whether the slopes of these epidemic nodes differed, six curve-
fitting regression analyses investigated linear, logarithmic, power,
growth, exponential, and logistic regression models, respectively.
Analyses and figures were conducted or made with commercial
packages (IBM SPSS Statistics 24, IBM Corp, Armonk, NY; and
Minitab 18, Minitab LLC, State College, PA, USA).

Results

Wuhan is the putative origin of the COVID-19 epidemic (Figure
1A). By February 22, 2020, neither population nor distance to
Wuhan correlated with the fatalities observed in 19 Chinese
provinces (both with p > 0.05, Supplementary Table S1 and
Supplementary Figure S2). A movie summarizes the geo-dynamics
of this epidemic (Supplementary Movie S3).

Not all provinces were epidemic nodes: Jiangxi and Jilin had one
fatality each (Figure 1B). Thus, these two provinces did not
generate secondary fatalities. In contrast, the slopes of geo-
temporal data on mortality differentiated, at least, three epidemic
nodes: (i) rank I (Hubei), (ii) rank II (Heilongjiang and Henan), and
(iii) rank III (Anhui and Chongqing) nodes (Figure 1C).

Henan and Heilongjiang exhibited synchronicity. In spite of
major differences (including distance to Hubei, and population
size), both provinces became activated at the same time and their
number of fatalities was similar, over time (Figure 1D). Heilong-
jiang also displayed smallworld (long-distance) epidemic connec-
tivity: its capital, Harbin, is 2254 km away from Wuhan, Hubei, i.e.,
a �4.5 times longer distance than the 514 km that separate
Zhengzhou, Henan, from Wuhan, Hubei (Figure 1E).

Heilongjiang and Henan, as well as Anhui and Chongqing,
showed a pattern compatible with assortativity, i.e., nodes of
similar rank were associated with a similar level of mortality
(Figure 1C). While it is suspected that assortativity also occurred in
Hubei (press reports suggest at least two epidemic nodes
developed in their hospitals and in one prison) (China Prison,
2020), the lack of point-based data prevented its identification.

Temporal directionality was documented: epidemic nodes of
higher influence on epidemic dispersal (lower rank) grew in
number of fatalities before higher rank nodes did, e.g., the blue line
of data points was growing before the green line, the green line was
growing before the red line, and the red line was growing before
the orange line (vertical lines, Figure 1F). Therefore, the data
provided graphic evidence on the geographical and temporal
location of epidemic nodes as well as Network properties, such as
synchronicity and directionality.

To elucidate whether the geo-temporal series depicted in Figure
1B and C were similar, a curve-fitting regression algorithm tested
the slopes of rank I–III nodes. Data patterns distinguished three
epidemic nodes: (1) rank I (Hubei only), (2) rank II (the sum of
deaths reported in Heilongjiang and Henan provinces), and (3)
rank III (the sum of deaths reported in Anhui and Chongqing
provinces). To determine whether the slopes of these epidemic
nodes differed, six curve-fitting regression analyses investigated
linear, logarithmic, power, growth, exponential, and logistic
regression models, respectively.

The time series correlated with the mortality series. The power
curve was the best fitting model for all three slopes. Using the
unstandardized slope regression coefficients and standard errors
of the coefficients for the power curve models, z-tests compared
pairs (rank I vs. rank II, rank I vs. rank III, and rank II vs. rank III) of
regression coefficients (Paternoster et al., 1998). z-test values
ranged between 4.73 and 11.88. All three z-test values exceeded the
z-critical value for alpha = 0.001 two-tailed test, which is z = 3.30.
Therefore, rank I-III nodes were statistically significantly different
from one another.

Discussion

Findings supported the view that, once the epidemic structure
is consolidated (after a brief phase reveals a linear growth in
fatalities), the epidemic progression may display network proper-
ties. While anticipated 22 years ago (Watts and Strogatz,1998), this
is the first demonstration of network properties – including
smallworld connections – in human epidemics. Supporting the
potential epidemic role of long-distance (smallworld), rapidly
connecting structures, the cumulative number of fatalities did not
correlate with either Euclidian distance or population. In contrast,
a network-based, geo-temporal analysis detected and differenti-
ated three epidemic nodes. Because classic epidemiological
concepts –including Euclidian distances, geographical assessments
of population density, and the ratio of secondary infections
generated per primary infections (also known as the basic
reproductive number or R0) – are sensitive to heterogeneous
geographical structures, findings provide a real-time, directly
measurable alternative to measure and monitor epidemic



Figure 1. A. Location of the epidemic network. Centered on Wuhan, the province of Hubei shows three (road, railroad and air) networks. In addition, Wuhan has river-
mediated connections (not shown). B. Temporal progression of covid-19 fatalities in twenty Chinese areas. C. Differentiation of epidemic nodes. To facilitate visualization, the
same plot shown in A is displayed with truncated data. At least four groups of data patterns are observed: (i) the rank I node (composed only by Hubei data), which includes
most fatalities at all times, (ii) the rank II node (composed of Heilongjiang and Henan data), which reported the second highest number of deaths; (iii) the rank III node
(composed of Anhui and Chongqing data), which reported fewer deaths and they were observed after those of rank I and II nodes; and (iv) the remaining provinces, which did
not display a slope and generated only one or no secondary fatalities. D. Synchronicity. A truncated set displays the data of rank I and II nodes. It is shown that Heilongjiang and
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progression (Meyers, 2007; Rivas et al., 2012; Li et al., 2011).
Epidemic networks are not limited to large countries, such as
China: they can also be observed in small regions (Rivas al et al.,
2012).

To provide a context to these findings, cultural, demographic
and biological perspectives are discussed. The Chinese New Year, in
2020, was celebrated in January 25. It is included within the 40-day
long Spring Festival (January 10 to February 18), when most
Chinese citizens take their annual vacations. Hence, every year,
billions of trips are conducted during this period of time (Tian et al.,
2020; Chen et al., 2020). Press agencies have estimated that up to 5
million inhabitants of Wuhan left the city prior to the lockdown
imposed on January 23, 2020; of whom about 70% visited other
places within the Hubei province (Associated Press, 2020).
Therefore, the hypothesis that the road, railroad, as well as air
and river connecting networks facilitated viral dispersal is not
rejected.

It is suggested that the fact that epidemic networks show highly
structured (non-random) and distinct patterns can foster novel
research opportunities in basic science. Because specific geograph-
ical locations are both fragmented (heterogeneous) and dynamic –

at least seasons and human mobility differ over time), they cannot
be assumed or hypothesized. Yet, they can be explicitly measured.
These precisions matter when responses, to be rapidly deployed
and effective, have to be geographically specific. That is so because
the Critical Response Time (time available to choose and deploy a
policy expected to be successful) may be extremely short in a
rapidly disseminating epidemic (Rivas et al., 2003).

Here connectivity – not contact tracing � was emphasized. Two
reasons explain this priority: (i) in epidemics with asymptomatic
patients (as clearly shown in the ‘Diamond Princess’ cruise case,
where 86% of test-positive individuals were asymptomatic) (CNBC,
2020), control measures that depend on detection of symptomatic
patients will likely fail; and (ii) to estimate where the epidemic is
going, geo-referenced information on connectivity is needed.

While this study lacked high-resolution georeferenced data and
– given the uncertainties associated with asymptomatic cases –

focused on mortality, it may apply when massive testing is
conducted and geo-referenced point-based data are available.
Findings suggest that it is possible to design responses that, instead
of bringing patients to hospitals, bring hospitals to the patients.

For example, let us assume that a fatality and/or a test-positive
individual was reported in a specific factory/neighborhood/school
of a medium-size city. Using point-based data, it may be

found that there is a bridge connecting the affected area with
the rest of the city – a point that, if disassembled, can prevent
epidemic dispersal, provided that, in addition and immediately,
policy-makers send a mobile, emergency hospital to that area
(including medical personnel) and two isolation perimeters are
established. The purpose of the outer perimeter is to create a
parking lot to be used by vehicles that come to the isolated area
(providing food and medical supplies), which cannot return to the
city unless they are disinfected and remain in quarantine in the
outer perimeter. Instead of quarantining people, the outer
perimeter would quarantine used vehicles and/or equipment. As
Henan (the two provinces included in the rank II node) became activated at the same time
E. Smallworld (long-distance) connections. A map that includes the provincial capitals of
these cities and Wuhan, Hubei, supports the notion that both short- and long-distance co
(and synchronicity with Henan) even though the population of Heilongjiang is �2.5 smal
random pattern in the temporal sequence of events: rank I node displayed a linear or e
increase; similarly, the mortality of the rank II node were increasing while the number 

rank’ directionality in the number of fatalities. G. Earliest data patterns. A truncated plot d
not show a structured or distinct pattern. Instead, both the data collected in Hubei and obs
brown rectangle). Only later (about a month later in Hubei, one week later in Henan), a sta
which later becomes quadratic or exponential (blue line). Therefore, to be both effective a
interpretation of the references to color in this figure legend, the reader is referred to 
currently demonstrated in South Korea, this proposal is feasible,
less disruptive and, potentially, more effective than delayed and
generic (non-georeferenced) policies (Lessons from SK, 2020).

Furthermore, real-time statistical testing of data gathered from
sites suspected to be epidemic nodes may rapidly confirm or reject
that hypothesis, as described here. While forecasts may be
erroneous when geographical features are not evaluated (Jewell
et al., 2020; Marchant et al., 2020), real-time assessments analyze
and describe facts (not assumptions) as they are, as soon as they
occur. For instance, analyses that can be conducted within a few
minutes can show where and when interventions are likely to be
successful (e.g. Hubei province, in December, 2019; or Henan, in
early February, 2020, Figure 1G) and confirm or reject the
hypothesis that a given site is an influential epidemic node.

The fact that bio-geo-temporal interactions may follow
Network properties complements and, probably, may expand
current research efforts on infectious diseases. One area of
paramount relevance is antimicrobial resistance (AMR). While
usually described with emphasis on bacterial pathogens and their
ability to reproduce in the presence of antibiotics, the survival of
viral pathogens to antiviral drugs is also included in the study
of AMR. While geo-referenced data on bacterial and viral strains, as
well as data on resistance against antibiotics and antiviral drugs
are available, they are necessary but not necessarily sufficient to
understand and/or predict how and/or when infectious diseases
will spread and where they are more likely to affect specific
subpopulations (Okeke and Edelman, 2001; Lauderdale et al.,
2004; Schaumburg et al., 2014; Tacconelli et al., 2018). The
exploration and use of geographically explicit network properties
may add a methodological tool to the study of AMR.

To materialize these possibilities, interdisciplinary teams are
required. While sometimes viewed as synonymous, multi- and
inter-disciplinarity are quite different: while multidisciplinary
teams rarely create new knowledge (they tend to use knowledge
already available, which does not necessarily apply to a new
problem, such as COVID-19), problem- and/or site-specific
problem-solving requires interdisciplinary research –which
includes but exceeds the perspectives of any one discipline
(Hittner et al., 2019). To study and control COVID-19, as well as
other epidemics, interdisciplinary teams could include, at least,
biomedical, cartographic, behavioral, logistical, computational,
educational and mathematical expertise. Such an approach, it is
argued, may facilitate urgently needed training on preparedness.
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