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ABSTRACT Mycobacterium abscessus (Mab) is an emerging pathogen that is highly
tolerant to current antibiotic therapies, and the current standard of care has a high
failure rate. Mycobacteriophages represent a promising alternative treatment that
have the potential to kill Mab with few side effects. However, the repertoire of
phages that infect Mab is limited, and little is understood about the determinants of
phage susceptibility in mycobacteria. Two studies from the Hatfull group (R. M. Dedrick,
B. E. Smith, R. A. Garlena, D. A. Russell, et al., mBio 12:e03431-20, 2021, https://doi.org/10
.1128/mBio.03431-20, and R. M. Dedrick, H. G. Aull, D. Jacobs-Sera, R. A. Garlena, et al.,
mBio 12:e03441-20, 2021, https://doi.org/10.1128/mBio.03441-20) shed new light on the
natural phage complement of Mab and provide some of the first insights into what fac-
tors might drive susceptibility to these phages. These studies not only lay the groundwork
for therapeutic development of more effective phage therapy in Mab but also provide a
foothold for studying how mobile elements such as phages and plasmids impact Mab
biology and evolution.
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Phages have multiple roles in the lives of bacteria. While their raison d’être is to ulti-
mately make more phages, their ability to carry DNA and mediate chromosomal

rearrangements makes them important genomic engineers. And, of course, they can
kill their hosts, allowing them to potentially be harnessed to fight bacterial infections.
Two papers from the Hatfull lab cover both aspects of phage biology for the pathogen
Mycobacterium abscessus (Mab) and help show the interrelationship of phages as tools
for both infection and evolution.

Mab infections are particularly difficult to treat. These bacteria are inherently toler-
ant to many antibiotics and can acquire resistance during the course of chronic infec-
tion. Recently, there has been some success in developing an alternative treatment,
using mycobacteriophages, a strategy that had apparent success in a patient with
cystic fibrosis (1). Unfortunately, the repertoire of known phages that can infect and kill
Mab is currently limited. The two studies published in mBio from Dedrick et al. (2, 3)
serve as a step toward expanding the arsenal of phages available for therapeutic appli-
cations. This work represents a tour de force in clinical isolate handling and characteri-
zation—Mab isolates from 78 patients living in 11 different countries were put through
a gambit of testing in order to better understand their phage susceptibility profiles,
pathways of acquired resistance, and their sprawling genetics. In some cases, this
knowledge was used to generate personalized phage therapies for people in dire need
with drug-resistant infections. This is a tremendous resource that has been enabled by
a network of students in the SEA-PHAGES program, who have collected, characterized,
and smartly named mycobacteriophages from around the world (4).
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Unfortunately, the authors were not able to find appropriate phages for all Mab
strains. This is not surprising, as Mab clinical isolates are incredibly diverse; only about
one-quarter of identified Mab genes are a part of the core genome that is present in all
isolates of the species (5). This high level of diversity is generated in large part by hori-
zontal gene transfer (6–8). Bacteriologists have long appreciated that phenotypic prop-
erties could be exchanged between bacteria. We now understand that a substantial
proportion of this exchange is mediated by bacteriophages, which are able to package
segments of the host genome and directly transfer that DNA to a new bacterium, as
well as serve as a nexus for genomic rearrangements (9). Much work has focused on
the transfer of clinically important genes that confer virulence or antibiotic resistance
to the recipient bacteria (10, 11). These events can allow bacteria to more rapidly adapt
to their environment than would be possible through chromosomal mutation and can
lead to the advent of highly pathogenic bacteria (12). In Mab, virulence and antibiotic
susceptibility can vary dramatically between clinical isolates (13–17), and the factors
that shape these characteristics are only partially understood. The broad diversity of
virulence-associated prophage genes as well as plasmid-derived transporters discov-
ered by Dedrick et al. provide a critical entry point into unraveling the factors that
determine Mab infectiousness and drug tolerance.

The logical focus on horizontal transfer of virulence and antibiotic resistance genes
has perhaps obscured the broader impact of phage-mediated gene transfer on bacte-
rial biology. Between 0.5 and 10% of the Mycobacterium tuberculosis genome may
have been acquired by evolutionarily recent horizontal gene transfer (18), and similar
trends are observed across nontuberculous mycobacteria (NTM). Further, in Mab,
phage-mediated gene transfer appears to occur on a faster timescale than chromo-
somal mutation, suggesting that phages likely play a major role in shaping the Mab ge-
nome beyond simply transferring virulence and antibiotic tolerance genes (5, 6). For
instance, in mycobacteria, the most highly represented category of horizontally acquired
genes is in metabolism (7, 10), which may reflect the importance of rapid acquisition of
genes in order to adapt to novel nutrient environments. The sheer abundance of pro-
phages identified by Dedrick et al. across Mab genomes further underscores the central
role phages play in determining the content and large-scale structure of the genome.
Prophages also shape the phage susceptibility profiles of their hosts via encoded defense
systems that protect against superinfection (19). Of additional interest is the plethora of
plasmids identified in this study that do not have immediately apparent biological func-
tions. These mobile elements are quite common across clinical isolates and may represent
important contributors to Mab biology.

Bacteriophage-mediated transfer of genes between hosts and genomic rearrange-
ments can result in mutual benefit for both bacterium and phage, but fundamentally,
phages are pathogens. As a result, bacteria experience selective pressure to evade
phage infection (20–22). This arms race between phage and host represents a second,
more indirect method by which phages shape bacterial genomes. The selective pres-
sures imposed on the bacterium can result in rapid evolution of a variety of compo-
nents of the bacterial cell, especially surface-exposed components that serve as the
entry point for phages (20). Preventing phage adsorption through modification of the
cell envelope is the first line of defense and may be the most prevalent phage resist-
ance mechanism (23). Adsorption requires conformational changes between multipro-
tein tail complexes and receptor proteins and sometimes relies on enzymatic process-
ing (24). This multistep, dynamic process is tunable through mutation. Other bacteria
exhibit mutations in phage receptor proteins, genes responsible for synthesizing those
proteins, and pathways that secrete extracellular matrix; some bacteria even secrete
competitive factors to obscure receptors (23). Surprisingly, mutants that clearly disrupt
adsorption have yet to be isolated in mycobacteria. Moreover, the cell envelope compo-
nents that function as receptors for mycobacteriophages are almost entirely unknown
(25).
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Dedrick et al. have revealed one clue that may help unravel the mystery of what dic-
tates phage susceptibility in Mab. They find that solid-medium colony morphology
(smooth versus rough) can predict susceptibility to phage and, perhaps, treatment out-
comes. Smooth clinical isolates, which represent nearly 40% of the strains examined in
this study, have limited susceptibility to phage, while rough strains are more vulnera-
ble. The underlying genetics and lipid chemistry that separate the mucoid, smooth-
edged morphotype from the dry, rough-edged morphotype are well documented (26).
Smooth strains have more surface glycopeptidolipids (GPLs) that are produced by syn-
thesis and transport genes includingmps1, mps2, and mmpL4. A smooth-to-rough tran-
sition can be attained by mutating these genes, but it is not fully understood why cells
convert in vivo and to what degree morphotype predicts pathogenicity. In general, the
morphotypes seem to be equally represented in Mab patient populations. Rough
mycobacterial variants have been described as more virulent and persistent (27, 28),
although this is an area of ongoing study.

The dramatic difference in susceptibility between smooth and rough morphotypes
warrants further examination of the mechanisms and determinants of phage adsorp-
tion. The loss of GPLs drives large-scale changes in the extracellular matrix that likely
alter the accessibility of phage receptor epitopes, but these changes could also alter
other processes such as phage dispersal. Mechanistic studies are needed to determine
why the smooth morphotype is protected and whether this is consistent across myco-
bacterial pathogens. By examining strains that spontaneously developed phage resist-
ance, Dedrick et al. identify a number of mutated genes in Mab that merit further
study. Some of the mutations, such as those in mps1 and a type I polyketide synthase
(MAB_0939), likely generate resistance by altering surface composition and interfering
with phage adsorption. Other mutations, such as the putative helicase, UvrD2, and the
RNA Polymerase Omega subunit, rpoZ, require further mechanistic study but may
impact other aspects of the phage life cycle. Viable mutations that generate resistance
are relatively rare, occurring in only ;40% of susceptible strains challenged with a sin-
gle phage. This bodes well for phage therapies against Mab, as the acquisition of resist-
ance by other species of bacteria against single phages is more common in clinical
studies (29). Given that mycobacteria have a distinct cell envelope architecture and
chemical signature (30), it is possible that mutational pathways that disrupt adsorption
often undermine the integrity of the cell wall and are less permissive. If this is true, one
might expect phage therapies to be complementary to antibiotics that target the
mycobacterial cell wall.

These observations suggest novel combinatorial therapeutic approaches using
drugs that influence cell wall composition—even if they are unable to kill by them-
selves—and phages, which target specific morphologic phenotypes. By inhibiting
enzymes that produce key cell wall molecules or the transporters that direct molecules
to the exterior of the cell, we may be able to both sensitize previously resistant bacteria
and prevent the development of resistance to mycobacteriophage-mediated killing.
The highly conserved MmpL transporter family, which has been studied extensively as
it harbors promising antitubercular drug targets (31–33), may be a low-hanging exam-
ple. Chemical inhibition of MmpL4 in Mab is likely to both inhibit bacterial growth and
drive the transition from smooth to rough to synergize with phage therapies.

Identification of host factors that are mutated in vitro to generate resistance may
provide a blueprint for how bacteria can evade administered phage therapies. But, it is
important to recognize that mutants that thrive in the absence of immunity and other
host pressures may not coincide with those that emerge in patients. A better under-
standing of resistance mechanisms seen in the growing number of case studies and
clinical trials is necessary. This information may allow for the development of “off the
shelf” antibiotic-phage combinations that can be administered at the onset of diagno-
sis. So, perhaps the answer to the difficult problem of Mab infections isn’t a choice
between drugs and phages; it’s a combination of both.
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