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Abstract
Previous research has revealed that glucose and fructose ingestion differentially modulate

release of satiation hormones. Recent studies have begun to elucidate brain-gut interac-

tions with neuroimaging approaches such as magnetic resonance imaging (MRI), but the

neural mechanism underlying different behavioral and physiological effects of glucose and

fructose are unclear. In this paper, we have used resting state functional MRI to explore

whether acute glucose and fructose ingestion also induced dissociable effects in the neural

system. Using a cross-over, double-blind, placebo-controlled design, we compared resting

state functional connectivity (rsFC) strengths within the basal ganglia/limbic network in 12

healthy lean males. Each subject was administered fructose, glucose and placebo on three

separate occasions. Subsequent correlation analysis was used to examine relations be-

tween rsFC findings and plasma concentrations of satiation hormones and subjective feel-

ings of appetite. Glucose ingestion induced significantly greater elevations in plasma

glucose, insulin, GLP-1 and GIP, while feelings of fullness increased and prospective food

consumption decreased relative to fructose. Furthermore, glucose increased rsFC of the

left caudatus and putamen, precuneus and lingual gyrus more than fructose, whereas

within the basal ganglia/limbic network, fructose increased rsFC of the left amygdala, left

hippocampus, right parahippocampus, orbitofrontal cortex and precentral gyrus more than

glucose. Moreover, compared to fructose, the increased rsFC after glucose positively corre-

lated with the glucose-induced increase in insulin. Our findings suggest that glucose and

fructose induce dissociable effects on rsFC within the basal ganglia/limbic network, which

are probably mediated by different insulin levels. A larger study would be recommended in

order to confirm these findings.
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Introduction
Functional MRI is a rather novel method to assess brain activity after oral intake of defined nu-
trients to examine physiological gut-brain interactions [1,2]. Appetite regulation is mediated
via a functional interplay between homeostatic and non-homeostatic brain areas [3,4]. Besides
the hypothalamus as the central gateway, reward-related brain regions such as the striatum or
the orbitofrontal cortex (OFC) have also been implicated in feeding behavior [5,6]. In particu-
lar, it has been suggested that striatal responses to food may reflect the hedonic and rewarding
value of feeding, while other regions including the OFC, amygdala and hippocampus may be
more related to motivational and cognitive aspects of food control [7,8]. Responses in these
brain regions depend on levels of peripheral satiation hormones [9,10]. In order to maintain
appropriate levels of energy balance, ingested nutrients trigger a variety of satiation signals (e.g.
GIP, gastric inhibitory polypeptide; GLP-1, glucagon-like peptide-1) with immediate effects on
appetite, whereas adiposity signals (e.g. leptin and insulin) are responsible for the long-run
maintenance of energy balance [4,11]. Recent studies show that insulin and leptin reduce re-
ward-driven food intake as well and thus also have an immediate appetite-suppressing effect
[12,13].

Fructose is a monosaccharide naturally found in honey and fruits. High-fructose corn syrup
—a mixture of glucose and fructose in varying concentrations—is increasingly used in soft
drinks and is partially held responsible for the worldwide increase in fructose consumption.
Chronic fructose consumption may adversely affect human health by leading to increased de
novo lipogenesis in the liver, hyperuricemia, insulin resistance and obesity [14,15]. Fructose
consumption might even contribute to continuous food intake and exert symptoms of toler-
ance and withdrawal by down regulation of dopamine receptors in reward-sensitive pathways
[16,17]. Glucose is a highly potent secretagogue leading to release of insulin and satiation pep-
tides by enteroendocrine cells and inhibits the release of the appetite inducer ghrelin. In con-
trast, fructose intake does not affect the release of the above-mentioned peptides to the same
extent [18,19] and rather than suppressing the intake of additional food, calories from fructose
seem to add on to the total calorie intake [20].

The global obesity problem supports the urgent need for research that aims to understand
the basic mechanisms that regulate food intake, appetite and body weight. However, it is un-
clear how different behavioural and physiological responses to glucose and fructose are mir-
rored in the neural system including sensory, cognitive and reward processes. Therefore, we
are exploring the role of ingested nutrients in triggering adaptive processes in the brain by un-
covering the temporal relations between gut and brain signals that control eating and feeding
behaviour and energy consumption.

To address this question, we used resting state functional MRI to examine neural changes
after the acute ingestion of fructose in comparison with glucose. Resting state functional con-
nectivity (rsFC) is based on the analysis of low-frequency fluctuations present in the blood-
oxygenation-level-dependent signal [21]. These low-frequency fluctuations have been shown
to be temporally correlated within spatially distinct but functionally related resting state net-
works establishing an intrinsic functional architecture [22]. Resting state functional connec-
tivity analysis is particularly suitable to examine brain functions including sensory, cognitive
and reward processes [23,24]. Previous resting state fMRI studies have detected a basal gan-
glia/limbic network during rest, which subsumes the striatum, the thalamus and the amygdala
[25,26]. Many of these regions are strongly implicated in reward processes and dopamine
function [27].

Primary outcome of this study was to examine differences between glucose and fructose ad-
ministration with respect to resting state functional connectivity within the basal ganglia/limbic
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network. The secondary outcome was to examine whether these effects are related to the behav-
ioral and physiological effects of glucose and fructose. We hypothesized that fMRI would show
a different pattern of activation within the neural reward network after fructose versus glucose
ingestion.

Materials and Methods
The original protocol is included under supplemental material. Morbidly obese volunteers
have also been examined; however, this data is not included in this manuscript as it is currently
being analyzed.

Subjects
Twelve right-handed male volunteers (mean age: 24.8 years, range: 21–31 years and mean
BMI: 22.9 kg/m2, range: 21–24.0 kg/m2) were analyzed. The protocol was approved by the Eth-
ics Committee of Basel, Switzerland (EKBB: 08/11) and conducted in accordance with the prin-
ciples of the Declaration of Helsinki. Subjects were recruited by word of mouth over a period of
three months (March 2012- June 2012). Each participant underwent a medical interview, labo-
ratory screening and gave written informed consent. Exclusion criteria were: smoking, sub-
stance abuse, regular intake of medications, medical or psychiatric illness, fructose intolerance
and any contraindication to MRI (e.g. claustrophobia, non-removable metal devices), and any
abnormalities detected upon laboratory screening. Of the fourteen subjects originally recruited
two had to be excluded as they did not meet the eligibility criteria. There was also one drop-out
who was replaced. Hence, complete data from 12 subjects were obtained for analysis. The pur-
pose of this study is to gain basic information on the physiologic role of the aforementioned
carbohydrates on regional blood flow in the brain. Samples size of this study was chosen on the
basis of practical considerations rather than statistical estimation. However, according to our
experience, a sample size of 12 subjects will most likely allow to detect large differences in pa-
rameters (> 50%) between the treatments groups.

Study design and experimental procedures
The study was a randomized, placebo-controlled, double-blind, cross-over trial and was carried
out at the Phase one Research Unit of the University Hospital of Basel. Each subject was ad-
ministered fructose, glucose and placebo on three separate occasions. The treatment order was
randomized within a subject and the time between these visits was at least 7 days.

After an overnight fast of at least 10 hours, an 8F polyvinyl nasogastric tube was inserted
into the stomach through an anaesthetized nostril and its intragastric position was confirmed
by rapid injection of 10ml of air and auscultation of the upper abdomen. A peripheral venous
cannula was inserted for blood sample collection. Two baseline blood samples were taken and
appetite perceptions (feelings of: a) hunger, b) satiety, c) fullness and d) prospective food con-
sumption) were assessed by visual analogue scales (VAS) [28]. The solutions were freshly pre-
pared and were at room temperature when administered. Glucose monohydrate and fructose
were purchased from Haenseler AG (Herisau, Switzerland). In order to maintain the blind dif-
fering persons prepared and administered the treatment. Subjects received 300ml of tap water
with 75g of glucose or with 25g of fructose, or 300ml pure tap water (placebo) via nasogastric
tube over 2 minutes while sitting in the MR room. After administration, the feeding tube was
removed and the subjects underwent resting state MRI scanning, which began within 5 min-
utes after administration of the test solution. After 15 and 60 minutes blood samples were
taken and VAS recorded. Visual analogue scales consisted of a horizontal, unstructured, 10-cm
line representing the minimum (0.0 points) to the maximum rating (10.0 points). Subjects
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assigned a vertical mark across the line to indicate the magnitude of their subjective sensation
at the present time point. The measurement was quantified by the distance from the left end of
the line (minimum rating) to the subject’s vertical mark.

Blood samples were taken after glucose and fructose treatment, no blood samples were col-
lected after placebo treatment. Subjects were told that blood sampling was randomized and
hence did not associate no blood samples with placebo treatment. Blood samples were collected
into chilled tubes containing EDTA (6 μmol/L blood), a protease-inhibitor cocktail (Complete,
EDTA-free, 1 tablet/50mL blood, Roche, Mannheim, Germany), and a dipeptidyl peptidase IV
inhibitor (10μl/mL blood, Millipore Corp., St. Charles, Missouri, U.S.A). After centrifugation
(3000rpm, 10 min at 4 C), plasma samples were processed into different aliquots and kept fro-
zen at -70 C until analysis. Blood pressure and heart rate were measured before and after each
study day.

Laboratory analysis
Active GLP-1 was measured with a commercially available ELISA kit (Millipore, Billerica,
MA). This kit is for non-radioactive quantification of GLP-1 (7–36) in serum and EDTA plas-
ma samples; it is highly specific and does not detect other forms of GLP-1. The lowest level of
GLP-1 that can be detected by this assay is 0.5 pmol/L when a 100-μL plasma sample is used.
Insulin was measured with a commercially available radioimmunoassay kit (CIS Bio Interna-
tional, Bagnols, France). This kit is for quantitative determination of insulin in human serum
and plasma (EDTA), is highly specific for insulin and shows no cross-reactivity with other pep-
tides, e.g., C-peptide or glucagon. The intra- and interassay coefficients of variation for this
assay are<12.2 and 9.0%, respectively. The lowest level of insulin that can be detected by this
assay is 4.6 μU/mL. Plasma glucose concentration was measured by a commercially available
glucose oxidase method (Bayer Consumer Care, Basel, Switzerland). This method is highly spe-
cific for measurement of glucose in serum or plasma. The lowest level of glucose that can be de-
tected by this assay is 0.6 mmol/L. GIP was measured with a commercially available ELISA kit
(Millipore, Billerica, MA, U.S.A.). This kit is used for non-radioactive quantification of human
GIP in serum and EDTA plasma samples and has 100% cross reactivity to human GIP (1–42)
and GIP (3–42). The lowest level of GIP that can be detected by this assay is 4.2 pg/mL when a
20-μL plasma sample is used. The intra and inter-assay coefficients of variation for this assay
are below 8.8 and 6.1%, respectively.

Resting state functional MRI
For the resting-state scan (5 minutes), subjects were instructed to lie in dimmed light with their
eyes open, to think of nothing in particular, and not to fall asleep.

Image acquisition
Scanning was performed on a 3 T scanner (Siemens Magnetom Verio) 5 minutes post-treat-
ment. Whole-brain functional imaging was performed using a gradient echo planar imaging
(EPI) sequence (TR = 2000 ms, TE = 28 ms, flip angle = 82°, field of view = 228 x 228 mm2, 32
slices, slice thickness: 3.3 mm; voxel size = 3.6 x 3.6 x 3.3 mm3). In total, 152 EPI volumes
were acquired. Additionally, a high-resolution T1-weighted magnetization prepared rapid ac-
quisition gradient echo (MPRAGE) image was acquired (TR = 2000 ms; TE = 3.37 ms; flip
angle = 8°; inversion time = 1000 ms; 176 slices; slice thickness = 1 mm; voxel size = 1 x 1 x 1
mm3).
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Functional connectivity analysis
In a first step, resting state analysis was carried out using MELODIC (Multivariate Exploratory
Linear Optimized Decomposition into Independent Components) [23], a part of FSL (FMRIB
Software Library, www.fmrib.ox.ac.uk/fsl). MELODIC is a powerful data-driven model-free
approach for finding independent patterns in multivariate data (i.e. resting state networks
such as the basal ganglia/limbic network). Preprocessing consisted of motion correction using
MCFLIRT (Motion Correction using FMRIB's Linear Image Registration Tool) [29], removal
of non-brain tissue with BET (Brain Extraction Tool) [30], spatial smoothing using a 5 mm
full-width-at-half-maximum Gaussian kernel, and high-pass temporal filtering equivalent to
111.1 seconds. FLIRT was used to register the functional EPI volumes in each individual sub-
ject’s high-resolution MPRAGE image and to assign the MPRAGE data to the standard space
template (Montreal Neurological Institute, MNI152 T1 1 mm3). Preprocessed functional data
containing 152 time points for each subject were temporally concatenated across subjects in
order to create a single 4D data set. The data set was decomposed into independent compo-
nents, with a free estimation for the number of components. The number of subjects in each
group was equal, in order to avoid skewing independent components in favor of a particular
population/treatment. Group independent component analysis (GICA) was used to identify
the basal ganglia/limbic network. This network has been previously noted in other resting state
fMRI studies using independent component analysis [25,26]. A dual regression approach [31]
with nonparametric permutation (5000) tests (randomize [32], FSL) were carried out to detect
statistically significant differences between treatments (placebo vs. fructose, placebo vs glucose,
glucose vs fructose) within the boundaries of the spatial map (basal ganglia/limbic network)
obtained with GICA. As this is a pilot study with a rather small sample of 12 subjects, we con-
sidered a significance threshold of p< 0.05 uncorrected using threshold-free cluster enhance-
ment (TFCE) [33].

Statistical Analysis
Descriptive statistics were used for demographic variables (age, weight, height, and BMI). Hor-
mone and glucose profiles were analyzed by calculating pharmacodynamic parameters: area
under the concentration-time curve (AUC) and ΔAUC. Area under the curve (AUC) was cal-
culated using the trapezoidal method [34]. The parameters were tested for normality by the
Shapiro-Wilk test. Hormone profiles (AUC 0–60 min) were compared using Student’s paired
t-test. Pearson correlation was used to assess the relation between hormone release 0–15 min-
utes post-treatment and rsFC. The FC strengths were indexed by parameter estimates (z-
scaled) but only of the significant voxels obtained from the treatment comparisons of interest.
SPSS for Windows Version 19.0 (SPSS, Chicago, IL) was used for all statistical analysis. Values
were reported as means ± SEM; p� 0.05 was considered as statistically significant.

Results
There was one drop-out (one subject completed two study sessions, after which they did not
tolerate the nasogastric tube anymore). The data of this person was excluded from analysis and
replaced. Complete data from 12 subjects were obtained for analysis. There were no adverse
events (Fig 1).

Behavioral effects
Baseline assessments were not equivalent across all study sessions. Therefore, we used relative
values (post-treatment values minus pre-treatment value) representing changes in appetite
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perception. However, there was no statistically significant difference between baseline values
among the three treatment groups.

Relative to fructose and placebo, ingested glucose increased feelings of satiety and fullness
and reduced feelings of hunger and prospective food consumption. However, these differ-
ences were not all statistically significant: fullness was significantly higher after glucose treat-
ment compared to fructose treatment (AUC 0–15 min: p = 0.04) and prospective food
consumption was significantly lower after glucose compared to fructose treatment (AUC
0–15 min: p = 0.017). Although feelings of satiety were higher and feelings of hunger were
lower after glucose treatment compared to fructose treatment statistical significance was not
reached. Interestingly, values after placebo treatment lie in between fructose and glucose.
However, differences seen between placebo and fructose, resp. placebo and glucose were non-
significant (Fig 2).

Physiological effects
Baseline fasting values of plasma glucose, insulin, GLP-1 and GIP were not significantly differ-
ent across all study sessions (compared using repeated-measures analysis of variance ANOVA
with Bonferroni correction). Glucose ingestion caused significantly higher elevations of plasma
glucose (p = 0.001), insulin (p< 0.001), GLP-1 (p = 0.007) and GIP (p< 0.001) concentrations
compared to fructose ingestion (AUC 0–60 min; Fig 3).

Fig 1. Flowchart. Adapted CONSORT flowchart for clinical trials.

doi:10.1371/journal.pone.0130280.g001
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Neural effects
After glucose ingestion, dual regression of the basal ganglia/limbic network identified with
GICA (Fig 4) revealed increased rsFC of the right caudatus, left pallidum and OFC to this net-
work, relative to placebo. After placebo increased rsFC of the angular gyrus, lateral occipital
cortex and precuneus was found to the basal ganglia/limbic network, relative to glucose. After
fructose, increased rsFC of the OFC, cerebellum and lateral occipital cortex was found, relative
to placebo. After placebo, increased rsFC of the superior parietal lobule, paracingulate gyrus
and inferior frontal cortex to the basal ganglia/limbic network was found relative to fructose.
Treatment comparisons relative to placebo are summarized in S1 Table.

After glucose, increased rsFC of the left caudatus and putamen, precuneus and lingual gyrus
was found, relative to fructose. After fructose, increased rsFC of the left amygdala, left hippo-
campus, right parahippocampus, OFC and precentral gyrus to the basal ganglia/limbic network
was found relative to glucose (Fig 5).

Correlations between behavioral, physiological and neural effects
Exploratory correlation analysis showed that the increased rsFC within the basal ganglia/limbic
network induced by glucose relative to placebo correlated positively with the insulin level after
glucose ingestion (r = 0.62, p = 0.03), as the glucose-induced effect on rsFC relative to fructose
(r = 0.65, p = 0.02; Fig 6A and 6B, uncorrected for multiple testing). Moreover, there was a
trend between the fructose-induced effect within the basal ganglia network relative to placebo

Fig 2. Subjective Appetite Perceptions. Relative to fructose treatments, ingested glucose increased subjective feelings of (A) satiety (n.s.) and (B) fullness
(AUC-15 min: p = 0.04) and reduced feelings of (C) hunger (n.s.) and (D) prospective food consumption (AUC-15 min: p = 0.017). Differences seen between
placebo and fructose, resp. placebo and glucose were non-significant.

doi:10.1371/journal.pone.0130280.g002
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and the fructose-induced feelings of hunger (r = 0.57, p = 0.069; Fig 6C, uncorrected for multi-
ple testing). No other significant correlations between resting state data, behavioral and physio-
logical parameters were found.

Discussion
The present study explored whether the different effects of acute glucose and fructose ingestion
could also be observed in the neural system by using resting state functional MRI. We first
showed that glucose increased feelings of fullness and decreased prospective food consumption
compared with fructose. Secondly, glucose ingestion induced significantly greater elevations in
plasma glucose, insulin, GLP-1 and GIP concentrations compared to fructose. Thirdly, glucose
relative to fructose ingestion increased rsFC of the left caudatus and putamen, precuneus and
lingual gyrus, whereas fructose relative to glucose increased rsFC of the left amygdala, left hip-
pocampus, right parahippocampus, orbitofrontal cortex and precentral gyrus within the basal
ganglia/limbic network. Finally and perhaps most interestingly, we found that the increased
rsFC after glucose correlated positively with the glucose-induced increase in insulin relative to
fructose, which suggests a relationship between physiological and neural effects.

Fructose consumption from industrially produced foods is increasing worldwide, and this
may be accompanied by adverse metabolic consequences [35,36]. In our study, there were only
minimal changes in satiation hormones after fructose ingestion, which is in line with previous

Fig 3. Plasma concentrations of Glucose, Insulin, GLP-1 and GIP after glucose and fructose
treatment. (A) Glucose, (B) Insulin, (C) GLP-1 and (D) GIP after oral intake of 75g glucose resp. 25g
fructose. Glucose ingestion caused significantly greater elevations in plasma glucose (p = 0.001), insulin (p<
0.001), GLP-1 (p = 0.007), GIP (p< 0.001) concentrations compared to fructose ingestion (AUC 0-60min).
Data are expressed as mean ± SEM.

doi:10.1371/journal.pone.0130280.g003
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studies [18,19]. Various trials have been carried out to answer the question of whether fructose
consumption has the same or even stronger satiating effects than glucose or on the contrary re-
sults in increased food intake [37,38]. In animal studies fructose increased subsequent food in-
take—an orexigenic effect—while glucose led to satiation [39]. In humans, fructose triggers
minimal release of satiation hormones and adiposity signals combined with attenuated post-
prandial suppression of ghrelin; this suggests that food intake may be stimulated by fructose
intake as well [37]. In addition, gastric emptying—another important satiety signal—is deceler-
ated by glucose ingestion, but apparently not by fructose ingestion [40]. The failure of fructose
to influence appetite perception is consistent with this. Of note, placebo values lie in between
fructose and glucose (Fig 2) as if fructose led to less satiation than placebo or to put it the other
way round: as if fructose might even promote hunger. However, no statistical significance
could be reached between the respective carbohydrate and placebo and additional studies with
larger sample size are needed to confirm this finding. Previous fMRI studies investigating hy-
pothalamic reactions have compared intravenous with oral glucose administration and showed
that the effect is much stronger after oral ingestion, which emphasizes the importance of gut-
signalling [41]. A recent resting state functional MRI investigation found that glucose ingestion
increased FC between the hypothalamus, thalamus and striatum, whereas fructose increased
FC between the hypothalamus and thalamus but not the striatum [42]. Although we used a

Fig 4. Spatial maps representing the resting state basal ganglia/limbic network for each treatment
condition. Spatial maps representing the reward network detected by GICA for (A) the placebo (i.e. water),
(B) glucose and (C) fructose treatment. Maps were created using a one-sample t-test for each treatment
(randomize, FWE-corrected at p = 0.001). Regions belonging to this network include the entire striatum,
thalamus, and amygdala. The right side of the brain is displayed on the right side of the figure.

doi:10.1371/journal.pone.0130280.g004
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different methodological approach—with a focus on the basal ganglia/limbic network rather
than on the hypothalamus—our results are in line with these findings: glucose but not fructose
increased FC of the caudatus and putamen to the basal ganglia/limbic network. Interestingly,
Page et al. found a negative correlation between striatal blood flow and the glucose-induced
change in insulin levels, which suggests that anorexigenic peptides such as insulin decrease the
sensitivity of the brain reward system to food reward [5]. In our study, we found that the in-
creased striatal connectivity to the basal ganglia network after glucose relative to either fructose
or water administration correlated positively with the glucose-induced insulin level. This seems
to be at odds with Page et al.’s finding of an inverse relationship between insulin release and
striatal activity [13]. However, besides the fact that they used equicaloric doses of fructose and
glucose (75g vs. 75g), there is an important temporal discrepancy in the methodical design of
the studies: While Page et al. employed a 60-minute post-ingestion acquisition period of pulsed
arterial spin labeling and functional MRI sequences, we examined our subjects directly after
glucose and fructose ingestion with one resting state sequence. Our rationale for this time
frame is that the peak of hormone release is found at about 10–15 minutes post ingestion and
fructose is rapidly converted to glucose in the liver so that the time window for distinguishing
fructose from glucose effects in the brain is very short [39]. More importantly, 75g of fructose
is a very high load and can cause adverse events even in healthy subjects: 25g is the highest load

Fig 5. Differences in functional resting state connectivity to the basal ganglia/limbic network between glucose and fructose administration. (A)
Dual regression to the basal ganglia/limbic network demonstrates a glucose-induced increase in rsFC of the left caudatus (x = -17, y = 18, z = 8), left putamen
(x = -34, y = -18, z = -8), precuneus (x = -18, y = -60, z = 32) and lingual gyrus (x = -18, y = -73, z = -3) relative to fructose (p = 0.02 uncorrected) (B) Fructose
increased rsFC of left amygdala (x = -14, y = -3, z = -14), left hippocampus (x = -18, y = -4, z = -24), right (para)-hippocampus (x = 11, y = 0, z = -32), OFC (x =
-33, y = 23, z = -16) and precentral gyrus (x = -34, y = -8, z = 57) compared with glucose (p = 0.02 uncorrected).

doi:10.1371/journal.pone.0130280.g005
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of fructose absorbed by healthy volunteers and a fructose load of 50g induces unspecific results
in 40–60% of individuals [43,44]. Therefore, we used 75g of glucose (as in a standard glucose
tolerance test) and 25g of fructose (the highest absorbable load).

The acute rewarding effect of food intake is probably mediated by dopamine [5]. Indeed, in
humans, ingestion of palatable food has been shown to release dopamine in the dorsal striatum
in proportion to the self-reported level of pleasure [45]. This striatal rewarding effect corre-
sponds to the subjective effects of acute drug intake that are mediated by reinforcement signals
in the striatum, and may imply that there are overlaps in the brain circuits underlying food in-
take and drug-intake [46]. We propose that the acute increase in striatal connectivity to the
basal ganglia network after glucose ingestion may mediate a state of satiation, which was mod-
ulated by insulin release. This interpretation is consistent with a recent study that showed that
glucose ingestion in insulin-sensitive subjects leads to significantly greater dopamine release in
the brain reward regions than in insulin-resistant subjects [47].

In contrast, fructose did not increase striatal connectivity to the basal ganglia network as
seen after glucose in this study, but increased FC of the amygdala, hippocampus and OFC
(orbito-frontal cortex) compared with glucose. One may ask whether this neural pattern corre-
sponds to the fact that food intake in humans might even be stimulated rather than blocked
by fructose intake [37]. The motivation for a continued food intake after chronic fructose

Fig 6. (A) Correlations between resting state functional connectivity, insulin release and subjective appetite perception. In relation to placebo, the glucose-
induced increase in functional connectivity strength (parameter estimates; PE) within the basal ganglia/limbic network correlated positively with the glucose-
induced insulin release (μU/mL) (r = 0.62, p = 0.03). (B) Relative to fructose, the glucose-induced increase in functional connectivity strength within basal
ganglia/limbic network correlated positively with and the glucose-induced insulin release (r = 0.65, p = 0.02). (C) In relation to placebo, the fructose-induced
increase in functional connectivity strength within the basal ganglia/limbic network correlated positively at trend level with the fructose-induced feeling of
hunger (r = 0.57, p = 0.069).

doi:10.1371/journal.pone.0130280.g006
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exposure may be driven by down regulation of dopaminergic D2 receptors in reward-sensitive
pathways [16,17]. The decreased activation of dopaminergic targets by the current food con-
sumption might lead to overconsumption to compensate for the weak dopamine signals [48].
Indeed, OFC activity has been positively associated with food craving in lean subjects [49]. Fur-
thermore, it has been shown that when lean individuals were asked to inhibit their food craving
when exposed to cues, their activity in the amygdala, hippocampus and OFC decreased [50].
Considering the relevance of these regions in drug addiction, evidence has consistently demon-
strated FC between the OFC and amygdala during withdrawal-induced craving [51]. The OFC
appears to be important for stress-induced reinstatement of drug seeking, i.e., it drives the mo-
tivation for new drug intake, during which it is reciprocally connected with the amygdala
[52,53]. Furthermore, OFC activation is correlated with hunger ratings during presentation of
food items [8]. An infusion of ghrelin, which heightens appetite, increases the amygdala re-
sponse to food images [9]. Both fasting and ghrelin administration also increased hippocampus
activation to food pictures [54], whereas insulin decreases OFC activity [12]. In this case, fruc-
tose did not stimulate insulin release and did not suppress ghrelin release as shown in previous
studies by our group [18] and failed to influence appetite perception; we therefore suggest that
the fructose-induced increase in OFC, amygdala and hippocampus FC to the basal ganglia net-
work indicates a drive for renewed food intake. This interpretation is further supported by the
positive correlation between the effect of fructose on OFC connectivity and subjective feelings
of hunger. We propose that fructose stimulates dopaminergic regions that mediate the reward
and reinforcement effect of food intake insufficiently. However, this is clearly speculative at the
present time and many more studies are needed to support such an interpretation.

One limitation of this study is the explicit focus on the basal ganglia/limbic network without
considering its interaction with the homeostatic system after glucose and fructose administra-
tion; this point should be addressed in future studies. However, we explicitly focused on this
network as it includes the key region for reward, i.e. the striatum. Another point of contention
may be that our analysis only revealed uncorrected results in terms of appetite perception and
resting state functional connectivity. The sample size in this pilot study was modest as these
controlled repeated measures within-subject design studies are logistically demanding. Never-
theless, larger sample sizes are required to draw more statistically valid inferences. Further-
more, both sexes should be included and effects of low, equicaloric doses of fructose and
glucose should be examined as well (e.g. 25g glucose and 25g fructose).

In conclusion, to the best of our knowledge, this is the first resting state functional MRI
study addressing the effect of acute glucose and fructose ingestion. Our findings provide pre-
liminary evidence that fructose modulates FC to the basal ganglia network in a different man-
ner to glucose. These distinct effects may help explain why and how glucose and fructose have
different behavioral and physiological effects.

More imaging research with larger sample sizes is needed to understand how glucose and
fructose modulate the neural system.
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