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JunB is essential for IL-23-dependent pathogenicity
of Th17 cells
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CD4þ T-helper cells producing interleukin-17 (IL-17), known as T-helper 17 (TH17) cells,

comprise heterogeneous subsets that exhibit distinct pathogenicity. Although pathogenic

and non-pathogenic TH17 subsets share a common RORgt-dependent TH17 transcriptional

programme, transcriptional regulatory mechanisms specific to each of these subsets are

mostly unknown. Here we show that the AP-1 transcription factor JunB is critical for TH17

pathogenicity. JunB, which is induced by IL-6, is essential for expression of RORgt and IL-23

receptor by facilitating DNA binding of BATF at the Rorc locus in IL-23-dependent pathogenic

TH17 cells, but not in TGF-b1-dependent non-pathogenic TH17 cells. Junb-deficient T cells

fail to induce TH17-mediated autoimmune encephalomyelitis and colitis. However, JunB

deficiency does not affect the abundance of gut-resident non-pathogenic TH17 cells.

The selective requirement of JunB for IL-23-dependent TH17 pathogenicity suggests that the

JunB-dependent pathway may be a therapeutic target for autoimmune diseases.
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I
nterleukin-17 (IL-17)-producing T-helper 17 (TH17) cells,
exhibiting heterogeneous pathogenicity, serve diverse
biological functions1–3. Pathogenic TH17 cells have a central

function in autoimmune and chronic inflammatory diseases4–6,
whereas non-pathogenic TH17 cells, which accumulate in the gut
at steady state, are probably involved in gut homoeostasis and
host defence7–9. Pathogenicity of TH17 cells is associated with
cytokine signals. A subset of TH17 cells induced in the presence of
transforming growth factor b1 (TGF-b1) and IL-6 (hereafter
referred to as TH17(b))10–12 is non-pathogenic, because transfer
of the cells into mice induces weak or no experimental
autoimmune encephalomyelitis (EAE)13,14. On the other hand,
another subset of TH17 cells generated in the presence of IL-6,
IL-1b and IL-23 (hereafter referred to as TH17(23)) is highly
pathogenic, and transfer of these cells into mice induces severe
EAE13,14. Furthermore, it is broadly accepted that IL-23 is needed
for TH17 cell pathogenicity and that it can induce pathogenicity
in previously non-pathogenic TH17 cells15–18. Indeed, mice
deficient in IL-23 signalling are resistant to EAE and chronic
colitis15,17,19,20, but they have normal numbers of gut-resident
TH17 cells at steady state21. The critical function of IL-23
signalling for TH17 pathogenicity is also evidenced by a
correlation between IL-23 mutation and human autoimmune
diseases22.

Pathogenic and non-pathogenic TH17 cells differentially
express a number of genes. For example, anti-inflammatory
IL-10 is specifically induced in TH17(b) cells, whereas
inflammatory granulocyte–macrophage colony-stimulating
factor (GM-CSF) is preferentially produced by TH17(23)
cells13,14,23–25 to contribute to the pathogenicity of TH17
cells26,27. However, pathogenic and non-pathogenic TH17 cells
express a subset of molecules (TH17 signature genes) comparably,
including Il17a, Il17f and Il23 receptor (Il23r)13,23,25. Induction of
these TH17 signature genes is regulated by transcription factors
including basic leucine zipper ATF-like transcription factor
(BATF), interferon regulatory factor 4 (IRF4), signal transducer
and activator of transcription 3 (STAT3), and RORgt in both
pathogenic and non-pathogenic TH17 cells28–32. BATF and IRF4
are induced by T-cell receptor signalling and bind to loci of a
large number of genes, including TH17 signature genes, where
they promote chromatin accessibility29,33,34. Under TH17-
polarizing conditions, cytokine signals activate STAT3 and
induce RORgt, both of which bind to loci of TH17 genes
occupied by BATF and IRF4 and activate TH17 gene
transcription28,29. IL-6 activates STAT3 through JAK-mediated
phosphorylation35,36. However, it is unclear how RORgt
induction is regulated by different combinations of cytokines
under TH17(b)- and TH17(23)-polarizing conditions.

Here we show that, in an RNAi screen of transcription factors
involved in IL-23 signalling, an AP-1 transcription factor, JunB, is
required for IL-23-dependent gene induction. Additional analyses
show that JunB is required for induction of RORgt in pathogenic
TH17(23) cells, but not in non-pathogenic TH17(b) cells.
Mechanistically, JunB facilitates DNA binding of BATF, IRF4
and STAT3 at multiple gene loci including Rorc (encoding
RORgt) and Il17a under TH17(23)-polarizing conditions.
Furthermore, we show that JunB is essential for pathogenicity
of TH17 cells in EAE and colitis models, but it is not required
for generation of non-pathogenic, gut-resident TH17 cells.
These data suggest that the JunB-dependent pathway is required
for IL-23-dependent pathogenicity of TH17 cells.

Results
Identification of JunB as a regulator of IL-23 signalling.
TGF-b1 signalling is associated with non-pathogenic TH17

differentiation, whereas IL-23 signalling facilitates pathogenicity
of TH17 cells13,15–17,19. However, transcriptional mechanisms
underlying control of TH17 pathogenicity in the presence of these
cytokines remain to be fully determined. To better understand
IL-23-dependent transcriptional regulation, we attempted to
identify transcription factors responsible for expression of genes
promoted by IL-23 signalling in TH17 cells. Based on published
microarray data13,23, we selected 263 transcription factors that are
highly expressed in TH17 cells (Supplementary Data 1).
Retroviruses expressing shRNAs against these transcription
factors were individually transduced into TH17 cells generated
under pathogenic TH17(23)-polarizing conditions (in the
presence of IL-6, IL-1b and IL-23). To evaluate the effect of
transcription factor knockdown on IL-23-dependent signalling,
we measured levels of ectonucleotide pyrophosphate/
phosphodiesterase 2 (Enpp2) mRNA because we found that
induction of Enpp2 was significantly facilitated by IL-23
stimulation (Supplementary Fig. 1a). Enpp2 induction was most
heavily diminished by knockdown of an AP-1 transcription
factor, JunB (Supplementary Fig. 1b). RNAi ablation of JunB
also significantly reduced expression of a TH17 signature
molecule, Il23r (Supplementary Fig. 1c). JunB interacts with
another AP-1 family member, BATF, an essential transcription
factor for TH17 differentiation31,33,34, suggesting that JunB might
be involved in TH17 differentiation; however, the physiological
functions of JunB in TH17 differentiation remain unknown.

JunB is induced in TH17 cells. We first examined JunB
expression in TH17 cells differentiated in vitro. Immunoblot
analysis of JunB showed that naive CD4þ T cells activated under
TH17(b)-polarizing conditions (in the presence of TGF-b1 and
IL-6) or TH17(23)-polarizing conditions expressed higher levels
of JunB compared to T cells activated under neutral conditions
(in the absence of cytokines) (TH0) or induced T regulatory
(iTreg)-polarizing conditions (in the presence of TGF-b1 and
IL-2) (Fig. 1a). There was no detectable JunB expression in naive
CD4þ T cells (Supplementary Fig. 1d). Quantitative reverse
transcription–polymerase chain reaction (qRT–PCR) analysis
also showed an increase in Junb mRNA levels in both TH17(b)
and TH17(23) cells (Fig. 1b). We also found that IL-6 stimulation
was sufficient to augment JunB expression, whereas neither IL-1b
nor IL-23 signalling significantly affected JunB expression in
activated CD4þ T cells (Fig. 1c,d). IL-6 signalling is mediated by
STAT3 (refs 35,36). Indeed, JunB induction was severely
impaired in Stat3-deficient cells under TH17(b)-polarizing
conditions (Fig. 1e), indicating that STAT3 is required for
JunB induction in TH17 cells. These results suggest that JunB
expression is facilitated in TH17 cells in an IL-6- and
STAT3-dependent manner.

JunB regulates TH17 differentiation in vitro. To determine
the importance of JunB in TH17 differentiation, we generated
T-cell-specific Junb-deficient (Cd4CreJunbfl/fl) mice
(Supplementary Fig. 2). Loss of JunB did not affect the abundance
of CD4þ and CD8þ T cells, nor did it affect that of naive
(CD62LhiCD44lo), effector (CD62LhiCD44hi) and memory
(CD62LloCD44hi) CD4þ T-cell populations in lymph nodes
(LNs) and spleens (Supplementary Fig. 3).

To evaluate the function of JunB in TH17 differentiation
in vitro, we activated Junb-deficient naive CD4þ T cells under
TH17-polarizing conditions. Notably, IL-17A expression was
severely diminished in Junb-deficient CD4þ T cells under
pathogenic TH17(23)-polarizing conditions (Fig. 2a). However,
a substantial number of Junb-deficient CD4þ T cells produced
IL-17A, albeit less than that produced by control cells, under
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non-pathogenic TH17(b)-polarizing conditions (Fig. 2a). Loss of
JunB promoted production of a TH1 signature cytokine, IFN-g,
under TH17(23) conditions (Fig. 2a). Moreover, expression of a
TH17 pathogenic cytokine, GM-CSF, was also augmented in
the absence of JunB (Supplementary Fig. 4a). Consistent with
its impact on production of IL-17A, induction of an essential
TH17 transcription factor, RORgt, was severely impaired in
Junb-deficient T cells under TH17(23)-polarizing conditions, but
less strikingly under TH17(b)-polarizing conditions (Fig. 2b and
Supplementary Fig. 4b). Normal mRNA expression of IL-6
receptor was observed in Junb-deficient cells under TH17(b)
conditions, while it was slightly elevated under TH17(23)
conditions (Supplementary Fig. 4c), suggesting that the defective
TH17(23) differentiation in Junb-deficient cells may not be due to
impaired IL-6 receptor expression.

Remarkably, expression of the Treg master transcription factor,
forkhead box protein 3 (Foxp3)37, significantly increased in
Junb-deficient CD4þ T cells under TH17(b) conditions, but not
under TH17(23) or iTreg conditions (Supplementary Fig. 4b,d),
suggesting that JunB is involved in IL-6-mediated suppression of
TGF-b-dependent Foxp3 induction. In addition, JunB deficiency
also resulted in induction of Foxp3 and a slight reduction of
IL-17A production under other TH17-polarizing conditions (the

presence of IL-6 and TGF-b3; TH17(b3)) (Fig. 2c and
Supplementary Fig. 4e). Foxp3 suppresses IL-17A production
by antagonizing functions of RORgt38,39. Indeed, the abundance
of IL-17A-expressing cells in a population with low Foxp3
expression (Foxp3-low population) was greater than in a
population with high Foxp3 expression (Foxp3-high
population) in Junb-deficient cells activated under TH17(b)
conditions (Supplementary Fig. 4f), suggesting that defective
IL-17A production in Junb-deficient TH17(b) cells might be
partly due to aberrant induction of Foxp3.

Since IL-23 promotes pathogenicity of TH17(b) cells14, we
investigated the function of JunB in IL-23-stimulated TH17(b)
cells. When we activated CD4þ T cells in the presence of TGF-b1
and IL-6, with or without IL-23, IL-23 did not affect IL-17A and
IFN-g production in either Junb-deficient or control cells
(Supplementary Fig. 4g). We next examined the impact of
JunB deficiency on IL-23-stimulated TH17(b) cells in the
absence of TGF-b1. We activated Junb-deficient T cells under
TH17(b) conditions for 3 days and sorted them into IL-17-high
or IL-17-low populations using an IL-17-capture method for
further culturing with IL-23 alone. Although JunB deficiency did
not affect expression of IL-17A on re-stimulation immediately
after sorting, further culturing of IL-17-high cells with IL-23
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significantly decreased the abundance of IL-17A-expressing cells
in Junb-deficient cells, but not in controls (Fig. 2d). The data also
showed a marked increase in the proportion of IFN-g single-
producing cells in the absence of JunB (Fig. 2d). Interestingly, IL-
23 facilitated IL-17A expression in the IL-17-low populations of
control cells, but not in Junb-deficient cells (Fig. 2d). Thus, JunB

seems to have an important function in IL-23-dependent
maintenance of TH17 cells in the absence of TGF-b1.

JunB-dependent transcriptional regulation in TH17 cells.
To further clarify functions of JunB in TH17 differentiation,
we performed a microarray analysis of Junb-deficient

d

IFN-�

IL
-1

7A

T
H 17(β)

T
H 17(23)

Junbfl/fl Cd4CreJunbfl/fl

c

IFN-�

IL
-1

7A

a

54.6 0.25

0.06

23.9 0.84

0.94

38.5 0.10

0.10

3.95 0.51

7.31

58.1 0.18

0.00

23.9 1.34

2.72

FSC

IL
-1

7A

9.8

20.6

9.7

19.5

99.2

23.6

Immediately
after sorting

IL
-1

7A

FSC

99.6

6.2

Junbfl/fl

Cd4Cre

Junbfl/fl

IL-17-
low

2 days culture
with IL-23

IL-17-
high

IL-17-
low

IL-17-
high

TH17(β) culture
before sorting

IL
-1

7A

IFN-�

64.6 19.9

2.7

60.9 4.9

0.3

24.6 18.6

20.0

5.5 1.9

11.6

IL
-1

7A

FSC IFN-�

IL
-1

7A

Junbfl/fl Cd4CreJunbfl/fl

b

Ju
nb

fl/
fl

40
55

kDa T H
0

35
40

GAPDH

C
d4

cr
e

Ju
nb

fl/
fl

RORγt

Ju
nb

fl/
fl

C
d4

cr
e

Ju
nb

fl/
fl

TH17(β)

T
H 17(β3)

TH17(23)

FSC

IL
-1

7A

before sorting

Figure 2 | JunB regulates TH17 differentiation. (a,b) Naive CD4þ T cells from Cd4CreJunbfl/fl and control Junbfl/fl mice were activated under TH17(b)- or

TH17(23)-polarizing conditions for 3 days, and expression of IL-17A and IFN-g was analysed by flow cytometry (a). RORgt was detected by immunoblot

analysis (b). (c) Naive CD4þ T cells from Cd4CreJunbfl/fl and control Junbfl/fl mice were activated in the presence of TGF-b3 and IL-6 (TH17(b3)) for 3 days,

and expression of IL-17A and IFN-g was analysed by flow cytometry. (d) Cd4CreJunbfl/fl and control cells were activated under TH17(b)-polarizing conditions

for 3 days, and IL-17-high and IL-17-low populations were sorted using the IL-17-capture method. Enrichment of IL-17-high cells was confirmed by detecting

IL-17A expression on re-stimulation immediately after sorting. Cells were then cultured in the presence of IL-23 alone for another 2 days. Production of

IL-17A and IFN-g was assessed by flow cytometry. (a,c) Data represent three independent experiments. (b,d) Data represent two independent

experiments.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15628

4 NATURE COMMUNICATIONS | 8:15628 | DOI: 10.1038/ncomms15628 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


and control CD4þ T cells activated under TH17(b)- or
TH17(23)-polarizing conditions. Our data showed that
expression of only a small subset (11 out of 188 genes) of
common TH17 genes, induced in both TH17(b) and TH17(23) cells,
such as Il17a, Il17f and Rorc, was significantly reduced by the loss
of JunB, specifically under TH17(23)-polarizing conditions (Fig. 3a
and Supplementary Fig. 5a). Moreover, JunB deficiency also
reduced expression of 28 of the common TH17 genes, such as Rora,
Il24 and Ccr5, under both TH17(b) and TH17(23) conditions
(Fig. 3a). In addition to aberrant induction of Foxp3 in TH17(b)
cells, JunB deficiency also resulted in dysregulation of expression of
the TH1 master transcription factor, Tbx21 (Fig. 3b), which is
consistent with the reported JunB-dependent suppression of Tbx21
induction in TH2 cells40,41. qRT–PCR data confirmed the defective
induction of TH17 signature genes Il17a, Il17f, Il23r and Rorc
mRNAs in Junb-deficient CD4þ T cells under TH17(23)-
polarizing conditions (Fig. 3c). On the other hand, JunB
deficiency resulted in a significant increase in Foxp3, but it had
only minor effects, if any, on expression of Il17a, Il17f, Rorc and
Il23r under TH17(b) or TH17(b3) conditions (Fig. 3c and
Supplementary Fig. 5b,c).

We further investigated effects of JunB deficiency
on gene expression profiles in IL-17A-high and IL-17-

low populations induced under TH17(b) conditions. We
found that JunB deficiency decreased expression of a subset
of common TH17 genes, such as Ccr5 in both IL-17-high and
IL-17-low populations in a similar manner (Supplementary
Fig. 5d,e). However, expression of Foxp3 was significantly
higher in the IL-17-low population than the IL-17-high
population (Supplementary Fig. 5e), suggesting that
Foxp3 may suppress IL-17 expression at the transcriptional
level.

To examine whether the impairment of RORgt induction is
due to aberrant induction of T-bet in Junb-deficient cells under
TH17(23) conditions, we analysed RORgt and T-bet expression at
the single-cell level by flow cytometry. The data showed that
RORgt expression was significantly reduced not only in the
T-bet-high population, but also in the T-bet-low population in
Junb-deficient cells under TH17(23) conditions (Supplementary
Fig. 5f), suggesting that JunB regulates expression of RORgt and
T-bet independently. Collectively, these results suggest that JunB
regulates a limited subset of TH17 genes in a context-dependent
manner, and that activation of the RORgt-dependent core TH17
transcriptional programme relies on JunB in IL-23-dependent
pathogenic TH17 cells, but not in TGF-b1-dependent
non-pathogenic TH17 cells.
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JunB regulates DNA binding of BATF and IRF4. To gain fur-
ther insight into JunB-dependent transcriptional regulation in
TH17 cells, we investigated genome-wide JunB-DNA binding in
TH17 cells using chromatin immunoprecipitation sequencing
(ChIP-seq) analysis with anti-JunB antibody. Consistent with the
reported interaction between JunB and BATF31,33,34, we found
that JunB co-localized with BATF and IRF4 at loci of not only
TH17 signature genes, including Rorc, Il17a and Il23r, but also
Tbx21, under both TH17(b) and TH17(23) conditions in a similar
manner (Fig. 4a,b and Supplementary Fig. 6a,b), suggesting that
JunB may directly regulate transcription of these genes. JunB,

BATF and IRF4 were also enriched at loci of genes, induction of
which was independent of JunB, such as Ctla4 (Fig. 4c and
Supplementary Fig. 5b). A non-pathogenic signature cytokine
gene, Il10, expression of which is regulated by BATF and IRF4
(ref. 33), was also induced in a JunB-independent manner in
TH17(b) cells (Supplementary Fig. 5b). However, at the Il10 locus,
there was significant enrichment of BATF, IRF4 and JunB in both
TH17(b) and TH17(23) cells (Supplementary Fig. 6c), which
implies that JunB co-localizes with BATF and IRF4 at a large
number of gene loci, but that a limited subset of the genes is
regulated by JunB.
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Blimp1 promotes pathogenic TH17 generation, whereas CD5L is
associated with non-pathogenic TH17 differentiation42,43. Although
we could not detect induction of these molecules under our TH17-
polarizing conditions, we found that JunB, together with BATF and
IRF4, was enriched at the Prdm1 (encoding Blimp1) locus in both
TH17(b) and TH17(23) cells (Supplementary Fig. 6d). Furthermore,
DNA binding of JunB, BATF and IRF4 at the Cd5l locus was
observed specifically in TH17(23) cells (Supplementary Fig. 6e).
These findings imply that JunB might also be involved in control of
these regulators of TH17 pathogenicity, probably at later stages of
TH17 differentiation.

We next evaluated the impact of JunB on DNA binding of
BATF, IRF4 and STAT3 during TH17 differentiation, using
ChIP–PCR analysis. Loss of JunB considerably diminished DNA
binding of BATF at the Rorc locus, under TH17(23) conditions,
but not under TH17(b) conditions (Fig. 4d). JunB deficiency also
resulted in a great reduction of binding of IRF4 and STAT3 at the
Rorc locus under TH17(23) conditions, but the effect was
relatively small under TH17(b) conditions (Fig. 4d). JunB
deficiency also impaired binding of BATF, IRF4 and STAT3 to
the Il17a locus under both TH17(b) and TH17(23) conditions
(Fig. 4e), which is consistent with the positive role of JunB in IL-
17A production, even under TH17(b) conditions. However, JunB
deficiency did not affect the DNA binding of BATF, even though
it only slightly decreased that of IRF4 and STAT3, at the Ctla4
locus under TH17(23)-polarizing conditions (Fig. 4f). Collectively,
these data suggest that JunB may be critical for DNA binding of
BATF, IRF4 and STAT3 at the Rorc locus in IL-23-dependent
TH17 cells, but not in TGF-b1-dependent non-pathogenic TH17
cells.

JunB-independent generation of gut-resident TH17 cells.
We next evaluated the importance of JunB for in vivo TH17
differentiation. We found that a substantial proportion (10–20%)

of CD4þ T cells expressed IL-17A in the small intestinal lamina
propria (SI LP) in Cd4CreJunbfl/fl mice, comparable to control
(Junbfl/fl) mice (Fig. 5a and Supplementary Fig. 7a). Furthermore,
a proportion of RORgt-expressing CD4þ T cells was similar in
Cd4CreJunbfl/fl and control mice (Fig. 5b), suggesting that SI LP
TH17 cells are more likely to be generated in a JunB-independent
manner. Contrary to our in vitro data, showing upregulation of
Foxp3 in Junb-deficient TH17(b) cells, loss of JunB did not affect
the abundance of CD4þFoxp3þRORgtþ cells in SI LP (Fig. 5b),
suggesting that Foxp3 induction may be suppressed in a JunB-
independent manner or that Foxp3 may not be efficiently induced
in gut-resident TH17 cells. Furthermore, the abundance of
IL-17þCD4þ T cells in the LNs and spleens at steady state was
also comparable in Cd4CreJunbfl/fl and control mice
(Supplementary Fig. 7b). Thus, JunB is likely dispensable for
generation of a subset of TH17 cells residing in the SI LP or
peripheral lymphoid organs at steady state.

JunB is required for pathogenic TH17 generation in vivo. To
determine the in vivo function of JunB in pathogenicity of TH17
cells, we used an EAE model, in which IL-23-dependent TH17
cells have a central pathogenic function17,18. We immunized
Cd4CreJunbfl/fl mice with myelin oligodendrocyte glycoprotein
(MOG)35–55 peptide in complete Freund’s adjuvant. In contrast
to control mice, which developed severe EAE, Cd4CreJunbfl/fl mice
were completely resistant to the disease (Fig. 6a). The number of
CD4þ T cells infiltrated into the central nervous system (CNS)
was much lower in Cd4CreJunbfl/fl mice than in control mice
(Fig. 6b and Supplementary Fig. 7c). Furthermore, in the
Cd4CreJunbfl/fl mice, there were almost no IL-17A-expressing
CD4þ T cells and few IFN-g-expressing CD4þ T cells in the
CNS (Fig. 6c and Supplementary Fig. 7c). In addition, loss of
JunB severely impaired production of IL-17A-expressing CD4þ

T cells in LNs and spleens on day 14 after immunization (Fig. 6c
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and Supplementary Fig. 7d). Thus, Junb-deficient T cells are
incapable of inducing EAE.

To explore the function of JunB in TH17 plasticity and stability,
we performed TH17-fate-mapping analysis. We induced EAE in
Junb-deficient TH17-fate-mapping reporter (Il17acreR26ReYFP-

Junbfl/fl) mice, in which constitutive eYFP expression and JunB
deficiency are induced in cells expressing IL-17A. Our data
showed that abundance of eYFPþCD4þ T cells in the LNs
and CNS in Junb-deficient reporter mice was significantly lower
than in controls (Il17acreR26ReYFPJunbþ /þ ) on day 14 after
immunization with MOG35–55 peptide (Fig. 6d and
Supplementary Fig. 7e). Furthermore, in the eYFPþCD4þ T-cell
population, Junb deficiency significantly reduced IL-17A/IFN-g
double-producing cells and IFN-g single-producing cells, but had
almost no effect on IL-17A single-producing cells (Fig. 6e),
suggesting that defects in generation of TH17 cells observed in
Junb-deficient mice might not be due to increased plasticity of
TH17 cells. Rather, in an inflammatory context, JunB is likely
required for generation of TH17 cells that are competent to
differentiate to IFN-g-producing cells.

To assess whether JunB is also required for other
TH17-mediated diseases, we investigated the function of JunB

in colitis development by transferring Junb-deficient CD4þ

CD45RBhiCD25� T cells into Rag1-deficient mice. The transfer
of control, but not Junb-deficient CD4þ T cells, induced severe
weight loss, beginning about 2 weeks after the transfer (Fig. 6f).
Moreover, in the colonic LP of recipient mice, the frequency of
IL-17A-expressing cells in the transferred Cd4CreJunbfl/fl T cells
was significantly lower than of controls (Fig. 6g and
Supplementary Fig. 8a). However, a substantial number of the
transferred Junb-deficient CD4þ T cells expressed IFN-g in LNs
of recipient mice (Supplementary Fig. 8b).

We also investigated the function of JunB in an anti-CD3
antibody treatment model in which TH17 cells are generated and
migrate into the gut44. Injection of anti-CD3 antibody increased
CD4þ T cells expressing IL-17A and RORgt in the LP of
duodenum in both Cd4CreJunbfl/fl and control mice, but the
abundance of these cells was much lower in Cd4CreJunbfl/fl mice
than in control mice (Supplementary Fig. 8c). This suggests that a
subset of TH17 cells can be generated independently of JunB even
in an inflammatory setting, although JunB is required for full
development of inflammatory TH17 cells. Collectively, these
results suggest that JunB may be selectively required for
pathogenicity of TH17 cells in vivo.
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Discussion
Recent studies have revealed functionally distinct subsets within a
TH17 population, distinguishable by their pathogenicity and gene
expression profiles1–3. TGF-b1/IL-6-induced TH17(b) cells are
non-pathogenic, but IL-6/IL-1b/IL-23-induced TH17(23) cells are
pathogenic13,14. Furthermore, IL-23 facilitates pathogenicity of
TH17(b) cells14. Although a number of genes are differentially
induced between TH17(b) and TH17(23) subsets, which probably
contribute to their different pathogenicity, differentiation of both
TH17(b) and TH17(23) subsets relies on a common TH17
transcription programme composed of BATF, IRF4, STAT3 and
RORgt28–32. However, the mechanisms of RORgt induction in
TGF-b1-dependent TH17 cells and IL-23-dependent TH17 cells
have not been fully understood.

Here we demonstrate that induction of RORgt is differentially
regulated in TGF-b1-dependent TH17 cells and IL-23-dependent
TH17 cells. Following the RNAi screen of transcription factors
responsible for IL-23 signalling, we found that JunB is critical for
IL-23-dependent TH17 generation. Our in vitro results indicate
that JunB is essential for RORgt induction in IL-23-dependent
TH17 cells, but not in TGF-b1-dependent TH17 cells. Our in vivo
results also show a similar selective requirement of JunB in a
subset of TH17 cells. JunB is likely dispensable for generation of
gut-resident non-pathogenic TH17 cells at steady state. However,
JunB is required for generation of pathogenic TH17 cells in EAE
and colitis models. A similar phenotype has been observed in
mice deficient in IL-23 signalling15,17,19, supporting a model in
which JunB facilitates IL-23-dependent pathogenic TH17
production.

JunB is critical for DNA binding of BATF, IRF4 and STAT3 at
the Rorc locus under TH17(23)-polarizing conditions, but not
under TH17(b)-polarizing conditions. However, loss of JunB has
little effect on DNA binding of these transcription factors at the
Ctla4 locus, expression of which is regulated independently of
JunB even in TH17(23) conditions. These results suggest that
JunB is likely required for recruitment or stable DNA binding of
BATF, IRF4 and STAT3 in a target site-dependent manner under
TH17(23)-polarizing conditions. A heterodimer of BATF and
JunB, in conjunction with IRF4, binds to AP-1-IRF composite
elements in many genes, including Rorc and Il17a (refs 33,34).
However, other Jun proteins, c-Jun and JunD, also interact with
BATF/IRF4 and bind to AP-1-IRF composite elements33,34.
Furthermore, RNAi ablation of c-Jun impairs TGF-b1-dependent
TH17 differentiation45. These findings suggest that DNA-binding
activity of BATF may be controlled by its AP-1 heterodimer
partners, including JunB and c-Jun, in a target site- and context-
dependent manner.

IL-23 is required for maturation and maintenance of TH17
cells, which are likely linked to acquisition of TH17 pathogenic
cytokine-producing ability and functional plasticity in the late
phase of TH17 development6. Our data show that a subset of
TH17 cells is generated independently of JunB in the early
phase of EAE, but full development of inflammatory TH17 cells
depends on JunB. This suggests that JunB may be important for
IL-23-dependent maturation and maintenance of TH17 cells,
which are probably generated in a TGF-b-dependent manner.
Consistent with this, our in vitro data show that JunB facilitates
IL-23-dependent maintenance of IL-17-producing ability of
TGF-b/IL-6-induced TH17 cells. Furthermore, in vivo
TH17-fate-mapping data indicate that JunB is important for
generation of TH17-derived IFN-g-producing cells. Seemingly
contradicting the in vivo observation, however, JunB deficiency
results in abnormal induction of T-bet and IFN-g in TH17 cells
in vitro. In addition, our ChIP-seq results show that JunB,
together with BATF, IRF4 and STAT3, binds to the Tbx21 locus,
suggesting direct regulation of T-bet expression by JunB in TH17

cells. Collectively, these data suggest that JunB may control TH17
plasticity in part by positively or negatively regulating T-bet
expression in TH17 cells in a developmental-phase-dependent
manner, probably by interacting with distinct transcription
factors or epigenetic regulators.

RORgt regulates induction of a restricted subset of TH17
genes29. Consistent with this, JunB deficiency impairs expression
of a small number of genes, such as Il17a, Il17f and Il23r under
TH17(23)-polarizing conditions. Despite impaired induction of
a limited number of TH17 genes, Junb-deficient T cells lose
their ability to induce EAE and colitis, implying a critical
function of these JunB-regulated genes in TH17 pathogenicity.
As Il-23r-deficient T cells are also incapable of inducing
TH17-dependent diseases17, JunB-dependent IL-23R induction
is likely critical for pathogenicity of TH17 cells. Furthermore,
given that IL-23 signalling is important for RORgt expression
in the absence of TGF-b1, it is possible that the diminished
RORgt expression in Junb-deficient TH17(23) cells might be due
to impaired IL-23R induction, which is needed for full induction
of RORgt.

It has been suggested that GM-CSF and IFN-g are involved in
TH17 pathogenicity26,27,46. However, JunB is not required for
induction of GM-CSF and IFN-g under TH17(23)-polarizing
conditions. These data suggest that GM-CSF and IFN-g need to
be produced by JunB-dependent TH17 cells to exert their
pathogenic functions. A recent report demonstrated that
Blimp1, which is induced by IL-23 in vivo, is critical for
pathogenic TH17 differentiation42. Interestingly, our ChIP-seq
data showed that JunB and BATF/IRF4 bind to the Prdm1 locus
in TH17 cells in vitro, suggesting that JunB may have a function in
regulation of Blimp1 expression at late stages of TH17
differentiation. We also found that JunB binds to the Cd5l
locus in TH17(23) cells, but not in TH17(b) cells. CD5L is induced
in non-pathogenic TH17 cells and inhibits their pathogenicity43.
It is intriguing to speculate that JunB-dependent negative
regulation of CD5L production may be involved in regulation
of pathogenicity of TH17 cells.

Although JunB is required for RORgt induction specifically in
TH17(23) cells, another pathway that is activated by TGF-b1 may
compensate for the absence of JunB. Although the main TGF-b1
signalling pathway is mediated by SMAD2, SMAD3 and SMAD4
transcription factors, previous data have shown that the
SMAD-dependent pathway is unnecessary for TGF-b1-
dependent RORgt induction47. Our preliminary analysis
showed that TGF-b1 receptor kinase inhibitor (SB43152)
treatment significantly inhibited Rorc induction in TH17(b)
cells, whereas there was only a partial or no reduction of Rorc
expression in TH17(b) cells treated with TGF-b1 signalling
regulators, including JNK inhibitor (SP600125), MEK inhibitor
(PD98059), p38 inhibitor (SB203580), PI3 kinase inhibitor
(LY294002), SMAD3 inhibitor (SIS3) or ROCK inhibitor
(Y27632) (Supplementary Fig. 9). Thus, TGF-b receptor kinase
activity may be important for JunB-independent TH17
differentiation, but the downstream signalling pathways remain
unknown.

In conclusion, we demonstrate that JunB is selectively required
for activation of the TH17 core transcription programme in
IL-23-dependent pathogenic TH17 cells, but that the
JunB-independent pathway is sufficient to activate the same
programme in TGF-b1-dependent, non-pathogenic TH17 cells.
JunB is essential for expression of RORgt, by promoting
DNA binding of BATF, IRF4 and STAT3 at the Rorc locus in
IL-23-dependent pathogenic TH17 cells. Junb-deficient T cells are
incapable of inducing EAE and colitis, but loss of JunB does not
seem to affect TH17 generation in the gut at steady state. Thus,
the JunB-dependent pathway could be an attractive therapeutic
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target to suppress pathogenicity of TH17 cells, while maintaining
beneficial TH17 populations.

Methods
Mice. To generate T-cell-specific, Junb-conditional knockout mice, we used
C57BL/6-background ES cells, EGR-101, carrying a ‘knockout first’ Junb tm1a
allele (Eucomm)48, which contains flippase recombination target (FRT)-flanked
lacZ and neomycin resistance (neo) cassettes in front of a loxP-flanked (floxed)
Junb exon 1 (Supplementary Fig. 2a). ES cells were injected into eight-cell Institute
for Cancer Research (ICR) mouse embryos, and chimeric blastocysts were
transferred into the uteri of pseudo-pregnant ICR female mice49. The resultant
chimeric mice were crossed with FLP mice (Jackson, Stock No. 009086) to excise
the FRT-flanked region, which generated mice carrying a conditional Junb tm1c
allele (floxed Junb mice) (Supplementary Fig. 2a). Floxed Junb mice were crossed
with Cd4Cre mice (Jackson) to create Cd4CreJunbfl/fl mice in which T cells carry
deleted Junb (tm1d) alleles (Supplementary Fig. 2a). Il17acre (Stock No. 016879)
and Rosa26eYFP (R26ReYFP) (Stock No. 006148) mice were from the Jackson
Laboratory. C57BL/6 mice and floxed Stat3 mice36 were purchased from CLEA
Japan and Oriental Bioservice, respectively. All mice were housed under specific
pathogen-free conditions. Gender-matched 6–12-week old mice were used for
experiments. All animal experiments were performed following protocols approved
by Animal Care and Use Committee at Okinawa Institute of Science and
Technology Graduate University.

Antibodies. The following antibodies were used for flow cytometry analysis and
fluorescence-activated cell sorting (FACS): Anti-CD3 (17A2, Biolegend, 1:400),
anti-CD4 (GK1.5, Biolegend, 1:100 or 1:400), anti-CD8 (53–6.7, Biolegend, 1:400),
anti-CD25 (PC61, Biolegend, 1:400), anti-CD44 (IM7, Biolegend, 1:400), anti-CD62L
(MEL-14, Biolegend, 1:400), anti-IL-17A (TC11-18H10.1, Biolegend, 1:100),
anti-IFN-g (XMG1.2, Biolegend, 1:100), anti-GM-CSF (MP1-22E9, BD, 1:100),
anti-RORgt (Q31-378, BD, 1:50), anti-Foxp3 (150D, Biolegend, 1:50), anti-T-bet
(4B10, Biolegend, 1:50) and anti-TCRVb8.1/8.2 (KJ16-133.18, Biolegend, 1:20).
For immunoblot analyses, anti-JunB (C37F9, Cell Signaling Technology, 1:2,000),
anti-RORgt (AFKJS-9, eBioscience, 1:400) and anti-GAPDH (3H12, MBL, 1:2,000)
were used. For ChIP analyses, anti-JunB (210, Santa Cruz, 2mg per ChIP), anti-BATF
(WW8, Santa Cruz, 2mg per ChIP), anti-IRF4 (M-17, Santa Cruz, 2mg per ChIP),
anti-STAT3 (c-20, Santa Cruz, 2mg per ChIP) were used.

In vitro CD4þ T-cell differentiation. CD4þ T cells from single-cell suspensions
of murine spleens and LNs were enriched using a MACS magnetic cell sorting
system with anti-CD4 microbeads (130-049-201, Miltenyi). Then naive CD4þ T
cells (CD4þCD25-CD62LhiCD44lo) were sorted by FACS AriaII or AriaIII (BD).
Cells were activated with plate-bound anti-CD3 antibody (5 mg ml� 1; 145-2C11,
Biolegend) and soluble anti-CD28 antibody (1 mg ml� 1, 37.51, Biolegend) in
IMDM media (Invitrogen) supplemented with 10% foetal calf serum (Invitrogen)
containing the following cytokines and antibodies: IL-2 (20 ng ml� 1; Biolegend),
anti-IFN-g (1mg ml� 1; Biolegend) and anti-IL-4 (1 mg ml� 1; Biolegend) for TH0;
IL-6 (20 ng ml� 1; Biolegend) and TGF-b1 (3 ng ml� 1; Miltenyi) for TH17(b); IL-6
(20 ng ml� 1; Biolegend), IL-1b (20 ng ml� 1; Bioelegend) and IL-23 (40 ng ml� 1;
Biolegend) for TH17(23); IL-6 (20 ng ml� 1) and TGF-b3 (3 ng ml� 1; Miltenyi) for
TH17(b3);TGF-b1 (15 ng ml� 1) and IL-2 (20 ng ml� 1) for iTreg differentiation.
For analysis of cytokine expression, cells were re-stimulated with phorbol 12-
myristate 13-acetate (PMA; 50 ng ml� 1; Sigma) and ionomycin (500 ng ml� 1;
Sigma) in the presence of brefeldin A (5 mg ml� 1; Biolegend) for 4 h. Then, cells
were fixed with 4% paraformaldehyde, permeabilized in permeabilization/wash
buffer (421002, Biolegend), and stained with antibodies against cytokines. For
analysis of expression of RORgt and Foxp3, Foxp3 staining buffer set (00-5253-00,
eBioscience) was used according to the instructions. In some experiments, TGF-b1
receptor kinase inhibitor (SB43152, 10 mM; Selleckchem), JNK inhibitor (SP600125,
10mM; EMD Millipore), MEK inhibitor (PD98059, 10 mM; Invivogen), p38
inhibitor (SB203580, 10 mM; Invivogen), PI3 kinase inhibitor (LY294002, 5 mM;
Invivogen), SMAD3 inhibitor (SIS3, 10 mM; Sigma) or ROCK inhibitor (Y27632,
10mM; Sigma) were added to the culture media. Dead cells were excluded using
Zombie NIR Fixable viability kits (423106, Biolegend) for flow cytometry analysis.
All flow cytometry gating strategies are shown in Supplementary Fig. 10.

Cell isolation. Mononuclear cells were isolated from SI LP or colonic LP using
Lamina Propria Dissociation kits (130-397-410, Miltenyi). For isolation of cells
from CNS of EAE-induced mice, brains and spinal cords were digested with col-
lagenase D (1 mg ml� 1; Roche) and DNase I (2.5 mg ml� 1; Sigma) in
phosphate-buffered saline at 37 �C for 1 h with shaking. Then, isolated cells
were re-suspended in 37% Percoll (GE Healthcare), mixed with 70% Percoll and
then centrifuged for 20 min. Mononuclear cells were isolated from the interface.
Cells were incubated with anti-Fc receptor blocking antibody (anti-CD16/CD32;
Biolegend) and then stained with antibodies against cell surface molecules.
Expression of cytokines and transcription factors was analysed by flow cytometry
as described above.

Enrichment of IL-17-secreting cells. We enriched IL-17-secreting cells with a
mouse IL-17 secretion assay kit (Miltenyi), according to the manufacturer’s
instructions. Briefly, naive CD4 T cells were activated in the presence of TGF-b1
and IL-6, as above. On day 3, cells were re-stimulated with PMA (10 ng ml� 1) and
ionomycin (1 mg ml� 1) for 3 h, followed by IL-17-capture reaction in serum-free
media (X-VIVO20; Lonza). Phycoerythrin-labelled IL-17-secreting cells were
sorted using a FACS AriaIII.

Retrovirus infection. The pMKO1.GFP retroviral vector (a gift from William
Hahn, Addgene plasmid # 10676), which is a bicistronic vector containing an
internal ribosome entry site (IRES). IRES-driven complementary DNA (cDNA)
encoding green fluorescent protein (GFP) was used for shRNA transduction.
Briefly, PlatE cells were transfected with pMKO1.GFP containing shRNAs and the
pCL-Eco helper plasmid using polyethylenimine. pCL-Eco was a gift from Inder
Verma (Addgene plasmid # 12371)50. Culture supernatants were collected at 72 h
post transfection, supplemented with polybrene (8 mg ml� 1), and added to sorted
naive CD4þ T cells (2� 105 cells per well in a 48-well plate) previously stimulated
for 36 h under TH0-polarization conditions. Cultures were centrifuged at 300g for
60 min at room temperature, and media was replaced with fresh media containing
TH17(23) cytokines. Cells were incubated for 3 days, and GFPþ cells were sorted
for RNA isolation and qRT–PCR. Sequences of shRNAs against 263 transcription
factors highly expressed in TH17 cells are listed in Supplementary Data 1.

qRT–PCR. Total RNA isolated from cells using an RNeasy Plus Mini Kit (74136,
Qiagen) was used for cDNA synthesis with a Revertra Ace qPCR Kit (FSQ-101,
Toyobo). The resulting cDNA was used as a template for qRT–PCR performed
with Faststart SYBR master mix (4673484, Roche) and a Thermal Cycler Dice Real
Time system (Takara). Primers used for qPCR are listed in Supplementary Table 1.

Immunoblot analysis. Cells were lysed with RIPA buffer (Thermo) containing
complete protease inhibitor cocktail (4693159, Roche). Cellular debris in the lysate
was removed by centrifugation at 14,000g for 15 min. The protein concentration
was measured with a DC Protein Assay kit (500-0106, Bio-Rad). Protein extracts
were mixed with 5� sample loading buffer (250 mM Tris-HCl pH 6.8, 10% SDS,
30% glycerol, 5% b-mercaptoethanol and 0.02% bromophenol blue) and subjected
to SDS–polyacrylamide gel electrophoresis. Then separated proteins on the gel
were transferred onto Immobilon P transfer membranes (Millipore) using a Trans-
blot electrophoretic transfer system (Bio-Rad). Membranes were blocked with 5%
skim milk (Wako) in phosphate-buffered saline with 0.1% Tween-20 (Sigma) and
incubated with the indicated primary antibodies and probed with horseradish
peroxidase-conjugated anti-mouse or anti-rabbit IgG antibodies (Cell Signaling
Technology, 1:4,000). Bound antibody was detected with Clarity Western ECL
(Bio-Rad) or SuperSignal West Femto detection reagents (Thermo) and an
Las-3000 imaging system (Fuji film). Uncropped original scans of immunoblots
were provided in Supplementary Fig. 11.

Microarray analysis. Total RNA was isolated from cells using an RNeasy Plus
Mini Kit (74136, Qiagen). RNA quality was analysed with an Agilent 2100
Bioanalyzer and an RNA 6000 Nano Kit (5067-1511, Agilent). RNA samples
showing RNA integrity numbers Z7 were used to generate biotinylated
complementary RNA (cRNA) with a GeneChIP WT Plus Reagent Kit (902280,
Affymetrix) and GeneChip Hybridization, Wash and Stain Kit (900720,
Affymetrix). Labelled cRNA was hybridized to Affymetrix Mouse Gene 1.0 ST
microarrays (Affymetrix), then stained and scanned with an Affymetrix GeneChip
3000 (Affymetrix).

ChIP-seq and ChIP–PCR analysis. ChIP was performed using a SimpleChIP Plus
Enzymatic Chromatin IP Kit (9005S, Cell Signaling) with some modifications, as
previously described51,52. Briefly, activated T cells (106 per ChIP-seq or 1–3� 105

per ChIP–PCR) were crosslinked in culture medium containing 1% formaldehyde
at room temperature for 10 min, and the reaction was stopped by adding glycine
solution. Then cells were lysed, and nuclei were collected and treated with
micrococcal nuclease (0.0125 ml ml� 1) for 20 min at 37 �C. After stopping the
reaction with 0.05 M EGTA, samples were sonicated with several pulses to disrupt
nuclear membranes. Then the supernatant, containing chromatin, was collected
after centrifugation. Chromatin solutions were incubated with 2 mg of antibodies
overnight at 4 �C with rotation, followed by incubation with Protein G magnetic
beads for 2 h at 4 �C. Beads were washed, and chromatin was eluted. Crosslinks
were reverted according to kit instructions. DNA was purified by phenol/
chloroform extraction and used for ChIP–PCR analysis with primers listed in
Supplementary Table 1.

For ChIP-seq analysis, sample DNA was quantified with a Qubit 3.0
Fluorometer (Thermo Fisher Scientific) and normalized to 200 pg as starting DNA
for library preparation. Libraries were prepared using KAPA Hyper Prep Kit
(KK8500, KAPA Biosystems) protocols for blunt-ending, polyA extension and
adaptor ligation. Post-ligation clean-up with an Agencort AMPure XP (Beckman
Coulter) was performed at a 1.8� DNA ratio to purify ligated DNA, which was
then PCR-amplified and purified using AMPure XP at a 1.2� DNA ratio to

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15628

10 NATURE COMMUNICATIONS | 8:15628 | DOI: 10.1038/ncomms15628 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


remove excess adaptor-dimer and to preserve small fragments. Size selection was
performed with a 2% agarose gel cassette of Blue Pippin (Sage Science) for a target
insert size between 30 and 180 bp. Library quantification was performed by droplet
digital PCR (Bio-Rad). All libraries were pooled and loaded onto cBot (50 ml of
200 pM) for cluster generation, and then sequenced on an Illumina HiSeq4000 at a
target sequencing depth of 10 million uniquely aligned reads.

EAE induction. Six–eight-week old, gender-matched mice were immunized with
MOG35–55 peptides (300 mg per mouse) in complete Freund’s adjuvant (CFA)
(100 ml per mouse) containing dead Mycobacterium tuberculosis (1 mg per mouse).
Pertussis toxin (400 ng per mouse) was also intraperitoneally injected into the mice
twice on day 0 and on day 2 post immunization. Disease severity was evaluated on
a scale of 1–5 as follows: 1, limp tail; 2, partially paralysed hind legs; 3, completely
paralysed hind legs; 4, complete hind and partial front leg paralysis; 5, completely
paralysed hind and front legs. Mice with disease score 5 were considered moribund
and were killed by CO2 inhalation.

Colitis induction. CD4þCD45RBhiCD25� T cells were purified from CD4þ T
cells isolated from spleens and LNs of Cd4CreJunbfl/fl and control mice, and
intraperitoneally injected into Rag1-deficient mice (4� 105 cells per mouse).
Disease progress was monitored by weighing the mice.

Anti-CD3 antibody treatment. We injected mice with anti-CD3 antibody (50 mg
per mouse) three times at 0, 48 and 96 h. At 4 h after the final injection, the mice
were killed by CO2 inhalation for cell isolation from LP of duodenums.

Statistical analysis. Statistical analyses were performed using unpaired two-tailed
Student’s t-test with Prism software (GraphPad). P values o0.05 were considered
as significant.

Data availability. Microarray and ChIP-seq data that support the findings of this
study have been deposited in the Gene Expression Omnibus with the primary
accession codes GSE86499 and GSE86535, respectively. The authors declare that all
other data supporting the findings of this study are available within the article and
its Supplementary Information files or are available from the authors on request.
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