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Abstract

The Hyperactivated Wnt/β-catenin signaling acts as a switch to induce EMT and promote 

colorectal cancer. However, due to its essential role in gut homeostasis, therapeutic targeting of 

this pathway has proven challenging. Additionally, IL-6/Stat-3 signaling, activated by microbial 

translocation through the dysregulated mucosal barrier in colon adenomas, facilitates the adenoma 

to adenocarcinomas transition. However, inter-dependence between these signaling pathways and 

key mucosal barrier components in regulating colon tumorigenesis and cancer progression remains 

unclear. In current study, we have discovered, using a comprehensive investigative regimen, a 

novel and tissue specific role of claudin-3, a tight junction integral protein, in inhibiting colon 

cancer progression by serving as the common rheostat of Stat-3 and Wnt-signaling activation. 

Loss of claudin-3 also predicted poor patient survival. These findings however contrasted an 

upregulated claudin-3 expression in other cancer types and implicated role of the epigenetic 

regulation. Claudin-3−/− mice revealed dedifferentiated and leaky colonic epithelium, and 

developed invasive adenocarcinoma when subjected to colon cancer. Wnt-signaling 
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hyperactivation, albeit in GSK-3β independent manner, differentiated colon cancer in claudin-3−/− 

mice versus WT-mice. Claudin-3 loss also upregulated the gp130/IL6/Stat3 signaling in colonic 

epithelium potentially assisted by infiltrating immune components. Genetic and pharmacological 

studies confirmed that claudin-3 loss induces Wnt/β-catenin activation, which is further 

exacerbated by Stat-3-activation and help promote colon cancer. Overall, these novel findings 

identify claudin-3 as a therapeutic target for inhibiting overactivation of Wnt-signaling to prevent 

CRC malignancy.
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Introduction

Genetic and epigenetic aberrations drive the formation of the benign colon adenoma and its 

progression to adenocarcinoma. However, recent studies have also demonstrated key role of 

the impaired mucosal barrier in adenoma to carcinoma transition by enabling cancer 

permissive and inflammatory signaling (1). In this regard, causal role of IL-6/Stat-3 

signaling in CRC progression was recently reported (2). Moreover, deregulated epithelial 

barrier can also allow growth factor infiltration into the mucosa to induce receptor tyrosine 

kinase signaling known to promote neoplastic transformation and growth (3–5). Notably, TJ 

help maintain mucosal barrier properties. Additionally, TJ helps regulate epithelial cell 

differentiation and polarity, and are accordingly deregulated during neoplastic 

transformation of colonic epithelial cells (6). Furthermore, Wnt/β-catenin signaling has 

gained particular attention, in regulating the epithelial to mesenchymal transition (EMT) to 

facilitate the adenoma to carcinoma transition and CRC-progression (7, 8). However, key 

regulatory mechanism/s governing the de-differentiated colonic epithelial phenotype in 

correlation with cancer promoting inflammatory microenvironment and its causal 

association with Wnt/β-catenin signaling remain largely unclear. Thus, improved 

understanding of the molecular and genetic routes that help regulate inter-dependence 

between Wnt/β-catenin and Stat-3 signaling to facilitate CRC-progression can help enable 

therapeutic mechanisms for lessening cancer aggressiveness and patient death.

In current studies, we have identified claudin-3 as the highest expressed cell-adhesion 

protein, among prominent cell-adhesion proteins tested, in the normal colon and positive 

association between claudin-3 expression and colonocyte differentiation. Similar observation 

by other published reports renders support to our findings (9). Therefore, we postulated loss 

of colonic claudin-3 expression to deregulate mucosal barrier function and colonocyte 

differentiation, and therefore promote CRC-malignancy. However, limited published studies 

implicate claudin-3 in CRC-progression similar to prostate and ovarian cancers (10, 11). 

Due to these inconsistencies and our hypothesis that claudin-3 loss may promote CRC-

malignancy, we performed a comprehensive investigation. Using CRC cell lines of differing 

tumorigenic and metastatic potential, mouse model of colon cancer and CRC patient 

samples, we here demonstrate a novel colon cancer suppressive role of claudin-3. Using 

genetic and pharmacological manipulations, we further confirm a role for claudin-3 by 
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regulating intratumoral Wnt/β-catenin- and IL6/gp130/Stat3-signaling pathways. Overall, 

we here provide first biochemically and clinically validated evidence to support a CRC-

suppressive function of claudin-3 by serving as a conjoint rheostat for regulating Stat-3 and 

Wnt-signaling.

Results

Claudin-3 is the most abundant cell-adhesion moiety in normal colon, expressed 
predominantly by differentiated colonocytes:

A key role of TJ in regulating epithelial barrier properties, cell differentiation and polarity is 

established (12, 13). Considering the newly emerging nexus between epithelial and immune 

homeostasis in regulating colon carcinogenesis, we first determined relative abundance of 

the key cell-adhesion proteins in normal colon. Immunoblot analysis using mice colon lysate 

demonstrated claudin-3 expression to be the highest compared to claudin-1, claudin-2, 

claudin-7, Occludin, ZO-1, E-cadherin, β-catenin and β1-integrin (p<0.01; Fig-1A and 

Supplementary Fig-S1A). Immunohistochemical (IHC) analysis further demonstrated an 

expression gradient with predominant claudin-3 expression at the crypt top, among 

terminally differentiated colonocytes (Fig-1B).

We further evaluated a causal link between claudin-3 expression and colonocyte 

differentiation using in vitro models of colonic epithelial cell (CEC) differentiation. In this 

regard, Caco-2 cells undergo spontaneous differentiation in culture or when subjected to 

HDACs (histone deacetylase) inhibitors (14, 15). Samples from both models of 

differentiation were examined. We used P-27(Kip1) and α-SMA (Smooth Muscle Actin), as 

positive and negative markers of CEC differentiation, respectively as controls (16) (17). A 

sustained increase in P-27(Kip1) expression and simultaneous decrease in α-SMA levels 

supported the validity of differentiation models. Moreover, claudin-3 expression followed 

suit with P-27(Kip1) expression and contrasted with α-SMA levels. In same samples, 

claudin-10 expression remained largely unaltered (Fig-1C–D).

Importantly, de-differentiated phenotype characterizes colon cancer cells where poorly 

differentiated CRC cells are highly aggressive. Accordingly, immunoblot analysis using a 

panel of 14 CRC cell lines demonstrated markedly suppressed claudin-3 levels in 10 of 14 

cell lines and almost undetectable expression in HCT116 and SW620 cells (Supplementary 

Fig-S1B). Of note, both cell lines are poorly differentiated and highly aggressive in vivo (18, 

19). Taken together, our data suggested a positive association of claudin-3 expression with 

CEC differentiation.

Colonic claudin-3 expression is epigenetically regulated:

Cancer cells use epigenetic regulation to exert inhibitory effect upon tumor suppressive 

genes and/or induce synthesis of oncogenic factors (20). Claudin-3 gene contains multiple 

CPG islands in its promoter (21) and epigenetic regulation of claudin-3 expression, in other 

cancers, has been demonstrated. We therefore asked if loss of claudin-3 expression in CRC 

cells is epigenetically regulated. To determine, we subjected SW480 and SW620 cells to 

global demethylation using 5-aza-2’-deoxycytidine (2.5μm). Samples were collected 72-
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hours post-treatment. Notably, in our screening, SW480 cells demonstrated low and SW620 

cells demonstrated almost undetectable claudin-3 expression (Supplementary Fig-S1B). 

Indeed, in both cell types 5-aza treatment induced robust claudin-3 expression in dose-

dependent manner (Figure-1E). These data supported epigenetic silencing as potential 

mechanism underlying suppressed claudin-3 expression in colon cancer.

Claudin-3 loss is an early event and associates positively with CRC progression and poor 
patient survival:

To further determine if claudin-3 expression is similarly suppressed in vivo, we examined 

the colon of APCmin mice (Supplementary Fig-S2A–B) (22). Since normal colon harbors 

robust claudin-3 levels, we reasoned that immunoblotting may not suffice, with reasonable 

confidence, to differentiate claudin-3 expression between APCmin mice and wild type (WT) 

mice colon lysate. In lieu, we performed IHC which showed chronic decrease in claudin-3 

expression in colon tumor specific manner (Fig-1F). In adjacent normal crypts, claudin-3 

expression was intense, membrane localized and apicolateral (versus expected apical 

localization). Interestingly, the loss of lateral claudin-3 immunoreactivity preceded the loss 

of the apical claudin-3 in these colon tumors (Supplementary Fig-S1C–D). Moreover, 

tumors deficient in claudin-3 expression still retained E-cadherin expression and thus 

supported potential of claudin-3 to serve as a sensitive prognostic biomarker to assess 

colonocyte transformation than E-cadherin (Supplementary Fig-S2F–G). We found similar 

tumor specific loss of claudin-3 in mice subjected to colitis-associated cancer (CAC; AOM-

DSS-induced colon cancer (Fig-1G, Supplementary Fig-S1D, –S2C–E and –G) (23). 

Overall, our data demonstrated early loss of claudin-3 expression in colon cancer.

To further determine clinical significance of our observations, we determined claudin-3 

expression in CRC patients and correlation with cancer progression. Initial assessment of 

claudin-3 mRNA expression in a large patient cohort (>250 CRC patient samples; 

demographics previously described (19) indeed demonstrated significant decrease in 

claudin-3 mRNA expression in colon adenomas (P<0.05). However, this decrease was 

progressive as loss of claudin-3 in all stages of CRC (versus normal mucosa) was highly 

significant (p<0.001) (Fig-2A). Subsequent IHC analysis of a CRC TMA (tissue microarray; 

157 cores) demonstrated, similar to the mouse colon, robust apicolateral claudin-3 

expression in normal colon. However, expression and membrane localization of claudin-3 

were drastically compromised in the adenocarcinomas and metastatic samples (Fig-2B and 

Supplementary Fig-S3A–B). Blinded evaluation of staining intensity in normal, 

adenocarcinoma and metastatic CRC samples by a pathologist further confirmed significant 

decreases in claudin-3 expression in CRC-samples (versus normal colon, P<0.0001 

(Fig-2C). We found similar decreases in claudin-3 expression in specimen from colitis-

associated cancer patients (Fig-2D). Parallel use of the same antibody in normal prostate and 

prostate cancer demonstrated robust increase in adenocacrcinoma versus normal tissue, and 

thus supported antibody specificity (Supplementary Fig-S3C). We further examined if 

claudin-3 levels may also be of prognostic significance by evaluating association of 

claudin-3 expression with overall survival among CRC-patients. Based upon median 

claudin-3 expression values, the Kaplan-Meier survival analysis indeed demonstrated a 

significant and positive correlation of greater claudin-3 expression with better patient 
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survival (p<0.0491) (Fig-2E). Taken together, we found a positive correlation between 

claudin-3 expression loss, CRC-progression, and poor patient survival.

Claudin-3 null (Cldn-3KO) mice demonstrate de-differentiated colonic epithelium, 
infiltratory immune microenvironment and aggressive tumor burden:

To further evaluate if claudin-3 loss is causally associated with colon tumorigenesis, we used 

Cldn-3KO mice (see methods). Immunoblot analysis using mice colon lysate confirmed 

inhibition of claudin-3 protein synthesis in Cldn-3KO mice. Interestingly, claudin-3 

depletion did not affect colonic expression or cellular localization of claudin-1, −2 or −7 

proteins, known to be altered in CRC (19, 24, 25) (Supplementary Fig-S4A and –S4B). 

Irrespective, analysis using rectal administration of FITC-Dextran (4kDa) to determine 

mucosal barrier dysfunction demonstrated a significant increase in mucosal leakage in 

Cldn-3KO mice (versus WT-mice; p<0.05) (Fig-3A). Additionally, IHC analysis using anti-

CD3 antibody demonstrated marked upregulation in T-cell infiltration in naïve Cldn-3KO 

mice (versus WT-mice, p<0.001; Fig-3B and Supplementary Fig-S4D). Most notably, 

immunoblot analysis demonstrated suppressed P-27(Kip-1) expression (p<0.05) and 

contrasting upregulation of Vimentin, a mesenchymal cell marker, in Cldn-3KO mice colon 

(versus WT mice; Fig-3C and Supplementary Fig-S4C). Taken together, our data supported 

an important role of claudin-3 in maintaining differentiated CEC phenotype and mucosal 

barrier function, and potential susceptibility of Cldn-3KO mice to colon tumorigenesis.

We further examined if loss of colonic claudin-3 expression can promote colon cancer 

progression. Cldn-3KO mice were subjected to the AOM-DSS induced colon 

carcinogenesis. Remarkably, Cldn-3KO mice subjected to colon cancer not only 

demonstrated significant body weight loss during the DSSIII cycle (p>0.05; versus WT-

mice; Supplementary Fig-S5A). Also, some AOM-DSS treated Cldn-3KO mice died before 

the study termination (data not included). Moreover, we observed significant increase in the 

colon weight (gm/cm length; p<0.05) of AOM-DSS treated Cldn-3KO mice (versus WT 

mice; Supplementary Fig-S5B). In corroboration, gross tumor numbers, at the study end, 

demonstrated significant increase (p<0.01) in colon tumor burden in Cldn-3KO mice (versus 
WT mice; Fig-3D–E). Further analysis revealed that the tumors in Cldn-3KO mice were not 

only more in number but also in size (large, intermediate and small tumors: 40%, 33% and 

27% in Cldn-3KO mice versus 28%, 20% and 52% in WT mice; Fig-3F). In accordance, 

Cldn-3KO mice showed significantly higher tumor score (p<0.5), a recently described 

measure of cancer progression (26) (Fig-4A). Most notably, 33% of Cldn-3KO mice 

developed invasive adenocarcinomas (p<0.01) compared to none (0%) in WT mice (Fig-4B–

C). Overall, these results uncovered a novel, and tissue specific cancer suppressing role for 

claudin-3 in colon cancer.

Claudin-3 depletion in CRC cells induces de-differentiated phenotype and invasive 
mobility:

To further elucidate the causal role of claudin-3 in regulating CEC differentiation to inhibit 

cancer cell phenotype, we silenced claudin-3 expression in CRC cells using anti-human 

claudin-3 or control siRNA. Immunoblotting to determine altered protein expression, wound 

healing and cell invasion assays were performed. As shown in Fig-4D, immunoblot analysis 
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demonstrated that claudin-3 depletion, similar to in vivo conditions, inhibited P-27(Kip1) 

expression however upregulated vimentin and cyclin-D1 expression. Moreover, claudin-3 

silenced cells demonstrated significant increases in migration (wound-healing assay) and 

invasion (Boyden chamber assay) (p<0.05 and p<0.01 respectively; versus control cells) 

(Fig-4E).

Claudin-3 expression associates inversely with vimentin expression:

One of our key findings was a consistent increase in vimentin expression, a type III 

intermediate filament and EMT marker, under claudin-3 suppressed conditions. In colon 

cancer, vimentin expression associates positively with high malignant potential and poor 

prognosis of colorectal patients, and is highly expressed in cancer cells at the invading front 

(27, 28). We therefore examined potential association between claudin-3 and vimentin 

expression in CRC patients. Spearman’s correlation analysis, using the same patient cohort 

utilized in the analysis described in Fig-2A, indeed demonstrated a significant inverse 

correlation between claudin-3 and vimentin expression in patient samples (p<0.0002) 

(Fig-4F). We further examined whether this correlation is simply byproduct of the end point 

changes in gene expressions in cancer cells or dynamic association. Co-immunolocalization 

for claudin-3 and vimentin was performed using the colon of AOM/DSS-treated WT mice. 

Specific emergence of vimentin expression in tumor areas where claudin-3 expression is 

chronically suppressed suggested that the observed inverse correlation is dynamic and may 

regulate emergence of cancer invasive front (Fig-4G).

Hyperactivated Wnt/β-catenin signaling, intratumoral proliferation and cancer cell survival 
facilitate colon cancer progression in Cldn-3KO mice:

To further ascertain whether increased tumor burden in Cldn-3KO mice is result of an 

increase in proliferation, cancer cell survival, decreased apoptosis or all combined, we 

determined intratumoral proliferation and apoptosis by IHC using anti-Ki-67 and -cleaved 

caspase-3 antibodies. Analysis demonstrated a significant increase in proliferation/apoptosis 

ratio between Cldn-3KO and WT-mice mice tumors (p<0.05; Fig-5A and Supplementary 

Fig-S5C). Immunoblot analysis using total colon lysate from mice subjected to colon cancer 

further demonstrated a significant increase in cyclin-D1 expression (p<0.01), a proliferation 

inducer and Wnt/β-catenin-signaling target, and Bcl-2 (p<0.05), anti-apoptotic protein, in 

Cldn-3KO mice (versus WT-mice; Fig-5B). These findings suggested role of the increased 

tumor cell proliferation/survival in CRC progression fueled by the loss of claudin-3 

expression.

Notably, colon cancer regulation is a multifaceted process and involves dysregulation of 

multiple unique and/or overlapping pathways. However, a recent study suggest that 

claudin-3 loss may promote Wnt/β-catenin-signaling, key regulator of CRC progression, to 

promote hepatocellular cancer (29). Upregulation of cyclin-D1 in Cldn-3KO mice tumors 

(Fig-5B) or Caco-2siRNA cells (Fig-4D) further supported potential role of Wnt/β-catenin-

signaling in claudin-3 dependent CRC-progression. Since, cytoplasmic/nuclear β-catenin 

expression signifies Wnt/β-catenin-signaling activation, IHC using anti-β-catenin antibody 

was done. As expected, we found cytoplasmic anti-β-catenin immunoreactivity in WT-mice 

tumors. However, the delocalized β-catenin expression was markedly upregulated and 
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predominantly nuclear localized in Cldn-3KO mice colon tumors and thus suggested Wnt-β-

catenin-signaling hyperactivation (Fig-5C). Immunoblot analysis using colon lysate further 

revealed a significant upregulation of β-catenin levels in AOM-DSS treated Cldn-3KO mice 

(versus WT-mice; p<0.01; Fig-5D) suggesting potential inhibition of protein degradation. 

Notably, GSK-3β regulates β-catenin expression through the regulation of its protein 

stability (30) and inactivation of GSK-3β (by phosphorylation) reduces β-catenin 

ubiquitination resulting in its nuclear accumulation (31). However, contrasting our 

expectation, P-GSK3β (Ser9) expression in Cldn-3KO mice was sharply decreased (versus 
WT-mice; p<0.001), (Fig-5D). We found similar decrease in P-GSK3β expression in 

Caco-2siRNA cells (Fig-5E) suggesting a GSK-3β independent role of claudin-3 in 

hyperactivating Wnt-β-catenin-signaling during colon tumorigenesis.

Claudin-3 loss induces IL6/gp130/Stat-3 signaling:

As described, we found increased gut permeability (p<0.05; Fig-3A) and exacerbated 

immune organization (CD3+ immune cell, Fig-3B) in naïve Cldn-3KO mice colon which 

was further augmented in their tumors (Supplementary Fig-S6A). Emerging studies suggest 

an intricate role of Stat-3 signaling in colon cancer progression by interlacing epithelial and 

immune homeostasis (2). Therefore, we examined if claudin-3 loss induces Stat-3 signaling. 

Immunoblot analysis using colon lysate indeed demonstrated a specific and significant 

(p<0.001) increase in P-Stat3(Tyr705) expression in Cldn-3KO mice subjected to colon 

cancer (versus WT mice; Fig-5F). Thereafter, IHC analysis was done to determine the 

source of the activated Stat-3 as phosphorylation shuttles Stat-3 protein into the nucleus to 

initiate a transcriptional program (Supplementary Fig-S6B). Of interest, the role of the IL-6/

Stat-3 signaling, upregulated by dysregulated barrier function in colon adenomas, in CRC 

progression was recently reported (2). In concurrence, IHC analysis using anti-IL6 antibody 

demonstrated markedly higher immunoreactivity in Cldn-3KO versus WT mice tumors 

which was predominantly epithelial but also of immune cell origin (Supplementary Fig-

S6C). qRT-PCR further demonstrated significant increases in IL-6 and IL-23, pro-

tumorigenic cytokines but not in TNF-α expression in these mice (Fig-5G). Taken together, 

our data suggested that claudin-3 loss induces IL-6/IL23/Stat-3 signaling to promote colon 

cancer.

IL-6/gp130/Stat-3-signaling hyperactivates Wnt-signaling induction by the loss of claudin-3 
expression:

A key finding in Caco-2siRNA cells was the marked delocalization of the membrane 

expressed β-catenin, similar to the in vivo findings (Fig-6A). Moreover, TOP-FLASH 

reporter activity was significantly increased (p<0.001) in these cells (Fig-6B). Additional 

studies where control or Caco-2siRNA cells were cultured on transwell filter support, bathed 

in same culture medium apically and basolaterally, demonstrated similar upregulation of 

Wnt-signaling suggesting that the effect of claudin-3 loss in inducing Wnt-signaling may be 

direct and not necessarily dependent on the leaky barrier (Supplementary Fig-S7A–C). We 

further determined if there is a cross talk between Wnt- and Stat-3 signaling in 

hyperactivating Wnt-signaling under claudin-3 depleted conditions. Previous studies have 

demonstrated a cross talk between Wnt signaling and IL-6/STAT3 signaling and cell survival 

(32, 33). To test, we first determined if Stat-3 signaling is also activated in Caco-2siRNA 
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cells. IL-6 treatment served as positive control. Similar to the Cldn-3KO mice, we found 

robust P-Stat3(Tyr705) expression in Caco-2siRNA cells which was further augmented by 

IL-6 treatment (Fig-6C). Further determinations also uncovered marked increases in gp130 

expression, the IL-6 receptor, in Caco-2siRNA cells, and also in Cldn-3KO mice 

(Supplementary Fig-S6D–E), suggesting potential activation of IL-6/gp130/Stat-3 signaling 

under claudin-3 depleted condition. Interestingly, IL-6 treatment also induced cyclin-D1 

expression which again was highly upregulated in Caco-2siRNA cells (Fig-4D and –6C), 

similar to Cldn-3KO mice (Fig-5B). Cyclin-D1 is a Wnt-signaling target. Therefore, we 

further determined causal association between Stat-3 signaling and Wnt/β-catenin signaling. 

In this regard, IL-6 treatment exacerbated the delocalized β-catenin expression in 

Caco-2siRNA cells. In contrast, inhibiting Stat-3 signaling using Niclosamide (10 uM), a 

Phopsho-Stat-3 specific inhibitor, rescued the membrane localized β-catenin expression 

(Fig-6A). Niclosamide treatment also inhibited TOP-FLASH reporter activity in 

Caco-2siRNA cells and expression of Wnt-target genes cyclin-D1 and c-Myc (Fig-6D–E). 

Taken together, our studies suggested that the loss of claudin-3 expression promotes colon 

cancer by modifying epithelial and immune homeostasis by serving as a common rheostat 

for Stat-3 and Wnt-signaling (Fig-6F).

Discussion

A highly prevalent nuclear β-catenin expression and an overactivated Wnt/β-catenin 

signaling in aggressive colon cancer has fueled the concept that hyperactivated Wnt-

signaling promotes CRC-progression, possibly by regulating the EMT switch (34, 35). 

However, Wnt-signaling is required for normal gut homeostasis and regeneration of adult 

intestinal epithelium, and therefore direct therapeutic targeting of this pathway to control 

CRC-malignancy has proven to be challenging. Thus, current findings confirming a novel 

colon cancer suppressive role of claudin-3 in its capacity to avert intratumoral Wnt-signaling 

hyperactivation is an important step in this direction. Our finding that the loss of claudin-3 

activates Wnt-signaling which is then hyperactivated by the IL-6/gp130/Stat3 signaling 

further highlights the pivotal role of claudin-3 in regulating colonic epithelial and immune 

homeostasis. A role for Stat-3 signaling in accelerating CRC-progression is established (1, 2, 

36). Also, Stat-3 dependent Wnt-signaling activation is now reported in specific neoplasms 

(33, 37). Overall, we here describe a novel role of claudin-3 in regulating CRC malignancy 

by serving as a common rheostat for two critical CRC-promoting signaling pathways.

Our findings however contrast an upregulated claudin-3 expression in many cancer types 

including the prostate, ovarian and renal cancers and thus suggest tissue specificity (11, 38, 

39). Our findings also contradict limited reports suggesting CRC promoting role for 

claudin-3 (10). These inconsistencies necessitated comprehensive investigation to clarify the 

status and role of claudin-3 in colon carcinogenesis. Accordingly, our conclusions are based 

upon studies utilizing a panel of CRC cells with differing tumorigenic abilities, murine 

models of colorectal cancer, mRNA and protein expression analysis using a large CRC 

patient cohort, and genetic manipulation of claudin-3 expression in vitro and in vivo in 

claudin-3KO mice in the context of colon tumorigenesis. Moreover, we have confirmed the 

specificity of the reagents used to probe claudin-3 levels, using prostate cancer tissue where 

claudin-3 expression is highly upregulated. A decrease in claudin-3 expression in APCmin 
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mice colon tumors in a recent study probing mechanisms underlying CRC progression 

supports our findings (1). Additionally, inhibition of PI-3 kinase signaling in poorly 

differentiated HCT116 cells induced claudin-3 expression along with epithelial 

differentiation (40). A similar decrease in claudin-3 expression was recently reported to 

promote hepatocellular carcinoma. Moreover, promoter hypermeythylation, also observed in 

our studies, suppresses claudin-3 levels in hepatocellular carcinomas (29). Interestingly, 

epigenetic regulation involving promoter derepression induces claudin-3 upregulation in 

prostate and ovarian cancers (41). Coincidently, siRNA silencing of DNA methytransferase, 

DNMT-1, altered claudin-3 expression differentially between PC3 (prostate cancer cells) and 

Caco-2 cells, suggesting tissue-specific regulation (42). While these data support tissue-

specific epigenetic regulation of claudin-3 expression in functional correlation with cancer 

progression, further investigations are clearly needed for improved understanding of this 

differential regulation of claudin-3 in different cancer types.

Importantly, claudin family of proteins forms the “backbone” of TJ between epithelial cells 

(43). While TJ maturation associates with terminal differentiation, the disassembly of TJ can 

lead to the loss of polarity and increased cell mobility in addition to barrier dysfunction. 

However, claudin proteins are expressed in cell and tissue specific manner and therefore 

tissue-specific role of claudin proteins is highly probable (43). Our data suggest that in 

colonic epithelium claudin-3 protein is essential to uphold the differentiated phenotype. Our 

findings that claudin-3 loss was sufficient to induce colon cancer permissive 

microenvironment, without modulating expression of claudin-1, −2 or −7 causally associated 

with colon tumorigenesis, signifies its key role in colonic epithelial homeostasis (19, 24, 25). 

Of note, colonic claudin-3 expression increases post-birth and correlates with maturity of the 

mucosal barrier (44). On the other-hand, sharp decreases in claudin-3 expression associated 

with impaired barrier function in mice lacking the toll-like receptor adaptor protein MyD88. 

Moreover, probiotic bacterial colonization in MyD88 null mice colon not only improved the 

barrier maturity but also colonic increased claudin-3 levels (44). Specific loss of claudin-3 

expression, among claudin proteins, also correlates with deregulated mucosal barrier in other 

pathological conditions of gastrointestinal tract (45–47). Furthermore, a recent study has 

demonstrated specific loss of claudin-3 expression along with deregulated colonocyte 

differentiation in mice lacking histone deacytylases HDAC-1 and HDAC-2 in their gut 

epithelium (48). Coincidentally, these mice also demonstrate increased Stat-3 activity, 

mucosal inflammation and colonocyte proliferation similar to Cldn-3KO mice (48). 

Interestingly, claudin-3 expression is also inhibited in the colon of Stat-3 knockout mice 

(49). Taken together, a complex inter-relationship between claudin-3 expression, mucosal 

barrier and Stat-3 signaling in regulating colonic homeostasis is plausible. In this regard, we 

have documented specific increases in the expression of inflammatory cytokine IL-6 in and 

its receptor gp130 in claudin-3 depleted conditions. Furthermore, upregulated P-Stat3 levels 

in Caco-2siRNA cells could be upregulated by exogenous administration of IL-6. This 

observation in association with our observation that P-Stat3 and IL-6 levels increase in both, 

epithelial and immune components in Cldn-3KO mice suggest collective contribution of 

epithelial and immune mechanisms in observed increases in Stat-3 signaling in Cldn-3KO 

mice. The role of the IL-6/Stat-3 signaling by activating IL-17/IL-23 signaling in promoting 

CRC progression was recently reported (1, 2). As described, impaired mucosal barrier in 
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colon adenomas was found to be responsible for promoting intra-tumoral Stat-3 activation 

by allowing gut microbe translocation into the mucosa (1). The Cldn-3KO mice gut is 

significantly leakier than littermate WT-mice. Taken together, we postulate that the loss of 

claudin-3 expression dysregulates mucosal barrier function and upregulates gp130 

expression, possibly in response to the altered epithelial differentiation. Altered mucosal 

barrier facilitates translocation of the gut antigens into the mucosa. Our data demonstrating 

significant upregulation of baseline immune cell infiltration into the colonic mucosa in 

Cldn-3KO versus WT-mice supports such a postulation. Resultant activation of the immune 

landscape especially IL-6 synthesis accompanied with upregulated gp130 levels results in 

activated Stat-3 signaling. IL-6 is an established regulator of Stat-3 signaling (50). However, 

deregulated mucosal barrier can also allow infiltration of the luminal growth factors and thus 

allow activation of growth permissive signaling cascade, as demonstrated elegantly by Soler 

et. Al. (3, 51). Clearly, additional studies are needed to understand global changes due to 

claudin-3 loss in the colonic mucosa and are currently underway using high throughput 

analysis. The ongoing studies in our laboratory are also aimed at examining the molecular 

details of claudin-3/IL/Stat-3 regulation and its significance in mucosal inflammatory 

pathologies.

Another interesting observation of our study, was the finding that Wnt/β-catenin signaling 

was hyperactivated in Cldn-3KO mice tumors, potentially independent of GSK-3β 
regulation. This conclusion is based upon multiple parameters associated with activated 

Wnt/β-catenin and include: 1) upregulated intratumoral nuclear β-catenin expression in 

Cldn-3KO mice compared to WT-mice; 2) Marked upregulation of total β-catenin 

expression levels in colon lysate from tumor bearing Cldn-3KO mice (versus WT-mice); 3) 

increased cyclin-D1 expression and proliferation/apoptosis ratio in tumor bearing Cldn-3KO 

mice (versus WT-mice); and 4) increased TOP-FLASH reporter activity in claudin-3 

silenced CRC cells along with marked increases in Cyclin-D1, C-Myc and Ki-67 expression 

(versus control cells). Our findings gain strength from similar upregulation of Wnt/β-catenin 

signaling and suppressed claudin-3 levels in hepatocellular carcinoma (29). Notably, 

GSK-3β is a key enzyme in regulating Wnt/β-catenin signaling by stabilizing β-catenin 

expression as observed in our study. Increased phosphorylation (Ser9) of GSK-3β inhibits its 

ability to phosphorylate β-catenin to target it for ubiquitination and degradation. However, 

we have found contrasting suppression of P-GSK-3β expression in Cldn-3KO mice 

suggesting a different mechanism regulating β-catenin in our mouse model. Our data that 

inhibiting Stat-3 activation in claudin-3 silenced CRC cells inhibited TOP-FLASH reporter 

activity suggest plausible role of Stat-3 signaling in promoting Wnt-signaling under 

conditions of the loss of colonic claudin-3 expression in the colon. Notably, Stat-3 activation 

also promotes intestinal epithelial cell proliferation and Cyclin-D1 expression, a Wnt-

signaling target (2, 52, 53). Furthermore, a cross-talk between Stat-3 activation and Wnt-

signaling in regulating cancer progression is documented however molecular details remain 

largely unexplored (37). We predict that the loss of claudin-3 accelerates CRC progression 

by two distinct mechanisms: 1) by inducing Wnt-signaling and therefore EMT switch due to 

the loss of epithelial differentiation, and 2) by promoting intratumoral Wnt-signaling 

hyperactivation by activating Stat-3-signaling. Our findings that the loss of claudin-3 in vitro 
or in vivo inhibits P-27/Kip-1 expression, upregulates vimentin expression, Wnt- and IL-6/
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Stat-3-signaling strongly support such a postulation. In accordance, we have found a 

significant correlation between claudin-3 and vimentin expression in CRC samples and 

mouse colon tumors. Of interest, vimentin expression marks the invasive front in aggressive 

CRC samples.

Taken together, we here identify a novel and tissue-specific CRC-suppressive role of 

caludin-3. The fact that loss of claudin-3 expression not only promoted dedifferentiated 

colonic epithelial phenotype but also promoted IL-6/Stat-3 signaling suggest its pivotal role 

in serving as a central regulator of EMT and inflammation, two critical facilitators of CRC 

malignancy. Moreover, our data that loss of claudin-3 induces hyperactivation of Wnt/β-

catenin signaling and its cross talk with Stat-3 signaling identifies this protein as an 

important therapeutic target in the fight against CRC. Positive association between claudin-3 

loss and poor CRC patient survival supports such a postulation.

Materials and Methods

Cell culture and transfection:

The cell lines used in the current study were either purchased from ATCC or acquired from 

collaborative laboratories and have been described previously (19). Only low cell passages 

were used, and the identity of cell lines used for detailed studies was routinely verified by 

DNA fingerprinting. Cells were transfected with human claudin-3 specific or control siRNA 

or shRNA (Invitrogen, CA and Sigma-Aldrich, MO) using RNAiMAX Reagent (Invitrogen) 

as per manufacturer instructions. In studies involving determination of reporter activity, cells 

transfected with anti-claudin-3 siRNA were replated 24 hours post siRNA transfection and 

re-transfected with the TOPFLASH reporter and/or control constructs. Transfection 

efficiency was normalized to Renilla luciferase activity of the phRL-TK (Promega Inc.). 

Results are expressed as the mean relative luciferase activity ± S.E.M. (from at least three 

independent experiments).

Antibodies:

The antibodies against claudin-1, −2, −3, −4, and −7, were obtained from Invitrogen. The 

Bcl-2, E-cadherin and β-Catenin antibodies were obtained from BD Biosciences (San Jose, 

CA) The P-27 and vimentin antibodies were purchased from Santa Crutz (CA) and the β-

actin and anti-α-SMA antibodies were from Sigma-Aldrich (MO). Cyclin-D1, P-Stat3, 

Stat-3 and GSK3β antibodies purchased from Cell Signaling Inc. (MA).

Immunoblotting and immunohistochemistry:

The methods for immunoblotting and Immunohistochemical analysis have been described 

previously (54).

Colon cancer patient mRNA analysis:

The protocols and procedures for the procurement of human tissue samples, details of the 

microarray platforms and statistical analysis have been described previously (19). To 

compare the expression level of each probe between normal tissue, adenomas and different 

cancer stages, we employed Mann–Whitney test.
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Claudin-3 knockout mice:

Generation of Cldn-3KO mice was recently described (55). Absence of Claudin-3 protein 

and its mRNA transcript in Cldn-3KO mice was confirmed using Western blotting, 

immunohistochemistry and real-time quantitative PCR (Supplementary Fig. S4A–B and Fig. 

5G). All animal experiments were performed according to institutional guidelines.

Colon permeability measurements:

To determine the potential changes in colonic permeability, FITC-dextran (4 kDa) was used, 

as described previously (Please see Supplementary Information) (54). Presence of the dye in 

the blood was assessed in samples collected before (0 h) and 30 min after FITC-dextran 

administration.

Induction of colonic epithelial differentiation:

Caco-2 cells undergo spontaneous differentiation when cultured over an extended period 

(14). Accordingly, 1×106 cells were plated in 6-well dishes and culture medium was 

changed every second day. Cells were harvested to prepare lysate at indicated times. 

Alternatively, cells were treated with sodium butyrate (NaB), a histone deacetylase inhibitor, 

using indicated concentrations. Of note, NaB induces differentiation among cancer cells 

(56).

Statistical analysis:

Data were analyzed with Graph Pad Prism Version 6.0 software and are presented as mean ± 

SEM. Statistical analysis was performed by Student’s t test, 1-way ANOVA analysis of 

variance and Fisher’s exact test. The Kaplan-Meier curve was used for survival analysis and 

Spearman’s correlation analysis was done to analyze the association between variables. P 

value of less than 0.05 was considered significant. *P < 0.05; **P < 0.01; ***P < 0.005.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Claudin-3 expression associates positively with colonic epithelial differentiation and 
decreases sharply in colon tumors.
A. Endogenous expression of prominent cell adhesion proteins in mouse colon (n=6). Data 

presented in the graph represent values after normalizing the band intensity for each protein 

to E-cadherin expression; B. Cartoon depicting normal organization of a colonic crypt and 

differentiation zone, and representative immunohistochemistry using anti-claudin-3 

antibody; C. Immunoblot analysis using cell lysate from Caco-2 cells subjected to 

spontaneous differentiation, and D. NaB treatment; E. Immunoblot and quantitative analysis 

showing effect of global demethylation using 5-aza-2’-deoxycytidine upon claudin-3 and 

P-27 expressions in colon cancer cells. F. Representative immunohistochemical analysis 

using APCmin mice colon (n=4) and anti-claudin-3 antibody; and G. Representative 
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immunohistochemical analysis using AOM-DSS treated mice colon (n=4) and anti-claudin-3 

antibody. Tumor area is marked by black dotted line. For immunoblot analysis, β-actin was 

used to confirm equal protein loading. **P>0.01. Values presented are mean ± S.E.M.
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Figure 2: Claudin-3 expression decreases in colon cancer in stage specific manner.
A. Claudin-3 transcriptome analysis using RNA isolated from colon cancer patients. 

*P>0.05 (normal versus adenoma) and ***P>0.001 (normal versus all stages) (n=250); B 
and C. Representative immunohistochemical staining of spontaneous colon cancer [CRC; 

normal mucosa (n=10) (a), adenoma (n=5) (b), adenocarcinoma (n=20) (c) and lymph node 

metastasis (n=16) (d)] using anti-claudin-3 antibody and intensity score analysis of 

immunohistochemical staining of CRC samples ****P>0.0001 (versus normal mucosa); D. 
Representative immunohistochemical staining of colitis associated cancer (CAC) using anti-

claudin-3 antibody; E. Kaplan-Meir analysis to determine overall survival where red and 

blue colors indicate high and low claudin-3 expression, respectively.
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Figure 3: Deletion (Genetic) of colonic claudin-3 expression induces colonic epithelial de-
differentiation and leaky gut, and promotes colon cancer burden.
A. FITC-dextran passes (4kDa) to determine mucosal permeability (at least 4 mice/group); 

B. Quantitative analysis of immune infiltration (CD3+ cells) into the mucosa (3 mice/group 

with at least 100 crypts/mice examined); C. Quantitative analysis of the immunoblot 

outcome using colon lysates from naïve Cldn-3KO and WT mice (4 mice/ group); D. Polyps 

numbers in Cldn-3KO (n#15) and littermate WT-mice (n#25) subjected to colon 

tumorigenesis and representative images of the colon from Cldn-3KO and WT-mice 

subjected to colon tumorigenesis; E. H&E staining of the swiss-rolled colons; F. Graphical 
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representation of colonic tumor distribution according to size. (**p<0.01); Values presented 

are mean ± S.E.M.
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Figure 4: Loss of colonic claudin-3 induces cancer invasiveness and promotes vimentin 
expression.
A. Colonic tumor scores in Cldn-3KO (n=15) and WT (n=25) mice (**p<0.05); B. A 

majority of the colon tumors in Cldn-3KO mice were invasive (Fisher exact test **p<0.01 

versus WT mice) and C. Representative H&E staining showing invasive neoplasm in 

Cldn-3KO mice; D. Silencing of claudin-3 expression in colonic epithelial cells induces de-

differentiation: immunoblot analysis using cell lysates from control or claudin-3 siRNA 

transfected Caco-2 cells; E. Effect of siRNA silencing of claudin-3 expression upon cell 

mobility and cell invasion; F. Spearman’s correlation analysis of colon cancer patient 

microarray data to determine association between claudin-3 and vimentin expressions; and 

G. Representative co-immunofluorescence analysis using AOM/DSS-treated mice colon, 

anti-claudin-3 (red) and vimentin (green) antibody (n=3 and 15 high power field (20x)/mice 

was used for determination. Values are mean ± S.E.M. *p<0.05, **p<0.01 versus control.
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Figure 5: Increased intratumoral proliferation and hyperactivation of the Wnt/β-catenin and 
IL-6/Stat-3 signaling characterize tumors in Cldn-3KO mice.
A. Quantitative representation of the proliferation/apoptosis ratio from 

immunohistochemical analysis of the serial sections of colon from WT and Cldn-3KO mice 

subjected to colon tumorigenesis, using Ki67 and cleaved caspase-3 expression as markers; 

B. Immunoblot analysis using colon lysate from WT and Cldn-3KO mice subjected to colon 

cancer and quantitative analysis of cyclin D1 and Bcl2 protein expression; C. 
Immunohistochemical analysis using anti β-catenin antibody; D. Immunoblot analysis using 

colon lysates from mice subjected to colon cancer and quantitative analysis of P-GSK-3β 
and β-catenin expression; E. Immunoblot analysis using control and Caco-2siRNA cells. F. 
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Immunoblot analysis using colon lysates from Cldn-3KO and WT-mice subjected to colon 

tumorigenesis and quantitative analysis of Phospho-stat-3 expression relative to stat-3 levels; 

G. qRT-PCR using mRNA isolated from mice colon subjected to colon carcinogenesis (n=3 

mice/group). Values are mean ± S.E.M. *p<0.05, **p<0.01 versus WT mice.
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Figure 6: Claudin-3 loss induces IL6/gp130/Stat-3 dependent activation of the Wnt/β-catenin 
signaling.
A. Co-immunofluorescence analysis of β-catenin and claudin-3 in control or anti-claudin-3 

siRNA transfected cells and in response to IL-6 treatment alone or in combination with 

Nicosolamide; B. TOP-FLASH reporter activity using control and claudin-3siRNA 

transfected cells. S33Y transfected cells served as positive control; C. Effect of IL-6 

treatment upon Stat-3 phosphorylation and cyclin D1 expression in control and 

claudin-3siRNA transfected cells; D. TOP-FLASH reporter activity in control and claudin-3 

siRNA transfected cells subjected to niclosamide treatment; E. mRNA expression analysis 

of Wnt-signaling targets cyclin-D1 and C-myc; F. Cartoon depicting how loss of colonic 
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claudin-3 expression can modulate molecular and signaling events to promote CRC 

progression. Values are mean ± S.E.M. (*p<0.05, **p<0.01, ***p<0.001).
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