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The function of odorant-binding proteins (OBPs) in insect chemodetection has been
extensively studied. However, the role of OBPs in the defense of insects against
exogenous toxic substances remains elusive. The red flour beetle, Tribolium castaneum,
a major pest of stored grains, causes serious economic losses for the agricultural grain
and food processing industries. Here, biochemical analysis showed that essential oil
(EO) from Artemisia vulgaris, a traditional Chinese medicine, has a strong contact killing
effect against larvae of the red flour beetle. Furthermore, one OBP gene, TcOBPC11,
was significantly induced after exposure to EO. RNA interference (RNAi) against
TcOBPC11 led to higher mortality compared with the controls after EO treatment,
suggesting that this OBP gene is associated with defense of the beetle against EO
and leads to a decrease in sensitivity to the EO. Tissue expression profiling showed
that expression of TcOBPC11 was higher in the fat body, Malpighian tubule, and
hemolymph than in other larval tissues, and was mainly expressed in epidermis, fat
body, and antennae from the early adult. The developmental expression profile revealed
that expression of TcOBPC11 was higher in late larval stages and adult stages than in
other developmental stages. These data indicate that TcOBPC11 may be involved in
sequestration of exogenous toxicants in the larvae of T. castaneum. Our results provide
a theoretical basis for the degradation mechanism of exogenous toxicants and identify
potential novel targets for controlling the beetle.

Keywords: Tribolium castaneum, essential oil, odorant-binding proteins, toxic substance, RNA interference

INTRODUCTION

Insects have evolved a sensitive olfactory system to detect diverse odor molecules in their habitation
environment. Using the olfactory system, insects are able to carry out various physiological and
reproductive activities (Pelosi et al., 2018; Yan et al., 2020). Odor chemicals, bound with some
proteins in the sensillum lymph, are transported to odorant receptors across the sensillar lymph,
and ultimately activate a series of signaling pathways (Pelosi et al., 2006; Leal, 2013). Proteins
that bind odor chemicals include odorant binding proteins (OBPs) and chemosensory proteins
(CSPs). Interactions between odorants and OBPs likely trigger the signal transduction process of
odorant recognition in insects (Leal et al., 2005; Smith, 2007; Rong et al., 2015). Since the first
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insect OBP was discovered in the female antennae of Antheraea
polyphemus (Vogt and Riddiford, 1981), numerous OBPs have
been identified in a diverse range of insects using protein
ligand-binding and nucleotide sequencing methods (He et al.,
2019). For example, 52 OBPs were identified in Drosophila
melanogaster (Menuz et al., 2014), 44 in Bombyx mori (Gong
et al., 2009), and 21 in Apis mellifera (Foret and Maleszka, 2006).
Although the function of OBPs in olfaction has been extensively
studied, the role of these proteins in non-olfactory processes is
poorly understood.

Insect OBPs are highly soluble, globular proteins (15–20 kDa)
that are secreted at high concentrations in the sensillar lymph
(Pelosi et al., 2018; Sun et al., 2018). Although OBPs are
highly divergent between insects, they contain conserved cysteine
residues that are bonded by interlocked disulfide bridges (Leal
et al., 1999; Scaloni et al., 1999). OBP genes are expressed
at higher levels in adult antennae than in other apparatus,
suggesting their participation in odorant identification by adult
insects (Chang et al., 2017; Huang et al., 2018; Zhang et al.,
2020). The functions of OBPs have been verified by means
of in vitro binding experiments in a diverse range of insects
such as D. melanogaster (Larter et al., 2016), B. mori (Zhou
et al., 2009), Aedes aegypti (Kim et al., 2017), and Periplaneta
americana (He et al., 2017). Exposure to exogenous toxicants
resulted in significant elevation in expression of OBPs in insects,
coupled with a gradual increase in resistance to the toxicants
(Bautista et al., 2015; Li Z. Q. et al., 2015; Li et al., 2016;
Liu et al., 2017; Xiong et al., 2019). These studies suggested
that OBPs were involved in exogenous toxicant resistance in
insects. However, the roles of OBPs in the insect defense against
exogenous pesticides remain elusive.

Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae),
generally known as the red flour beetle, can seriously damage
stored agricultural grains and their processed products (Islam,
2017). Deterioration in quantity and quality of the stored grain
due to this insect pest causes an annual economic loss of billions
of dollars (Li et al., 2011). Control of this pest currently depends
on fumigation with phosphine due to restrictions on the use of
other insecticidal agents against this pest (Bulter and Rodriguez,
1996). However, misuse of phosphine fumigation has led to
strong resistance (Kumar et al., 2011; Caballero-Gallardo et al.,
2012). Some studies showed that essential oils of plants can be
used as a biological agent to control T. castaneum instead of
pesticides (Ebadollahi and Jalali Sendi, 2015; Upadhyay et al.,
2018). However, many plants contain thujone, which is harmful
to human health (Pelkonen et al., 2013). Artemisia vulgaris, a
traditional Chinese plant, does not contain thujone (Jiang et al.,
2019) and the essential oil of this plant could therefore potentially
be used to control T. castaneum. In the present study, essential oil
from A. vulgaris (EO-AV) was extracted and its contact killing
effect on T. castaneum larvae was assessed by the drip method.
Essential oils of plants, as an exogenous pesticide, generally
induce defense reactions in insects (Wei et al., 2019). RNA-
Seq analysis revealed that one OBP gene (GenBank accession
number NC_007425) in the larva of T. castaneum was highly
expressed in the presence of EO-AV (Log2Ratio of FPKM of
OBPC11 was 4.02). Based on these results, the function of the

OBP in the defense of T. castaneum larvae against EO-AV was
further dissected.

MATERIALS AND METHODS

Insect Rearing
T. castaneum were fed in an artificial climate box with a
temperature of 30◦C and humidity of 40%. The food was
made of flour and yeast (19:1) under standard conditions
(Xiong et al., 2019).

Preparation of Essential Oil of Artemisia
vulgaris
A. vulgaris was collected in December 2017 at Mowan
Village, Tangyin City, Henan Province, China (l35.922862◦N,
114.480455◦E). The collection site has a warm temperate
continental monsoon climate, with adequate light, an average
annual temperature of 14◦C, average annual rainfall of 580 mm,
and is located at an altitude of approximately 63 m above sea
level. Fresh leaves and stems of A. vulgaris were washed with
ddH2O then placed inside a dark box at 37◦C to dry for 1 week.
Dried leaves were shattered using a Swing Medicinal material
grinder (Baijie Industrial Co., Ltd., Shanghai, China). The powder
was filtered using 30 mesh sieves. Filtered powders (200 g) were
loaded into a 5-L extraction tank. When the vacuum pressure in
the tank reached 100 kPa, a subcritical solvent (dimethylmethane,
butane, dimethyl ether, and tetrafluoroethane mix) was injected
into the tank. Extraction began at 35◦C, with a liquid-solid ratio
of 15: 1. Each extraction was 30 min, with three repeats during
the whole extraction process. At the end of the process, the liquid
solvent reached the separation tank and, after the solvent was
removed by evaporation, the EO-AV was collected. The extract
was diluted with acetone to obtain six concentrations: 0, 2.5, 5,
10, 15, and 20%.

Contact Killing Effect of Essential Oil
Against T. castaneum
The contact killing effect of EO-AV against late larvae (20 days
old) of T. castaneum was measured according to the drip method
of Lu et al. (2012). Briefly, 30 synchronous individuals in each
group were loaded into 1.5-mL EP tubes and exposed to 100 µL
EO-AV or acetone. After soaking for 1 min, the treated larvae
were placed on filter paper and allowed to air dry for 2 min. Each
group was then transferred to an 8-mL glass vial and maintained
under standard conditions described in section “Insect Rearing.”
Survival of individual larvae in the different treatment groups
was recorded from 12 to 72 h after EO-AV exposure. Beetles
were considered dead if they were unable to move and failed to
respond when disturbed with a tweezer or brush. Each bioassay
was replicated five times.

Identification and Cloning of OBP Genes
in T. castaneum
EO-AV had a strong contact killing effect on late larvae of
T. castaneum. Therefore, 36 h after the treatment with 5%
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essential oil (TG) or 0% essential oil (CK), the late larvae
were collected to extract RNA for RNA-Seq (Gao et al., 2020).
Expression of the gene OBPC11 was significantly upregulated in
the TG vs CK samples; consequent experiments in this study
focused on the role and function of this gene. Primers were
designed against OBPC11 from T. castaneum (TcOBPC11) to
obtain the full-length cDNA sequence of the open reading frame
(ORF) (Table 1). Total RNA was isolated from the late larvae
using Trizol reagent (Vazyme Biotech, Nanjing, China), and
750 ng total RNA was used to synthesize cDNA templates using
HiScript Reverse Transcriptase (Vazyme Biotech). These cDNA
templates were used to clone the OBP gene by PCR in a 50 µL
reaction comprising 2 µL cDNA, 25 µL 2 × Primer STAR
Mix, 1 µL forward and reverse primers (10 µM), and 21 µL
sterile water. The PCR amplification procedure was 95◦C for
3 min, then 35 cycles of 95◦C for 20 s, 55◦C for 15 s, and
72◦C for 30 s, followed by a final extension at 72◦C for 10 min.
The PCR product was detected using 1.2% agarose gel and the
expected product was purified by FastPure Gel DNA Extraction
Mini Kit (Vazyme Biotech), cloned into Blunt-Zero Vector via
Blunt-Zero Cloning Kit (Vazyme Biotech), and then transformed
into competent cells of Escherichia coli. Positive clones were
identified by blue-white screening and the resulting vector was
extracted and sequenced (Springen). In addition, 30 late larvae
were collected to extract RNA for qPCR after treatment with 5 or
0% essential oil for 12, 24, 36, 48, 60, and 72 h.

Expression Profiling of the Gene
TcOBPC11
Pooled samples of male and female T. castaneum in different
developmental stages, including early eggs (1 day old), late eggs
(3 days old), early larvae (1 day old), late larvae (20 days old),
early pupae (1 day old), late pupae (5 days old), early adults
(1 day old), and late adults (10 days old), were collected, snap-
frozen in liquid nitrogen, and immediately stored at −80◦C to
extract RNA for qPCR. Pooled samples of different tissues from
the late larvae (whole larva, central nervous system, epidermis,
fat body, Malpighian tubule, gut, and hemolymph) and from
early adults (whole adult, central nervous system, epidermis,
fat body, Malpighian tubule, gut, antennae, testis, and ovary)
were dissected and collected in RNA-free centrifuge tubes to
extract RNA for qPCR. Three biological replicates for each
developmental stage and tissues were conducted.

Quantitative RT-PCR Analyses
Firstly, 750 ng total RNA from each developmental stage and the
different tissues were treated with 4 × gDNA wiper Mix to avoid
the effects of genomic DNA on qPCR. Total RNA was then used
as a template to synthesize single-stranded cDNAs using HiScript
Q RT SuperMix for qPCR with Random primers and Oligo dT
primer mix (Vazyme Biotech) in 25 µL reactions. The specific
primers designed to quantify TcOBPC11 expression were OBP-
2F and OBP-2R. The gene ribosomal protein S3 (rps3), which
has a high degree of stability, was selected as the reference gene
(Toutges et al., 2010; Horn and Panfilio, 2016; Xiong et al., 2019)
and the primers were rps3-F and rps3-R. Primers were designed

using Primer Premier 5.0 and sequences are shown in Table 1.
Primers of the target gene and the reference gene have similar
amplification efficiencies. A 10-µL reaction system containing
0.25 µL forward and reverse primers (10 µM), 5 µL 2 × AceQ
Universal SYBR qPCR Master Mix, 3.5 µL ddH2O water, and
1 µL cDNA was executed in an ABI Q6 (Applied Biosystems,
Foster City, CA, United States) with the parameters of 95◦C for
10 min, 40 cycles of 95◦C for 15 s, and 60◦C for 60 s, followed by
95◦C for 15 s, 60◦C for 60 s, and 95◦C for 15 s. A melting curve
of the amplification products was generated at the end of each
reaction to confirm that only one PCR product was amplified.
For each treatment, three technical repeats and three to seven
biological replicates were executed.

Double-Stranded RNA (dsRNA)
Synthesis and Injection
To synthesize the dsRNAs, primers for TcOBPC11 and GFP were
designed using Primer Premier 5.0, adding a T7 polymerase
recognition promoter (Table 1). The target of the dsRNAs is
located from 214 to 382 bp in the coding region of TcOBPC11.
The PCR comprised 0.4 µL forward and reverse primers (10 µM),
10 µL 2 × Primer STAR Mix, 7.2 µL ddH2O water, and 2 µL
plasmid DNA with ORF cDNA of OBPC11. PCR procedures were
carried out at 95◦C for 5 min followed by 30 cycles of 95◦C for
45 s, 60◦C for 45 s, and 72◦C for 15 s, with a final extension
at 72◦C for 10 min. PCR products were purified and served
as templates to synthesize the dsRNAs using a TranscriptAi T7
High Yield Transcription Kit (Fermentas, Vilnius, Lithuania).
The resulting dsRNA (200 ng) in a volume 150 nL solution was
injected into the body cavity of each late larva of T. castaneum
by InjectMan 4 (Eppendorf, Hamburg, Germany). Injection of
equal volumes of 200 ng dsGFP and water served as the negative
and blank controls, respectively. Three biological repetitions
with independent injections were performed and each repetition
injected 30 larvae. Late larvae injected with dsRNA were normally
reared. Survival of the larvae was recorded after the fifth day. Ten
random larvae were collected on the first, third, and fifth days to
extract total RNA for qPCR to detect the silencing efficacy of the
targeted gene. To verify the effect of non-target genes, expression
of four non-target genes (TcOBPC01, TcOBPC02, TcOBPC04,
and TcOBPC10) in T. castaneum, which share a high degree of
similarity with TcOBPC11, were also examined; primer details
for these genes are listed in Supplementary Table S1. Late larvae
on the fifth day after water, dsGFP, dsOBPC11 injections, and
non-injections were exposed to 5% EO-AV for 1 min. Insects
were then transferred to the standard conditions, reared for 36 h,
and their mortality was measured. Each treatment was repeated
three to seven times.

Data Analysis
Gene expression was calculated according to the 2−MMCt method
(Livak and Schmittgen, 2001). Significant differences in gene
expression levels between larvae of T. castaneum treated with
0.5% essential oil and 0% essential oil were compared using a
Student’s t-test at the 0.05 level. Expression levels of TcOBPC11
among different developmental stages and RNAi treatments were
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TABLE 1 | Primers used for this research.

Primer Primer sequence (5′ → 3′) Product length (bp) Purpose

OBP-1F ATGAAAATTGTTTTGTGCCTTCT 402 Amplification of ORF of OBPC11

OBP-1R TCACTCATCGACCGAATTTTT

OBP-2F ATTGTTTTGTGCCTTCTTGCC 293 qPCR of OBPC11 gene

OBP-2R GTCCCTTCAGCTTCATTGCTC

rps3-F ATGAAAATTGTTTTGTGCCTTCT 260 qPCR of reference gene

rps3-R TCACTCATCGACCGAATTTTT

dsOBP-F TAATACGACTCACTATAGGGAGA TGATGAACGATGCTGGAGA 171 RNAi of OBPC11 gene

dsOBP-R TAATACGACTCACTATAGGGAAT TTTTGTTGCGGATGAGACA

dsGFP-F TAATACGACTCACTATAGGG CGATGCCACCT 256 RNAi of GFP gene

dsGFP-Rs TAATACGACTCACTATAGGG TGTCGCCCTCG

F represents forward primers; R represents reverse primers. The underlined letters are the T7 promoters for dsRNA synthesis.

analyzed by Fisher’s LSD test. After logarithmic transformation of
levels of expression of TcOBPC11 in different tissues, significant
differences were analyzed by Fisher’s LSD test. Statistical
significance of the mortality or survival rate were analyzed by
Kruskal-Wallis H test, except in the RNAi experiment, which
was analyzed by Fisher’s LSD test. Interaction effects of the
concentration of EO-AV and time after exposure to EO-AV on
the mortality rate of T. castaneum larvae were investigated with
a non-parametric two-way ANOVA (Scheirer–Ray–Hare test)
to assess significant differences at the 0.05 level. All statistical
analyses were performed with SPSS software, version 14.0.

RESULTS

Contact Killing Effect of EO-AV Against
Larvae of T. castaneum
There were significant differences in the mortality of larvae of T.
castaneum exposed to different concentrations of EO-AV when
reared for the same length of time (Figure 1 and Table 2). Larva
mortality increased significantly as the concentration of EO-AV

FIGURE 1 | Mortality rates of larvae at 12, 24, 36, 48, 60, and 72 h after
exposure to different concentrations of the essential oil of A. vulgaris. Different
letters above the bars (mean ± SE, n = 5) indicate significant differences
(P < 0.05) among the six concentrations at the same time.

increased from 0 to 20% (12 h: x2 = 27.217, df = 5, P < 0.001;
24 h: x2 = 27.293, df = 5, P < 0.001; 36 h: x2 = 27.872, df = 5,
P < 0.001; 48 h: x2 = 27.590, df = 5, P < 0.001; 60 h: x2 = 27.620,
df = 5, P < 0.001; 72 h: x2 = 27.620, df = 5, P < 0.001). There
were significant differences in the mortality of larvae at different
time points after exposure to the same concentration of EO-
AV (Figure 1 and Table 2). Mortality of T. castaneum larvae
significantly increased following the extension of rearing time
after exposure to EO-AV at concentrations of 10, 15, and 20%
(10%: x2 = 24.366, df = 5, P < 0.001; 15%: x2 = 20.875, df = 5,
P < 0.001; 20%: x2 = 16.071, df = 5, P = 0.007), but there was
no significant effect at concentrations of 0, 2.5, and 5% (0%:
x2 = 2.231, df = 5, P = 0.816; 2.5%: x2 = 3.295, df = 5, P = 0.655;
5%: x2 = 6.364, df = 5, P = 0.272). In a non-parametric two-way
ANOVA, mortality rates of the red flour beetle were affected by
concentration and rearing time after exposure to EO-AV, but the
interaction was not significant (Table 2).

Identification and Characterization of the
Gene TcOBPC11
Transcriptome analysis revealed that 39 chemosensory-related
genes had significant differences in expression between the
TG group and the CK group (Gao et al., 2020). These
genes included six OBPs, five CSPs, six odorant receptors,
and three gene families encoding odorant-degrading enzymes:
14 cytochrome P450s, three esterases, and five glutathione
S-transferases (Supplementary Table S2). Among these genes,
expression of TcOBPC11 was highest in the TG group compared
with the CK group (Gao et al., 2020). To appraise the underlying
function of TcOBPC11 in the tolerance of T. castaneum to EO-
AV, cDNA of TcOBPC11 with an ORF of 402 bp, encoding a

TABLE 2 | Effect of concentration and rearing time on mortality rate after exposure
to EO-AVa.

Source of variation df Mean square F p

Concentration 5 86,970.783 586.682 <0.001

Time 5 2,165.170 14.606 <0.001

Concentration × time 25 162.037 1.093 0.358

aDetermined by non-parametric two-way ANOVA (Scheirer–Ray–Hare test).
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protein of 134 amino acids, was cloned (GenBank accession
no. XM_962706). A phylogenetic tree of the TcOBPC11 protein
with homologous proteins of other insects was reconstructed
(Supplementary Figure S1). The similarity of TcOBPC11 with
homologous genes from other insects was very low. TcOBPC11
was most related to an OBP in Asbolus verrucosus and Tenebrio
molitor (Supplementary Figure S1). The amino acid identities of
TcOBPC11 with OBP of A. verrucosus and T. molitor were 40.04
and 35.50%, respectively.

EO-AV Induced Upregulated Expression
of TcOBPC11
Expression of the gene TcOBPC11 was significantly higher in
TG than CK samples using qPCR methods (36 h: t = 4.917,
df = 3, P = 0.016) (Figure 2); this was consistent with the
transcriptome analysis results of Gao et al. (2020). TcOBPC11 had
significantly higher expression at each time point after exposure
to 5% EO-AV compared with 0% EO-AV (Figure 2). There were
significant differences in expression among 12, 24, 36, 48, 60,
and 72 h at a concentration of 5% EO-AV (F5, 23 = 29.300,
P < 0.001). Meanwhile, after exposure to 5% EO-AV, expression
of TcOBPC11 rapidly increased from 24 h, peaked at 36 h, and
then decreased gradually (Figure 2). This indicated that EO-AV
induced expression of the gene TcOBPC11.

Developmental Stage and
Tissue-Specific Expression Profiles of
TcOBPC11
qRT-PCR revealed that TcOBPC11 was expressed throughout all
stages of development of T. castaneum and there were significant
differences in expression of TcOBPC11 among developmental
stages (F7, 24 = 1,660.983, P < 0.001) (Figure 3). TcOBPc11
was highly expressed at the late larvae and adult stage, and

FIGURE 2 | Relative expression of TcOBPC11 at 12, 24, 36, 48, 60, and 72 h
after exposure to 5 and 0% EO-AV. Asterisks above the bars (mean ± SE,
n = 3) indicate a significant difference between the treatments of 5 and 0%
EO-AV (P < 0.05) at the same time point.

FIGURE 3 | TcOBPC11 expression patterns in eight key developmental
stages from T. castaneum, including early eggs (1 day old), late eggs (3 days
old), early larvae (1 day old), late larvae (20 days old), early pupae (1 day old),
late pupae (5 days old), early adults (1 day old), and late adults (10 days old).
Transcript levels of the target transcripts in early eggs served as the calibrator
for the developmental expression profiling. Vertical bars indicate standard
errors of the mean (n = 3∼5) and different letters on the bars indicate that the
means are significantly different among the different developmental stages at
the P < 0.05 level.

expression at these stages was significantly greater than at other
developmental stages (Figure 3).

Expression of TcOBPC11 was further surveyed in various
tissues from late larvae and early adults. Relative transcript
levels of TcOBPC11 in different tissues from the larvae of T.
castaneum showed that TcOBPC11 was mainly expressed in the
fat body, Malpighian tubule, and hemolymph, and at much
lower levels in other tissues (F6, 14 = 318.323, P < 0.001)
(Figure 4A). Expression of TcOBPC11 in larvae was highest in
the fat body, closely followed by the Malpighian tubule and
hemolymph, and then other apparatus (Figure 4A). Relative
transcript levels of TcOBPC11 in different tissues from adult T.
castaneum showed that TcOBPC11 was mainly expressed in the
epidermis, fat body, and antennae, and at much lower levels in
other tissues (F6, 14 = 318.323, P < 0.001) (Figure 4B). Expression
of TcOBPC11 in adults was highest in the epidermis, closely
followed by the fat body and antennae, and then other apparatus
(Figure 4B). TcOBPC11 was highly expressed in olfactory and
non-olfactory tissues, suggesting that TcOBPC11 has multiple
physiological functions in T. castaneum.

Functional Analysis of TcOBPc11 by
RNAi Methods
To further determine the effects of TcOBPC11 on insect
resistance to EO-AV, RNAi was used to silence the gene
TcOBPC11. RNAi targeting of TcOBPC11 in late larvae distinctly
lowered its expression level but did not change the transcript
level of non-target genes (Supplementary Figure S2). This
indicates that RNAi of TcOBPC11 was absent of off-target effects.
Relative expression levels of TcOBPC11 mRNA significantly
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FIGURE 4 | TcOBPC11 expression patterns in different tissues of T. castaneum larvae (A), including whole larvae (LAR), central nervous system (CNS), epidermis
(EPI), fat body (FAT), Malpighian tubule (MT), gut (GUT), and hemolymph (HAE), and in different tissues of T. castaneum adults (B), including whole adults (ADU),
central nervous system (CNS), epidermis (EPI), fat body (FAT), Malpighian tubule (MT), gut (GUT), antennae (ANT), testis (TES), and ovary (OVA). The transcripts level
of TcOBPc11 in the whole larvae or whole adults were used as the calibrator for the tissue-specific expression profiling. Vertical bars indicate standard errors of the
mean (n = 3) and different letters on the bars indicate that the means are significantly different among the different tissues at the P < 0.05 level.

FIGURE 5 | Relative expression of TcOBPC11 mRNA in T. castaneum on
days 1, 3, and 5 after injection of dsOBPC11. Control larvae were injected
with the same amount of water. Error bars represent the standard error of
three biological replicates. Different lowercase letters above the bars indicate
significant differences between treatments at the P < 0.05 level.

decreased after injection of dsOBPC11 (day 1: F2, 6 = 36.116,
P < 0.001; day 3: F2, 6 = 46.395, P < 0.001; day 5: F2, 6 = 88.310,
P < 0.001) (Figure 5). At day 5 after injection of water,
dsOBPC11, or dsGFP, survival rates of T. castaneum larvae were
96.33 ± 3.67%, 98.38 ± 0.83%, and 93.92 ± 3.25%, respectively,
and there were no significant differences between the treatments
(F2, 6 = 0.605, P = 0.576).

Dip bioassays of EO-AV were performed on the fifth day after
late larvae were injected or not with dsRNA. The cumulative
mortality rate of T. castaneum larvae increased in the non-
injection, water, dsGFP, and dsOBPC11 groups because of the
exposure to essential oil. However, the mortality rate of the larvae

FIGURE 6 | Mortality rate of T. castaneum larvae exposed to essential oil after
injection of dsOBPC11. The bioassays were completed for late larvae on the
fifth day following injection of dsRNA by dip of essential oil and the mortality
rate of the larvae were assessed 36 h after dip treatments. Control larvae were
injected with the same amount of water or dsGFP, or were not injected
(Non-injection). The error bars represent the standard errors of three to seven
biological replicates. Different lowercase letters above the bars indicate
significant differences between treatments at the P < 0.05 level.

injected with dsOBPC11 significantly increased compared with
the water and dsGFP groups (F3, 12 = 6.707, P = 0.007) (Figure 6).
This supported the conclusion that the enhanced mortality rate
of T. castaneum larvae detected after exposure to essential oil
was primarily because TcOBPC11 genes were silenced. Obvious
correlation effects between the reduction in TcOBPC11 transcript
level and the enhanced mortality rate after exposure to essential
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oil suggest that TcOBPC11 plays a significant role in the defense
of T. castaneum larvae against EO-AV.

DISCUSSION

Artemisia plants have been widely applied in the field of medicine
as treatments for multiple diseases (Kumar et al., 2019). The
safety of these plants for human use has led to interest in the
potential insecticidal activity of essential oils from the plants
(Pandey and Singh, 2017). Essential oil of Artemisia displayed
contact, fumigation, and repellent toxicity to adult or larvae of
T. castaneum (Abou-Taleb et al., 2015; Hu et al., 2019). In this
study, contact toxicity of EO-AV was investigated against the
larvae of red flour beetles. Mortality of the larvae was more
than 90% after 24 h of exposure to 20% EO-AV, indicating
that EO-AV had a very strong toxic effect against the beetle
larvae. Eucalyptol (28.07%) is the most abundant compound in
A. vulgaris (Jiang et al., 2019). Eucalyptol has activity against
various insects (Omara et al., 2018) and has been widely used as
an insecticide to control crop pests (Xu, 2019). EO-AV contains
other complex compounds in addition to eucalyptol. Some of
these compounds, such as α-terpineol (Pandey and Singh, 2017;
Hu et al., 2019) and β-pinene (Liu et al., 2010; Benelli et al.,
2018), can result in high mortality of insects. The synergistic
relationship of complex compounds may be responsible for the
high mortality of the larvae of T. castaneum after treatment
with EO-AV.

Several studies have shown that OBPs are transcribed in
both the larval phases and the adult phases of insects (Zhou
et al., 2015; Xue et al., 2016; Zhang et al., 2018). In this study,
TcOBPC11 was expressed throughout all development phases
from egg to adult, suggesting that TcOBPC11 had roles in a
variety of physiological processes. Recent studies have found
that expression of OBPs was prominently upregulated in the
adult phase of many insects, for example the gene CcapOBP83a-
2 from Bactrocera capitata (Siciliano et al., 2014), BdOBP56d,
BdOBP99a, BdOBP99c, and BdOBP19 from B. dorsalis (Zhang
et al., 2018), and OBP1, OBP3, OBP8, OBP11, and OBP24
from Chilo suppressalis (Yang et al., 2016). This has led to
speculation that OBP genes were related to the detection of
heterosexual behavior and oviposition in adult insects (Zhang
et al., 2018). Our results reveal that TcOBPC11 was highly
expressed in antennae at the adult stage of T. castaneum.
We presume this is most likely related to mating behavior
and not oviposition because T. castaneum inhabits wheat flour
and therefore does not need to select a specific location to
lay eggs. TcOBPC11 was also expressed at a high level in
late larval stages, suggesting that it likely participates in the
development and growth of insects. Moreover, this characteristic
of high expression in late larvae was observed for the OBP gene
TcOBPC11 and is presumed to provide protective functions for
insects against exogenous toxic molecules (Xiong et al., 2019).
Hence, TcOBPC11 may have a similar defense function against
toxic substances in larval stages. Further studies are required
to confirm the defense mechanism of TcOBPC11 against toxic
substances in larval stages.

Consistent with previous studies in which OBPs were
expressed in non-olfactory tissues (He et al., 2011, 2019),
TcOBPC11 was predominantly expressed in the fat body,
Malpighian tubule, and hemolymph in the late larvae. Abundant
expression of OBPs has been observed in these tissues from
other insects. In the fat body from the 5th larvae, BmorOBP27
and BmorOBP44 in B. mori showed a high level of expression
(Gong et al., 2009), and two OBPs in Dendrolimus punctatus
were highly expressed (Zhang et al., 2017). Many OBP genes
were distributed in Malpighian tubules, such as various OBPs in
B. dorsalis (Chen X. F. et al., 2019), TcOBPC01 in T. castaneum
(Xiong et al., 2019), and one OBP in Manduca sexta (Vogt et al.,
2015). Insect hemolymph harbors OBP proteins (Kim et al.,
2017), suggesting that OBP proteins possibly participate in the
transport of exogenous substances in the hemolymph (Paskewitz
and Shi, 2005; Armbruster et al., 2009). However, the precise
functions of OBP genes in the insect fat body, Malpighian tubule,
and hemolymph is unknown. Coincidentally, these tissues are
involved in metabolic detoxification in insects (Beyenbach et al.,
2010; Chen K. et al., 2019; Li et al., 2019). Therefore, we speculate
that TcOBPC11 in T. castaneum could play an important role in
the degradation of exogenous substances.

OBPs in insects are frequently identified as proteins
specifically involved in chemodetection. In recent years,
functions of OBPs unrelated to chemodetection have been
reported, including possible roles in morphology, egg and
embryo development (Hassanali et al., 2005; Costa-da-Silva et al.,
2013; Marinotti et al., 2014), delivering pheromones (Iovinella
et al., 2011), avoiding cannibalism (Sun et al., 2012), regulating
the melanization cascade (Benoit et al., 2017), and solubilizing
nutrients (Zhu et al., 2016). The relationship between OBPs
and insecticides in insects is also being investigated (Pelosi
et al., 2018; Xiong et al., 2019). In Plutella xylostella, OBP13 was
strongly upregulated after treatment with permethrin (Bautista
et al., 2015). In Culex pipiens, expression of OBPjj7a and OBP28
in the 4th larval instar correlated positively with deltamethrin
resistance (Li et al., 2016; Liu et al., 2017). Furthermore, in vitro
binding tests found that OBPs have high binding affinity with
insecticides (Li H. et al., 2015; Li et al., 2017; Zhang et al., 2020).
Here, we investigated the OBP gene TcOBPC11 in T. castaneum
and revealed that expression of this gene was significantly
induced by EO-AV. Moreover, RNAi of TcOBPC11 directly
correlated with an upgrade in the sensitivity of T. castaneum to
EO-AV, providing evidence that TcOBPC11 plays a crucial role
in the defense of the red flour beetle against toxic substances.
OBPs could act as binding proteins for exogenous toxicants
in cellular detoxification systems in T. castaneum (Chen et al.,
2016; Xiong et al., 2019). Knowledge on the mechanisms and
functions of OBP genes in the defense of the red flour beetle
against exogenous toxic substances could be applied to develop
novel therapeutics against this serious agricultural pest.
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FIGURE S1 | Phylogenetic tree of T. castaneum TcOBPC11 with homologous
proteins from other insects. The phylogram was reconstructed using the
neighbor-joining method in MEGA 6.1. Bootstrap values (2,000 replicates) are
shown next to the branches. GenBank accession numbers and scientific names
of insects are shown behind branches.

FIGURE S2 | Relative expression of TcOBPC11 and four non-target genes 36 h
after injection of water or dsOBPC11. Control larvae were injected with the same
amount of water. Asterisks and NS above the bars (mean ± SE, n = 3) represent
the presence and absence of significant differences between injection of water
and dsOBPC11 at the P < 0.05 level, respectively.
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