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Abstract: Dihydrouridine (D) is an abundant post-transcriptional modification present in transfer
RNA from eukaryotes, bacteria, and archaea. D has contributed to treatments for cancerous diseases.
Therefore, the precise detection of D modification sites can enable further understanding of its
functional roles. Traditional experimental techniques to identify D are laborious and time-consuming.
In addition, there are few computational tools for such analysis. In this study, we utilized eleven
sequence-derived feature extraction methods and implemented five popular machine algorithms
to identify an optimal model. During data preprocessing, data were partitioned for training and
testing. Oversampling was also adopted to reduce the effect of the imbalance between positive
and negative samples. The best-performing model was obtained through a combination of random
forest and nucleotide chemical property modeling. The optimized model presented high sensitivity
and specificity values of 0.9688 and 0.9706 in independent tests, respectively. Our proposed model
surpassed published tools in independent tests. Furthermore, a series of validations across several
aspects was conducted in order to demonstrate the robustness and reliability of our model.

Keywords: dihydrouridine; random forest; nucleotide chemical properties; prediction; oversample

1. Introduction

To date, over 170 RNA post-transcriptional modifications have been discovered across
all domains of life [1–9] and play crucial roles in diverse cellular processes [10], including
tRNA recognition, gene expression, metabolic responses, RNA-structure dynamics, RNA
location and degradation, etc. Among them, dihydrouridine (D) is a pervasive tRNA modi-
fication that widely exists in the tRNA of eukaryotes, bacteria, and some archaea [11–14].
D has been frequently observed at conserved positions of the D-loop in tRNA [14]. The
conformational flexibility of individual RNA bases can become enhanced by D [15]. The
non-aromatic ring structure of the D site can result in resistance to base stacking, which
may reduce the interactions with other nucleotide bases [16,17]. In addition, D has also
contributed to treatments for cancerous tissues or organs [18]. Furthermore, recent work
confirmed that the human tRNA-dihydrouridine synthase is related to pulmonary car-
cinogenesis [19]. Taken together, this evidence suggests that D plays a significant role in
molecular biology and medical science.

Broadly, the precise identification of D modification sites is a fundamental process
needed to conduct in-depth investigations. Researchers have used biochemical experi-
ments to detect D modification sites since 1965 [20,21]. In recent years, high-throughput
sequencing methods have become the prevailing method for detecting D modification
sites [22,23]. Some popular chemical modification databases have also been established
to help provide a comprehensive understanding of the potential functions of different
modifications, such as RMBase (version 2.0) [7] and MODOMICS [5], which also con-
tain information on D modifications in various species. Although biochemical methods
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can produce reliable and accurate information about D modification, they have typically
been time-consuming and laborious [24–27]. Thus, there is an urgent need to design a
high-performance computational tool for the accurate identification of D modification sites.

Until now, only three prediction tools have been available to identify RNA D modi-
fication sites. Feng et al. [28] proposed an ensemble model focused on S. cerevisiae. They
adopted three feature extraction methods in order to encode the RNA sequence, consisting
of a pseudo-dinucleotide composition (PseDNC), a nucleotide physicochemical property
(NPCP), and a secondary structure component (SSC). Subsequently, the support vector
machine (SVM) was used for each feature extraction method as the base model. The final
ensemble model can be generated by integrating each base model with a voting score. The
iRNAD investigated by Xu et al. [29] took five species into consideration. The predict-
ing model was conducted by combining NPCP and nucleotide density features (CPND)
with SVM. Recently, an original predictor called iRNAD_XGBoost was proposed by Dou
et al. [30]. The hybrid sampling method, Synthetic Minority Oversampling Technique and
Edited Nearest Neighbors (SMOTEEEN) [31,32], was adopted to solve the data imbalance
problem. They integrated CPND, electron-ion interaction potential and pseudo-potential
(EIIP and PseEIIP), Kmer, and the XGBoost-selected top 30 features in order to construct
the predictor.

The positive and negative sample rate was imbalanced in iRNAD, which may lead to
some challenges while training the model. Thus, it is necessary to obtain more balanced
and reliable datasets and build more robust models. There are only two classifiers, namely
SVM and XGBoost, to predict D modification sites. Considering that the scale of data is
small, the deep learning algorithms are not suitable. In this study, we adopted five machine
learning algorithms, including Random Forest (RF), SVM, Logistic Regression (LR), K
Nearest Neighbors (KNN), and Multi-Layer Perceptron (MLP), to identify the optimal
predictor. Additionally, eleven types of sequence encoding schemes were investigated,
including Nucleotide Chemical Property (NCP), Enhanced Nucleic Acid Composition
(ENAC), BINARY, etc. As shown in Figure 1, we first made the training and testing data
partition, then oversampled the positive RNA samples with an independent sample rate of
0.5. Subsequently, we used sequence-encoding schemes to extract features and input the
feature vectors into the classifiers. Ultimately, the best-performing model was identified
as the combination of RF as the classifier and NCP as the encoding scheme. The fivefold
cross-validation (5-fold CV) was used to train the model. Additionally, independent tests
can be regarded as a means to measure the model’s generalizability.

Figure 1. (A) Generation of the training and testing data partition and oversampling. (B) Selection of
three features to encode the sequence. (C) Input of feature vectors into classifiers and identification
the best combination of feature and classifier. (D) Performance evaluation with a set of metrics.
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2. Results
2.1. Sequence Encoding Scheme and Partition Rate Analysis

First, based on previous reports, we utilized two common machine learning algorithms
(SVM and RF) to roughly show the performance of different sequence encoding schemes.
The kernel function was chosen as RBF, while other hyper-parameters were set to the
default in SVM. All machine learning algorithms underwent the 5-fold CV five times. The
results of independent tests are shown in Table 1. We found that ENAC, binary, and NCP
almost surpassed other methods, with a tangible improvement on all metrics in both SVM
and RF. In addition, the small performance gap between these three methods indicates that
these three sequence-encoding methods all captured sufficient information. Ultimately, we
selected ENAC, binary, and NCP for further experiments.

Table 1. Performance of different sequence encoding schemes using SVM and RF in independent tests.

Performance
SVM RF

Sn Sp Acc MCC Sn Sp Acc MCC

Kmer 0.2955 0.8772 0.7152 0.2056 0.5161 0.6176 0.5859 0.1255
RCKmer 0.1364 0.9298 0.7089 0.1044 0.5263 0.8056 0.7091 0.3415

NAC 0.1136 0.9912 0.7468 0.2459 0.4063 0.7910 0.6667 0.2072
DNC 0.2955 0.8772 0.7152 0.2056 0.5806 0.7794 0.7172 0.3542
TNC 0.5682 0.8772 0.7911 0.4630 0.7368 0.9444 0.8727 0.7133
ANF 0.4773 0.8947 0.7785 0.4102 0.6316 0.8889 0.8000 0.5449

ENAC 0.8864 0.9737 0.9494 0.8727 0.8947 0.9722 0.9455 0.8786
BINARY 0.8636 0.9474 0.9241 0.8110 0.8065 1.0000 0.9394 0.8609

NCP 0.8636 0.9474 0.9241 0.8110 0.9063 0.9851 0.9596 0.9071
EIIP 0.6818 0.8860 0.8291 0.5718 0.8125 1.0000 0.9394 0.8636

PseEIIP 0.5682 0.6754 0.6456 0.2236 0.7368 0.9444 0.8727 0.7133

It was interesting that the outcome was notably different when using different partition
rates to divide the training and testing data. Here, the validation data were separated from
the training data to determine hyper-parameters in the algorithm. We utilized SVM and
ENAC as well as binary and NCP to choose a partition rate; 30%, 20%, and 10% were the
rates chosen for the testing data.

As illustrated in Table 2, we found that almost all results improved with the decreasing
of the testing partition rate in these three sequence-encoding schemes. This is probably
because the amount of training data was too small to train the model and bring about under-
fitting. Thus, according to this result, we selected 10% as the splitting rate to randomly
separate the testing data from the raw data.

Table 2. Performance of ENAC, BINARY, and NCP with different testing data partition rates by SVM.

Performance

Sn Sp Acc MCCEncoding
Scheme

Testing Data
Partition Rate

ENAC
30% 0.2623 0.9100 0.6646 0.2308
20% 0.6111 0.8136 0.7368 0.4327
10% 0.8947 0.9167 0.9091 0.8021

BINARY
30% 0.5738 0.9600 0.8137 0.6044
20% 0.5556 0.9322 0.7895 0.5446
10% 0.7895 0.9722 0.9091 0.7975

NCP
30% 0.6957 0.9818 0.8974 0.7482
20% 0.7857 0.9524 0.9011 0.7632
10% 0.8421 0.9722 0.9273 0.8379

2.2. Oversampling and Comparison to Other Algorithms

Considering that the positive and negative samples were imbalanced, which could bias
the results, there are often two ways to diminish or eliminate the impact: oversampling and



Int. J. Mol. Sci. 2022, 23, 3044 4 of 13

down-sampling. Here, we chose oversampling because the dataset was not large enough
to adopt down-sampling. We duplicated the samples of positive sequence data with an
independent sample probability of 0.5 two times in the training data after partitioning. On
the one hand, the duplication procedure does not change the distribution of the whole
dataset. On the other hand, we expected that the model could be improved by inputting the
same data multiple times with an inspiration of randomness in model training. Thereafter,
we trained different classifiers with ENAC, BINARY, and NCP using the expanded data.
The outcomes of the five algorithms are shown in Table 3.

Table 3. Performance of different classifiers with ENAC, BINARY, and NCP.

Performance

Sn Sp Acc MCC
Algorithm Encoding

Scheme

RF
ENAC 0.9375 0.9706 0.9545 0.9093

BINARY 0.9531 0.9559 0.9545 0.9090
NCP 0.9688 0.9706 0.9697 0.9393

SVM
ENAC 0.9063 0.8235 0.8333 0.6670

BINARY 0.8438 0.8824 0.8939 0.7882
NCP 0.9688 0.8529 0.9091 0.8247

KNN
ENAC 0.9688 0.8235 0.8939 0.7978

BINARY 0.9531 0.7059 0.8258 0.6764
NCP 0.9688 0.8676 0.9167 0.8384

LR
ENAC 0.8594 0.8235 0.8409 0.6827

BINARY 0.9063 0.8382 0.8712 0.7449
NCP 0.7500 0.9552 0.8889 0.7406

MLP
ENAC 0.9219 0.7941 0.8561 0.7197

BINARY 0.9219 0.8971 0.9091 0.8186
NCP 0.9688 0.8971 0.9318 0.8663

It is apparent that RF performed better than other classifiers in almost all metrics.
The MCC of RF reached 0.9393, and the Acc and Sp of RF-NCP were 0.9697 and 0.9706,
respectively, demonstrating that the model had excellent prediction ability. Interestingly,
the Sn of 0.9688 indicates that the upper bound of Sn may have been reached by several
algorithms, with the exception of LR. This may be due to oversampling the positive samples.
In RF, it is clear that NCP performed better than the other two encoding schemes (ENAC
and BINARY) on Sn, which increased by 3.337% and 1.647%, respectively. Overall, we found
that NCP outperformed the other sequence encoding schemes in multiple classifiers. Thus,
we chose the combination of RF and NCP as the final model to predict D modification sites.

To quantitatively show the performance of the model, we utilized the AUC. The ROC
curves of the combined RF and NCP model based on the 5-fold CV and independent tests
are shown in Figure 2. There is a small gap between the two AUCs: the AUCs in 5-fold
CV and independent tests reached 0.9937 and 0.9771, respectively, demonstrating that our
model could reach satisfactory generalization ability when predicting D modification sites.
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Figure 2. (A) ROC curve under the 5-fold CV. (B) ROC curve under independent test.

2.3. Robustness and Reliability Analysis

Considering that approximately one-third of data originated from S. cerevisiae, we split
the entire benchmark data into two sections: (1) training data derived only from S. cerevisiae
and (2) the remaining four species of benchmark data, excluding S. cerevisiae, to serve as
independent testing data. Subsequently, we trained the RF model with the NCP scheme
as in experiment I. In independent tests, the values of Sn and Sp were 0.9176 and 0.8754,
respectively. Furthermore, the values of MCC and Acc were 0.7249 and 0.8852, respectively.
The ROC curve in experiment I was shown in Figure 3, which shows the results of the
5-fold CV and independent tests.

Figure 3. (A) ROC curve of the 5-fold CV of experiment I. (B) ROC curve of independent tests of
experiment I.

Relatively speaking, it is acceptable that the Acc and AUC were 0.8852 and 0.9538,
respectively. This indicates that the model trained on one species can predict other species.
This also suggests that it is possible to predict D sites across species. Subsequently, we also
designed experiment II: the data from each species were regarded as testing data, while the
remaining data were trained for the RF model.

As shown in Figure 4, the AUCs were considerable in all experiments, indicating that
the model was sufficiently trained. However, the MCCs for S. cerevisiae and E. coli were
0.6450 and 0.5476, respectively, suggesting that the models based on these two species have
poor generalizability. The AUC for E. coli was 0.8906, which was the lowest of all models.
Taken together, this indicates that prokaryotes may possess different D modification motifs
than eukaryotes.
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Figure 4. The radar map showing the performance of experiment II. The species on each corner
served as the testing data, while the remaining data were used for training. Different colored radar
maps indicate different metrics of performance.

To further survey the generalizability of our proposed model, experiment III was
conducted with the goal of using each species to predict each other species. The data
from each species were utilized to train a species-specific model. Particularly, for each
species-specific model, the data from the other four species were individually considered
as independent testing data to assess model performance.

Thus, we obtained a 55 matrix of Acc to show predictions across species. The main
diagonal elements of the Acc matrix were the 5-fold CV results within species, while the
remaining elements denote the prediction accuracies across species. All results are shown
in Figure 5.

Figure 5. The heat map showing the species prediction accuracies (Acc values). The sample of species
in the row was used to train, while the sample of species in the column served as testing.

It is apparent that most of the prediction accuracies across species were acceptable. On
the whole, the performance was relatively poor when predicting S. cerevisiae using models
that were trained on other species. This may be because the S. cerevisiae dataset was larger
than that of the other species. It stands to reason that a model trained on a small dataset is
unable to predict large-scale data. Meanwhile, the model trained on S. cerevisiae performed
best compared with the models trained on other species. This can also be explained by the
fact that the S. cerevisiae dataset was larger.

The Acc was almost greater than 0.8, with the exception of S. cerevisiae. When predict-
ing E. coli, the Acc was relatively poor compared with that of other species. As mentioned
before, prokaryotes may have different D modification motifs from eukaryotes, which could
also explain this phenomenon. To further confirm the above assumption, we searched the
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phylogenetic tree between the five species at http://lifemap-ncbi.univ-lyon1.fr/ (accessed
on 15 December 2021). We found that H. sapiens, M. musculus, and D. melanogaster share a
common nearest ancestor, Bilateria, while S. cerevisiae has the nearest common ancestor of
Opisthokonta, and E. coli belongs to Bacteria. Thus, we conclude that the closer the species
are phylogenetically, the better the performance of our model in cross-species prediction.

On the basis of the above result, we can conclude that the number of different species
used for training is a considerable factor affecting the performance of the model. The
model proposed here has a better generalization ability across species for identifying D
modification sites.

2.4. Comparisons with Other Tools

There are three published tools to detect D modification sites. Considering that the
datasets of iRNAD_XGBoost and ours came from iRNAD, Table 4 only compared our model
with iRNAD and iRNAD_XGBoost in independent tests to reflect the model generalizability.
Compared with iRNAD, our model performed better on most metrics. Sn improved from
86.11% to 96.88%, and Sp increased from 96.05% to 97.06%. Additionally, Acc and MCC
also improved, with high percentages of 4.42% and 13.25%, respectively. The higher the
MCC, the better the predictive power of a model. In addition, precision was increased from
89.19% to 96.29% compared with iRNAD_XGBoost.

Table 4. Comparisons between iRNAD, iRNAD_XGBoost, and our current model to identify D
modification sites in independent tests.

Tools Sn (%) Sp (%) Acc (%) MCC AUC Pre (%) F1

iRNAD 86.11 96.05 92.86 0.83 0.98 N/A N/A
iRNAD_XGBoost 91.67 94.74 93.75 0.86 0.87 89.19 0.90

This work 96.88 97.06 96.97 0.94 0.98 96.29 0.85

3. Materials and Methods
3.1. Benchmark Datasets

It is crucial to obtain valid benchmark datasets, keeping in mind that high-quality
datasets can produce incredible outcomes. In this research, we directly employed the
benchmark datasets assembled by Xu et al. [29]. The datasets consist of 550 RNA samples,
consisting of 176 positive RNA samples and 374 negative RNA samples. According to Xu’s
research, the potential D site-containing RNA samples, derived from five species, were
fetched from the RMBase (version 2.0) [7] and MODOMICS [5] databases. Xu et al. removed
the sequences with over 90% sequence similarity using the CD-HIT program [33] to avoid
redundancy. The distribution of datasets is illustrated in Table 5. All RNA sequences were
41 nucleotides (nt) in length, with the D modification site in the center. Previous tests
indicated that the optimal prediction result for identifying D modification sites was obtained
when the sequence length was set as 41 nt. The benchmark datasets above are available at
http://lin-group.cn/server/iRNAD/download.php (accessed on 15 December 2021).

Table 5. The distribution of D in five species.

Species H. sapiens M. musculus D. melanogaster S. cerevisiae E. coli

Pos 29 13 9 91 34
Neg 68 48 38 93 127

3.2. Sequence Encoding Scheme

After obtaining the data, we selected several sequence-encoding schemes to extract
features. Six major types of features exist [34]. In this study, we primarily utilized eight
kinds of RNA primary sequence-derived features and three nucleotide physicochemical
properties to extract features, including ENAC [34,35], NCP [36], BINARY [34,35], Kmer,

http://lifemap-ncbi.univ-lyon1.fr/
http://lin-group.cn/server/iRNAD/download.php
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RCKmer [30,34], Nucleic Acid Composition (NAC), Di-Nucleotide Composition (DNC),
Tri-nucleotide composition (TNC) [37–41], Accumulated nucleotide frequency (ANF) [29],
EIIP, and PseEIIP [30]. The iLearn and iLearnplus toolkits [42] were employed to implement
these encoding methods. Here, we mainly introduced NCP, BINARY, and ENAC.

3.2.1. Nucleotide Chemical Property

As is well known, there are four kinds of nucleotides in RNA: adenine (A), cytosine (C),
guanine (G), and uracil (U). The chemical binding and chemical structure of each nucleotide
differ greatly [43]. On the basis of these chemical properties (Table 6), the four nucleotides
can be tiered into three distinct groups. (1) The nucleotides can be grouped according to
the ring structure; guanine and adenine are purines, which contain two rings, whereas
uracil and cytosine contain only one. (2) They can be grouped in terms of the functional
group; cytosine and adenine contain an amino group, whereas uracil and guanine contain
a keto group. (3) They can be grouped by taking the hydrogen bond into consideration; the
hydrogen bond between G and C is stronger than that between U and A.

Table 6. Chemical properties of each nucleotide [36].

Chemical Properties Classes Nucleotides

Ring Structure Pyrimidine U, C
Purine G, A

Functional Group Keto U, G
Amino C, A

Hydrogen Bond Weak U, A
Strong G, C

On the basis of the above chemical properties, we could convert an RNA sequence
into a discrete vector. Without loss of generality, we represented the four nucleotides (A, G,
C, U) by the coordinates (1, 1, 1), (0, 1, 0), (1, 0, 0), and (0, 0, 1) respectively. Assuming that
the length of the sequence was N, the dimension of the encoding vector using NCP was
(N*3), and each item in the encoding vector was 0 or 1, as given below:

R1= [r 1 r2 r3 · · · ri · · · rN∗3]
T (1)

3.2.2. Binary

Binary [34,35] encoding is a familiar method that can exactly depict the position of
each nucleotide in a given sample sequence. Each distinct nucleotide in an RNA sequence
can be encoded into a binary vector with a length of 4 because there are four different
nucleotides. Without a loss of generality, we represented the four nucleotides (A, G, C, U)
by the coordinates (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1), and (0, 0, 0, 1), respectively. For instance,
the RNA sequence ‘GAGACU’ can be represented by [01001000 . . . . . . .0001]T. Therefore, a
41 nt RNA sequence will be converted into a two-dimensional matrix with a size of 16 × 4.

3.2.3. Enhanced Nucleic Acid Composition

Nucleotide composition (NC) [37–41] is a well-known set of classic encoding methods
aiming to represent the preliminary features of the nucleotide sequence, and it is often
adopted to count the frequency of occurrence for given K-neighboring nucleotides. As a
consequence, we could obtain a dimensional feature vector for a given Kmer, which is one
of the most fundamental methods used with NC. The Kmer descriptor can be calculated
as follows:

f (n1n2 · · · nk) =
N(n1n2 · · · nk)

L
, (nk ∈ (A, G, C, U)) (2)

where n1n2 · · · nk represents a Kmer nucleotide segment, N(n1n2 · · · nk) is the count of
occurrences of n1n2 · · · nk in the sequence, and L is the length of the RNA sequence.
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On the basis of NC, we can derive the NAC, DNC, and TNC, while K can be chosen
as 1, 2, or 3, respectively. Exactly as is the case for TNC, ENAC also corresponds to the
3-mer nucleotide frequency pattern. As a variation of NAC, ENAC integrates NAC with a
sequence window, of which the window length is alterable. The entire feature vectors can
be acquired by continuously window sliding from the 5′ to 3′ terminus of each nucleotide
sequence. According to previous work [44], the window size is often set to 5 as a default
and can be changed depending on specific prediction models as a role of hyper-parameter.

3.3. Classifiers

In this study, we utilized five commonly employed machine learning classifiers to
screen out the optimal prediction model, including RF [45–47], SVM [9,45], MLP [45,48,49],
KNN [50], and LR [51]. These algorithms are widely used in a range of bioinformatics
research with outstanding performance.

The fundamental principle of SVM [9,45] is converting the input vectors into a high-
dimensional Hilbert space, where a linear separating hyperplane can be found to separate
the input into different classes. The conversion procedure can be utilized by the kernel
function, which is often considered to select a radial basis kernel function (RBF).

LR [51] is a type of generalized linear model that is also used in binary classification.
Based on the linear regression, LR implements a sigmoid function to convert the output of
the linear regression into a value with a range of 0–1. As a result, a classification can be
made with a threshold of 0.5.

MLP [45,48,49] is also known as an artificial neural network. With the exception of the
input and output layer, there are often several hidden layers. Full connection is adopted
among layers. The role of the activation function is implemented by the sigmoid function,
aiming to separate the linearity features between layers. If there is no activation function,
the whole computation can be presented by a linear vector.

KNN [50] is one of the most famous classification algorithms. As the nearest neighbors
show, the decision of classification adopts a voting idea in that the category with the most
neighbors is considered the final decision. It is important to choose the value of K, which is
often determined by cross-validation with a lower validation error.

RF [45–47] integrates multiple randomly constructed independent decision trees, each
of which is often regarded as a weak base learner, and holds the idea that multiple weak
learners aggregated together can be comparable with strong but complex algorithms. To
maintain the diversity of base learners, each base learner can be produced by randomly
choosing not only the attributes but also the distribution. The introduction of attribute
perturbation contributes to expanding the difference between independent decision trees.
Thus, the generalization performance of the final ensemble is further improved. The tree
grows as much as possible, recursively repeating the process of tree splitting until it reaches
the termination condition. In the splitting period, there are two cases in which to quit
splitting: (1) the size at that node is too small; (2) the execution of the splitting process is not
beneficial to gain more information. The final classification of the random forest depends
on the voting of multiple base learners.

3.4. Performance Evaluation

Cross-validation is commonly adopted to assess the performance of the constructed
model while training [30,40,52]. In this study, we adopted the 5-fold CV to train the model.
Additionally, an independent test was also performed to measure the generalizability of
the model.

Four metrics were adopted in previous research, which have served the function of
the quantitative performance evaluation of a model: (1) sensitivity (Sn); (2) specificity
(Sp); (3) overall accuracy (Acc); and (4) Mathew’s correlation coefficient (MCC), as given
below [53–57]:
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Sn = 1− N+
−

N+ 0 ≤ Sn ≤ 1

Sp = 1− N−+
N− 0 ≤ Sp ≤ 1

Acc = 1− N+
−+N−+

N++N− 0 ≤ Acc ≤ 1

MCC =
1−
(

N+
−+N−+

N++N−

)
√(

1+
N−+−N+

−
N+

)(
1+

N+
−−N−+

N−

) −1 ≤ MCC ≤ 1

(3)

where N+ represents the entire number of true D site-containing sequences, while N−

represents the entire number of the false D site-containing sequences; N+
− represents the

number of D site-containing sequences that are incorrectly predicted to be false D site-
containing sequences, while N−+ represents the number of false D site-containing sequences
that are incorrectly predicted to be true D site-containing sequences.

In addition, the area under the curve (AUC [58]) was also adopted to quantitatively
evaluate the performance of the model. The false-positive rate (1-Sp) and the true positive
rate (Sn) were used to draw the receiver operating characteristic curve (ROC [58]). The
larger the AUC value, the better performance the model has. Moreover, AUC = 0.5 indicates
that the predictive capacity of a model is equivalent to a model using random prediction,
while AUC = 1 indicates a splendid model.

4. Conclusions

This research screened out an effective and robust model to identify D modification
sites in RNA. Oversampling and different training and testing partition rates were used
to improve the performance of a model based on specific datasets. Additionally, several
experiments were conducted to demonstrate the robustness and reliability of our model.
Compared with iRNAD and iRNADXGBoost, for which the values of Sn were 86.11%
and 91.67%, respectively, in independent tests, our model reached an Sn value of 96.88%.
Moreover, corresponding MCC values had 13.25% and 9.30% improvements, while the Acc
values increased by 4.43% and 3.43%, respectively. RF with NCP can be used to predict D
modification sites given its satisfactory performance.

In this work, the feature extraction method was used independently instead of being
integrated, which perhaps could generate more comprehensive features. There is still much
to explore regarding effective feature extraction methods using integration. Inspired by
the fact that simple methods are often more effective, simple duplication was performed
as the traditional method of oversampling, although there may be other methods to over-
sample. As a considerable challenge, the issue of data imbalance always degrades model
performance. It is supposed to obtain more reliable and accurate data that is balanced in
both positive and negative samples. Further, deep learning algorithms are also an option
to improve prediction performance when adopting large datasets. In summary, the above
aspects can be further investigated to improve future research.
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