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Abstract Drug toxicity and efficacy are difficult to
predict partly because they are both poorly defined,
which I aim to remedy here from a transcriptomic per-
spective. There are two major categories of drugs: (1)
restorative drugs aiming to restore an abnormal cell,
tissue, or organ to normal function (e.g., restoring nor-
mal membrane function of epithelial cells in cystic
fibrosis), and (2) disruptive drugs aiming to kill patho-
gens or malignant cells. These two types of drugs re-
quire different definition of efficacy and toxicity. I
outlined rationales for defining transcriptomic efficacy
and toxicity and illustrated numerically their application
with two sets of transcriptomic data, one for restorative
drugs (treating cystic fibrosis with lumacaftor/ivacaftor
aiming to restore the cellular function of epithelial cells)
and the other for disruptive drugs (treating acute mye-
loid leukemia with prexasertib). The conceptual frame-
work presented will help and sensitize researchers to
collect data required for determining drug toxicity.

Keywords Transcriptomic efficacy . Transcriptomic
toxicity . Toxicity prediction . Cystic fibrosis . Acute
myeloid leukemia . Transcriptome . Drug development

Introduction

The most desirable drug is of high efficacy, low toxicity
(side effects), low chance of drug resistance, low cost, and
low deleterious effect on the environment, e.g., no re-
activation by bacterial species after human use (Xia
2017). Among these five key features, drug toxicity is
perhaps the most difficult to define, quantify, and predict
(Sosnin et al. 2019). In this review, I aim to introduce a
standard definition for drug efficacy and drug toxicity from
a transcriptomic perspective to facilitate their prediction in
drug discovery in a transcriptomic context.

Drugs can be classified broadly into restorative and
disruptive drugs. Restorative drugs aim to restore cellu-
lar functions. For example, in cystic fibrosis (CF) pa-
tients homozygous for theΔF508 mutation (deletion of
a phenylalanine at site 508) in the CFTR gene, the
misfolded protein in endoplasmic reticulum (ER) is
mostly degraded after failing to go through the quality
control system (Fraser-Pitt and O'Neil 2015). The few
CFTR proteins that do escape the degradation and are
exported to their membrane location typically do not
function very well. Thus, any modulators that can in-
crease the export of CFTR protein to the membrane and
improve its ion channel function would contribute to
restoring the epithelial cell function and alleviate the
associated symptoms (Deeks 2016; Sala and Jain
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2018; Gentzsch and Mall 2018). Lumacaftor/ivacaftor
for treating CF patients who areΔF508 homozygotes is
a drug combination representative of restorative drugs.
From a transcriptomic perspective, the efficacy of such
drugs is measured by how much they can reduce the
difference in transcriptomic profile between patients and
healthy controls, especially for a subset of genes directly
related to the disease (Failli et al. 2019; Karagianni et al.
2019). Their toxicity is measured by the drug-induced
differences in transcriptomic profile for genes that are
not intended to be affected by the drug.

In contrast to restorative drugs, disruptive drugs are
intended to disrupt cell growth and proliferation and to
induce apoptosis. These drugs are used in the fight against
pathogens or malignant cells (Moffat et al. 2014;
Shoemaker 2006) without deleterious effect on normal
human cells. Drug efficacy of disruptive drugs can be
directly measured by the proportion of cancer cells or
pathogens killed, from which one can obtain an estimate
of the propensity of cancer cell or pathogen mortality.
From a transcriptomic perspective, drug efficacy can be
defined as an index of disruption, measured by the drug-
induced difference in transcriptomic profile of malignant
cells before and after drug use, especially the induction of
apoptosis genes and activation of apoptosis pathways. The
drug toxicity could be conceptually defined as drug-
induced transcriptomic differences of normal cells before
and after drug administration. In practice, this definition
has limitations and alternatives are discussed.

I detail the definitions below, outline the rationale be-
hind such definitions, and illustrate their applications that
lead to meaningful quantification of drug efficacy
and toxicity from transcriptomic data. Two sets of large-
scale transcriptomic data are used for the illustration and
can be downloaded from NCBI. I also include two sup-
plemental files containing the data used in this paper, with
detailed instructions on how to replicate the results in the
paper. The first data set involves a restorative drug, i.e.,
lumacaftor/ivacaftor used to restore the cellular function of
epithelial cells of CF patients with the double ΔF508
mutation (Kopp et al. 2019; Kopp et al. 2020). The second
data set resulted from treating acutemyeloid leukemiawith
prexasertib (Kaufmann and Li 2019).

Drug efficacy and toxicity: restorative drug

Lumacaftor/ivacaftor for CF is a drug combination rep-
resentative of restorative drugs. The majority of CF is

caused by the deletion of F508 (ΔF508) in both alleles
of the CFTR gene (Brockman et al. 2017; Esposito et al.
2016; Faure et al. 2016). The ΔF508 CFTR proteins
cannot be folded properly in ER lumen and are mostly
degraded after failing to be exported to the cell mem-
brane to perform its ion channel function (Fraser-Pitt
and O'Neil 2015). CFTR-Associated Ligand (CAL), an
ER-localized protein, binds toΔF508 CFTR, leading to
degradation in the 26S proteasome (Bergbower et al.
2018) through the ubiquitin-proteasome pathway
(Sondo et al. 2018). The fewΔF508 CFTR that do find
their way to cell membrane do not function well due to
severe gating defects (Bose et al. 2019). Thus, drugs that
can decrease the degradation of ΔF508 CFTR protein,
increase the export of ΔF508 CFTR protein to the
plasma membrane, and improve its ion channel func-
tion, would contribute to restoring the epithelial cell
function and alleviating the associated symptoms of
cystic fibrosis. Such drugs and drug candidates include
lumacaftor/ivacaftor (Deeks 2016; Gentzsch and Mall
2018; Kmit et al. 1865), tezacaftor/ivacaftor (Sala and
Jain 2018; Faure et al. 2016; Donaldson et al. 2018),
fatty acid cysteamine (Vu et al. 2017), or even rattle-
snake phospholipase A2 (Faure et al. 2016). How to
evaluate efficacy and toxicity of these drugs with
transcriptomic data?

A recent s tudy (Geo DataSets access ion
GSE124548) characterized whole-blood transcriptomic
responses to lumacaftor/ivacaftor therapy in CF patients
homozygous for ΔF508 (Kopp et al. 2019; Kopp et al.
2020). It gathered transcriptomic data for a total of
15,570 RNA and protein-coding genes from 20 CF
patients before and after administration of lumacaftor/
ivacaftor, as well as 20 non-CF individuals as control.
Thus, the complete set of gene expression data is a
15,700 × 60 matrix. For each gene, there are 20 gene
expression values for patients before the drug adminis-
tration, 20 values for the same set of patients after the
drug administration, and 20 values for healthy controls.
I normalized the total number of read counts (i.e., the
summation of each column of 15,570 values) to one
million to facilitate comparison.

One might question the relevance of whole-blood
transcriptomic data to CF drug efficacy. The most direct
measure of efficacywould seem to be peeling off a piece
of epithelium (especially those lining the airways) to test
for the presence (or increased amount) of functional
CFTR protein. If this invasive approach is not accept-
able, then there are simple alternatives such as the
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conventional sweat test for efficacy. A reduction in the
amount of chloride in sweat would seem to be an excel-
lent index of efficacy for any CF drug. However, while
lumacaftor/ivacaftor treatment does not seem to reduce
chloride in sweat, the treated patients did report an
improved quality of life.

Experimental evidence that implicated leucocytes in
CF development has accumulated in the last 20 years.
CF is made much worse by human immune responses
mediated by leucocytes (mainly through neutrophils)
(Makam et al. 2009; Tirouvanziam et al. 2006;
Tirouvanziam et al. 2000; Tirouvanziam et al. 2008).
Not only can a subset of neutrophils cause CF in mice,
such neutrophils from CF patients can even transfer CF
to mice (Genschmer et al. 2019). While it is not clear
which subset of genes exhibit abnormal expression that
leads to the full-fledged development of CF, it is clear
that gene expression in leucocytes plays a key role in the
development of CF (Lin et al. 2008). In addition to
mRNA differences, microRNA miR-155 is also highly
expressed in circulating CF neutrophils biopsied from
CF patients (Bhattacharyya et al. 2011). For this reason,
it is not outlandish to use whole-blood transcriptomic
differences to characterize efficacy and toxicity of CF
drugs.

Designate transcriptomes for patients before and after
the administration of the drug as Pb and Pa (where
subscripted b and a stand for before and after) respec-
tively, and those for healthy controls as H (for healthy).
Ideally one should compile a list of target genes that are
particularly relevant to CF and formulate transcriptomic
efficacy and toxicity based on how the drug treatment
would restore their gene expression to that of healthy
controls. However, given the existing knowledge onCF,
there is practical difficulty in compiling such a set of
target genes, so we will use all genes with expression
levels clearly above background. Gene expression dif-
fers dramatically among genes, with S100A9 and
EEF1A1 having mean expression equal to 10,611.94
and 8871.31, respectively, but many others with small
values. I excluded genes with mean expression values
lower than 10. This leaves 8558 genes.

The first 20 genes that differ most between H and Pb
are listed in Table 1, together with differences between
H and Pa and the results of significance tests. The first
gene is ARID3A which belongs to the Arid (AT-rich
interaction domain) family of DNA-binding proteins. At
least one member of the family (ARID3B) is highly
expressed in adult fibrotic lung tissue (Lin et al. 2008).

ARID3A is expressed only in human B cells, but its
function is little known (Nixon et al. 2004). The second
gene (Table 1) is STX3which encodes a protein targeted
to the apical membrane of epithelial cells and is crucial
for the normal function of CFTR (Tang et al. 2011). The
third gene is SOD1 belonging to the superoxide dismut-
ase family. Superoxide dismutases, especially extracel-
lular ones, play a key role in preventing pulmonary
fibrosis (Gao et al. 2008). These suggest that whole-
blood transcriptomic data may shed light on mechanism
of CF development.

It is almost never easy to identify key genes respon-
sible for a disease. The patient group may exhibit altered
expression of many genes including the disease-causing
genes and those representing secondary responses. The
healthy controls may include individuals who are about
to have the disease and exhibit disease-specific gene
expression patterns but have not yet manifested the
disease symptoms. In this context, it is encouraging to
identify genes such as ARID3A, STX3, and SOD1 that
are known to be directly or indirectly related to CF.

Drug efficacy is the summation of everything better
after drug treatment than before drug treatment.ARID3A
expression is much higher in CF patients than in healthy
control (95.4289 vs 63.5434, Table 1). After drug treat-
ment, ARID3A expression is reduced to 82.7131
(Table 1), closer to that of the healthy control by
12.7158. Designate mean expression of H, Pb, and Pa
as MeanH, MeanPb and MeanPa, respectively. Now for
ARID3A

DMeanH∼MeanPb ¼ MeanH−MeanPbj j
¼ 63:5434−95:4289j j ¼ 31:8855 ð1Þ

DMeanH∼MeanPa ¼ MeanH−MeanPaj j
¼ 63:5434−82:7131j j ¼ 19:1697 ð2Þ

ΔD ¼ DMeanH∼MeanPb−DMeanH∼MeanPa

¼ 31:8855−19:1697 ¼ 12:7158 ð3Þ
where ΔD is desirable if positive and undesirable if

negative. A better replacement of DMeanH∼MeanPa and
DMeanH∼MeanPb is the t statistic which incorporates the
standard error (SE) of the differences. Again for
ARID3A,
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tMeanH∼MeanPb ¼
MeanH−MeanPbj j

SE

¼ 63:5434−95:4289j j
4:1640

¼ 7:6575 ð4Þ

tMeanH∼MeanPa ¼
MeanH−MeanPaj j

SE

¼ 63:5434−82:7131j j
5:0061

¼ 3:8293 ð5Þ

Δt ¼ tMeanH∼MeanPb−tMeanH∼MeanPa

¼ 7:6575−3:8293 ¼ 3:8282 ð6Þ
tMeanH∼MeanPb and tMeanH∼MeanPa values measure devi-

ation of gene expression in CF patients from that of
healthy controls before and after drug treatment,

respectively. Ideally, all tMeanH∼MeanPa values would be
zero; i.e., the gene expression is perfectly restored to that
of healthy controls. In the case of ARID3A, although
tMeanH∼MeanPa is not zero, it is at least smaller than
tMeanH∼MeanPb ; i.e., the gene expression is closer to that
of the healthy control after drug treatment than before
drug treatment. The distribution of tMeanH∼MeanPb and
tMeanH∼MeanPa for the 8558 genes (Fig. 1a) suggests
positive drug effect. That is, the distribution of
tMeanH∼MeanPa has shifted towards smaller values relative
to the distribution of tMeanH∼MeanPb .

Δt in Eq. (6) measures drug effect on a specific gene
(ARID3A). If the drug is efficacious, we expect most
genes to have positive Δt values than genes with nega-
tive Δt values. Among the 8558 genes, 5710 has posi-
tive values and 2848 have negative values. The distri-
bution of the 8558Δt values (Fig. 1b) suggests a mean
Δt greater than 0. The 20 genes with the most negative

Table 1 The first 20 genes that differ most in transcriptome between the control (H) and CF patients before drug administration (Pb),
together with associated t tests

Gene ID MeanH(1) MeanPb
(1) MeanPa

(1) tH~Pb
(2) pH~Pb

(2) tH~Pa pH~Pa

ARID3A 63.5434 95.4289 82.7131 7.6575 3.2288E-09 3.8293 4.6701E-04

STX3 130.1254 202.3724 173.3726 7.5091 5.0883E-09 3.2182 2.6391E-03

SOD1 78.4708 55.6722 67.6733 7.3851 7.4545E-09 2.4629 1.8425E-02

FUZ 13.7661 10.1532 11.1206 7.3513 8.2743E-09 3.7607 5.7037E-04

TRIM25 121.4586 221.7997 174.1186 7.1480 1.5523E-08 2.8273 7.4488E-03

MAPKAPK2 86.6486 111.9230 106.6062 7.1071 1.7623E-08 5.1495 8.3141E-06

FOSL2 78.9880 151.0020 117.1378 6.8847 3.5231E-08 2.7905 8.1844E-03

TMEM185B 28.0728 41.2852 35.2257 6.7928 4.6956E-08 2.9412 5.5406E-03

AP5B1 88.5422 145.4842 119.1952 6.7822 4.8546E-08 3.1719 2.9942E-03

CREBL2 111.8329 84.8495 96.9893 6.7771 4.9325E-08 2.6558 1.1500E-02

FAR1 175.8316 233.5993 226.7157 6.7172 5.9497E-08 4.4820 6.5967E-05

SRSF8 102.1043 68.8498 76.8809 6.5682 9.4948E-08 4.4411 7.4762E-05

ATG14 43.0031 31.5710 34.6214 6.5661 9.5600E-08 4.3494 9.8853E-05

ITGAM 154.2052 260.6106 233.4123 6.5658 9.5689E-08 3.8977 3.8204E-04

PPOX 17.8127 12.5082 14.1883 6.5191 1.1081E-07 3.9620 3.1604E-04

C16orf72 275.0084 389.0771 344.2402 6.4950 1.1954E-07 3.2590 2.3602E-03

MXD1 602.1311 983.0411 820.7273 6.4777 1.2622E-07 2.9392 5.5701E-03

MCTP1 75.9118 103.7555 96.3500 6.4688 1.2977E-07 4.3876 8.8009E-05

THAP11 39.0977 30.2926 36.0012 6.4284 1.4738E-07 1.6531 1.0655E-01

CARD6 16.8386 26.6380 24.4786 6.4217 1.5052E-07 4.7320 3.0554E-05

(1)MeanH, MeanPb, MeanPa: mean expression for healthy control (H), CF patients before treatment and CF patients after treatment,
respectively
(2) tH~Pb, pH~Pb: t and p values from t test between healthy control (H) and CF patients before treatment
(3) tH~Pa, pH~Pa: t and p values from t test between healthy control (H) and CF patients after treatment
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Δt values, i.e., genes with the greatest side effect (or
toxicity effect), are listed in Table 2.

I now define an index of drug desirability as

IDD ¼ ∑Ngene

i¼1 Δt�i
Ngene

¼ ∑8558
i¼1 Δt�i
8558

¼ 0:6093 ð7Þ

where IDD is simply an average of Δt. The drug is
desirable if IDD > 0, undesirable if IDD < 0, and neither
desirable nor undesirable if IDD = 0 (the null hypothe-
sis). For the CF transcriptomic data, IDD is highly sig-
nificantly greater than 0 based on the 8558 Δt values
(t = 41.8478, DF = 8557, p < 10−20). The standard error
(SE) of Δt is 0.01456, so that 95% confidence interval
of IDD is (0.58073, 0.63781).

Given 5710 genes with positive Δt and 2848 genes
with negativeΔt, the drug efficacy and drug toxicity can
be defined as

E ¼ ∑5710
i¼1 Δt

8558
¼ 0:90402; for Δt > 0 ð8Þ

T ¼ ∑2848
i¼1 Δt

8558
¼ −0:29475; for Δt < 0 ð9Þ

IDD ¼ E þ T ð10Þ
which implies that a drug can become more desirable

by either increasing E or reducing T.
To generate a more informative IDD, one should use a

fixed set of candidate genes known a priori to be rele-
vant for the disease instead of using all 8558 genes. We
can use this set of candidate genes to replace the 8558
genes in the computation. For disruptive drugs aiming to
kill cancer cells, such a fixed set of genes could simply
be all genes involved in apoptosis pathways. For resto-
ration drugs aiming to restore a specific function, then
all genes contributing to the function can be included in
the set.

Suppose a researcher has done a similar experiment
with a new drug, or the same drug with a different dose,
and wish to compare his IDD, E and T against those
reported above. He may compute IDD from his experi-
mental result with the same set of genes. If the lower
limit of his 95% confidence interval for IDD is greater
than my calculated IDD (= 0.6093) or if his IDD is greater
than the upper limit of my 95% confidence interval (=
0.63781), then he may conclude that his drug or his

dosage is more desirable than the lumacaftor/ivacaftor
treatment. He can then further dissect the result to see
whether his increase in IDD is due to increased E or
reduced T.

Drug efficacy and toxicity: disruptive drugs

Disruptive drugs aim to induce large changes in the
target cells, ideally leading to cell death. Suppose we
are treating liver cancer with a particular drug. We
would need transcriptomes from normal liver cells and
malignant liver cells before and after drug treatment,
represented as GEnb, GEna, GEmb, and GEma, where
GE stands for gene expression, and the subscript n
stands for normal, m for malignant, b for before, and a
for after. I will first start with a general case with no
specific set of target genes, and then narrow down to a
set of genes involved in apoptosis.

Drug efficacy with no specific set of target genes

For an anti-cancer drug, it is desirable to disrupt the
cancer cell as much as possible, so GEmb, and GEma

should differ as much as possible. For M genes with
gene expression clearly above background, the
transcriptomic efficacy (E) is defined as the mean |t|
value:

E ¼ ∑M
i¼1 ti;GEma∼GEmb

�
�

�
�

M
ð11Þ

Take for example the transcriptomic data
(GSE131912) for treating acute myeloid leukemia with
10 nM prexasertib (Kaufmann and Li 2019), with three
controls (CTRL) and three treatments (TREAT). I again
normalized each of the six columns of data (3 CTRLs
and 3 TREATs) to have a summed total of 1,000,000.
After excluding genes with mean expression smaller
than 10, I have 9446 genes remaining. The resulting E is

E ¼ ∑9446
i¼1 ti;GEma∼GEmb

�
�

�
�

9446
¼ 5:54566 ð12Þ

It is easy to test if this E = 5.54566 is statistically
significant. The expected |t| value for any degree of
freedom (ν) can be obtained by the following equation:
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E tjνð Þ ¼ ∫∞0 t � f tjνð Þdt
∫∞0 f tjνð Þdt ð13Þ

where f(t| ν) is the probability density function of t
distribution given ν. In our case with ν = 4 (for a t test
with 3 CTRLs and 3 TREATs), the expected |t| value is
1 when the null hypothesis of no difference is true.
Therefore, we can do a simple t test as

t ¼ E−E tjνð Þ
SE

¼ 5:54566−1
0:06379

¼ 71:26233 ð14Þ

where SE is the standard error of the 9446 t values
used to calculate E in Eq. (12). The p value is effectively
0. In other words, the prexasertib treatment very strong-
ly perturbed gene expression.

A multitude of diversifying lineages has been report-
ed in tumors (Bailey et al. 2020; Turajlic et al. 2019;Wu
et al. 2016), which can complicate transcriptomic data
analysis (Xia 2017; Navin 2015). It would be interesting
to know if a certain anti-cancer drug will perturb all
different cancer cell lineages or just a subset of the
lineages. An anti-cancer drug against one or only a

subset of proliferating lineages will not be efficacious
against the cancer.

Drug efficacy with a set of target genes such as genes
involved in apoptosis

Although one could calculate E by using all genes
whose expressions are not too low, as is done above,
the E value would be more informative if we use a set of
candidate genes more relevant to the conventional sense
of efficacy. For example, if the drugs are for inducing
apoptosis in cancer cells, then we would be more inter-
ested in 80 or so apoptosis genes involved in extrinsic
and intrinsic apoptosis pathways (Burke 2017), which
we can obtain by using databases such as KEGG
(Kanehisa 2002) or apoptosis database specific for hu-
man cancer such as ApoCanD (Kumar and Raghava
2016).

For illustration, I downloaded the 82 sequences for
proteins involved in apoptosis from ApoCanD. From
the same set of gene expression data on treating acute
myeloid leukemia cells with prexasertib (Kaufmann and
Li 2019) that I used in the previous section, there are 66
out of the 82 genes with mean gene expression greater
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Fig. 1 Distribution of two sets of t values designated
tMeanH~MeanPb and tMeanH~MeanPa (a) and distribution of Δt (b).
tMeanH~MeanPb and tMeanH~MeanPa measure deviation of gene expres-
sion of CF patients from that of healthy controls (H) before and

after the drug treatment, respectively. Shifting of tMeanH~MeanPa

towards smaller values relative to tMeanH~MeanPb indicates positive
drug effect. Large Δt values indicate desirable drug effect
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than 10. The first 20 genes with the greatest difference
between the control and the prexasertib treatment are
listed in Table 3. In this case with a fixed set of genes, E
is calculated as

Eapoptosis ¼
∑66

i¼1 ti;GEm�a∼GEmb

�
�

�
�

66
¼ 7:12677 ð15Þ

This Eapoptosis from the 66 genes involved in apopto-
sis is greater than E (= 5.54566) from all 9446 genes,
suggesting that gene expression of apoptosis genes has
been changed more by the drug than that of an average
gene. One question that a researcher is interested in
answering is whether this difference is statistically sig-
nificant. I tested the difference between the 66 t values
from apoptosis genes against the 9446 t values from the
9446 genes. The difference is significant, with t =
2.059644, DF = 9510, p = 0.03946. Thus, the drug al-
tered expression of apoptosis genes more than it does to
an average gene.

One may criticize the formulation of E in Eq. (11) as
being only an index of gene expression disruption. If the

drug is to induce apoptosis, then the efficiency should be
defined as the propensity of tumor cell death (p). This p
is typically dose-dependent for a drug. Table 4 illustrates
such a set of fictitious data with measured dose-
dependent cancer cell mortality (the first three columns),
as well as expression for two apoptosis-related genes
(AG1 and AG2). As there are 80 or so genes closely
involved in various apoptosis pathways, a real data set
could include 80 or so columns in Table 4, each column
representing dose-dependent expression of a gene. For
simplicity we illustrate with only two genes.

From the first three columns in Table 4, one can
obtain the dose-dependent p using logistic regression
(Berkson 1944), which would give us

p ¼ eaþb�Dose

1þ eeaþb�Dose ¼
e−3:3827þ0:0130Dose

1þ e−3:3827þ0:0130Dose
ð16Þ

p is highly significantly related to dose (Fig. 2a) and
the relationship is depicted in Fig. 2b. Because p seems
to be a direct measure of the drug efficacy in killing
cancer cells, what is the need for a transcription-based
index of efficacy?

Table 2 The first 20 genes that have the most negative Δt values (negative Δt means gene expression deviating even more from healthy
control after drug treatment and is therefore undesirable). Column headings same as in Table 1

ID MeanH MeanPb MeanPa tH~Pb tH~Pa Δt

C1orf132 18.68247 15.5787 12.03481 1.720729 6.150399 − 4.42967
TTN 81.53304 81.38701 43.38747 0.00516 4.167737 − 4.16258
MFSD4B 16.52881 14.63438 12.18393 1.095759 5.10132 − 4.00556
STK39 21.85199 21.75404 17.98743 0.039667 4.031563 − 3.9919
PPCDC 30.06767 28.48239 23.52954 0.490643 4.453355 − 3.96271
RC3H2 83.41912 76.31473 71.25956 1.995434 5.645152 − 3.64972
EZH1 91.2039 85.87195 75.65626 1.542998 5.042697 − 3.4997
HELLS 14.71387 12.28021 10.44332 1.345294 4.786592 − 3.4413
ANKRD36B 18.44703 13.77633 9.970375 1.660923 5.047357 − 3.38643
LINC01138 12.93422 11.9653 9.190063 0.536082 3.917247 − 3.38116
CNNM3 19.83114 19.08763 16.34129 0.294289 3.667048 − 3.37276
ALG13 26.53309 26.12448 21.08266 0.099649 3.45059 − 3.35094
PLA2G6 13.24867 11.03068 9.140276 1.493657 4.754572 − 3.26091
ANKRD36 41.56848 34.32497 29.99873 1.730452 4.990922 − 3.26047
ANKRD36C 28.59038 25.00426 20.63043 0.863642 4.101587 − 3.23794
CCNH 46.21754 45.87676 39.76174 0.100098 3.291842 − 3.19174
LOC105371224 17.35159 16.08431 10.64258 0.405861 3.488259 − 3.0824
ABCA5 25.68626 25.31876 21.00044 0.15661 3.216822 − 3.06021
DYRK1A 279.4142 273.7788 251.3844 0.851491 3.878661 − 3.02717
PIGG 33.24765 31.67206 26.59577 0.390097 3.411989 − 3.02189
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There are two arguments for the relevance of tran-
scription data. First, we wish to knowwhich gene whose
altered expression may have contributed to the observed
death of cancer cells. We can use generalized linear
model (Nelder andWedderburn 1972) to fit the relation-
ship between p and AG1 and AG2. As shown in Fig. 2c,
AG1 is not related to cancer cell mortality p, but AG2 is
highly significantly related to p. Also, there is no inter-
action between AG1 and AG2 (Fig. 2c). The best model,
based on either likelihood ratio test or information-
theoretic indices such as AIC or BIC (Burnham and
Anderson 2002; Xia 2009), has AG2 as the only inde-
pendent variable. The fitted model (Fig. 2 d and e)
shows the AG2-dependent drug efficacy. Such knowl-
edge gains us a better understanding of the mechanistic
basis of cancer cell death; i.e., the drug may have in-
duced apoptosis through the pathway with a strong
dependence on differential AG2 expression. Second,
alteration of gene expression typically occurs much
earlier than cell death, so an efficacy index based on
gene expression (especially those directly related to

apoptosis) is likely more sensitive than one based on
observed cell death.

Different drugs may target different sets of gene with
totally different outcome in terms of transcriptome

Table 3 The first 20 genes that differ most in transcriptome between the three controls (CTRL) and three treatments (TREAT) with
prexasertib, together with expression counts and associated t tests

Gene CTRL1 CTRL2 CTRL3 TREAT1 TREAT2 TREAT3 T p

TNFSF10 6.020 5.498 5.363 69.655 65.721 66.600 51.041 8.82E-07

CASP2 151.090 148.349 154.388 77.283 80.477 77.215 35.568 3.73E-06

CSE1L 268.935 257.947 259.631 120.659 109.006 129.532 20.777 3.17E-05

BBC3 9.302 14.353 15.471 188.474 161.038 186.963 18.210 5.35E-05

AK2 578.682 579.970 575.428 291.260 327.285 342.539 16.882 7.22E-05

CASP4 50.896 54.203 53.591 79.731 75.904 78.485 16.571 7.77E-05

ANP32A 462.079 493.671 465.000 202.516 238.210 233.937 16.462 7.97E-05

MYD88 108.917 93.516 84.762 328.306 300.993 292.179 16.306 8.28E-05

CASP10 17.243 24.593 23.021 59.258 56.823 60.428 15.044 0.000114

BCL2 108.373 86.368 98.274 9.789 9.782 12.872 13.482 0.000175

MAPK8 41.322 40.927 44.489 26.144 23.170 24.933 12.324 0.000249

BCL2L13 78.444 77.788 78.923 128.507 141.324 151.767 9.229 0.000766

HTRA2 15.373 16.117 16.741 6.802 9.382 9.010 8.560 0.001023

BAX 83.903 85.291 83.068 194.516 198.765 241.131 8.552 0.001026

XAF1 31.816 38.980 48.881 733.424 496.670 648.242 8.446 0.001077

CASP1 19.641 19.759 19.598 70.043 52.867 59.194 8.182 0.001215

MOAP1 19.148 18.843 22.192 29.958 29.029 28.812 8.181 0.001216

MCL1 342.193 341.233 337.354 1293.968 940.773 1097.231 7.539 0.001658

NAIP 6.241 7.171 7.744 30.464 33.804 23.205 6.998 0.002195

CASP8 38.346 34.719 32.370 54.060 48.777 53.710 6.996 0.002197

Table 4 Sample data of dose-dependent cancer cell mortality and
the expression of two genes related to apoptosis (AG1 and AG2)

Dose NCell
(1) NDead

(2) AG1 AG2

0 3000 100 10 23

50 2400 130 1500 200

100 3100 350 2000 500

150 3000 500 2500 750

200 2000 600 2400 950

250 3000 1500 1600 1000

300 2600 1700 1500 1500

400 2800 2450 200 1900

500 2800 2600 100 2000

(1)NCell: number of counted cancer cells
(2) NDead: number of dead cancer cells
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response although all of them may be highly efficient
treatments against a certain disease. For example, some
anti-cancer drugs aim to decrease expression of anti-
apoptotic genes such as BCL-2, BCL-XL, and MCL1
(Luo et al. 2014; Sattler et al. 1997; Beroukhim et al.
2010), or increase the expression of pro-apoptotic genes
such as BID, BIM, BAD, PUMA, and NOXA (Happo
et al. 2010; Slinger et al. 2016; Zhang et al. 2013). Both
types can lead to mitochondrial outer membrane perme-
abilization and subsequent activation of apoptosis
agents such as caspases. If one compares transcriptomic
efficacy of drugs suppressing the expression of anti-
apoptotic genes such as BCL-2, BCL-XL, and MCL1
against transcription efficacy of drugs increasing pro-
apoptotic genes such as BID, BIM, BAD, PUMA, and
NOXA, then one would be comparing apples and or-
anges. In such cases, cancer cell mortality is a more
general measure of drug efficacy. In short, the
transcriptomic efficacy complements but does not re-
place the measure of cancer cell mortality as drug
efficacy.

Toxicity

A good drug should have high efficacy but low toxicity.
For disruptive drugs, the transcriptomic toxicity is

difficult to define except for the simplest cases such as
skin cancer and some mouth cancer where (1) the tumor
and the surrounding normal tissues are clearly distin-
guishable and (2) topical chemotherapy is used so that
the tumor and the surrounding normal tissues are subject
to the same treatment. In such cases, GEm.b and GEm.a

can be characterized from the tumor, and GEn.b and
GEn.a can be characterized from surrounding normal
tissues. Transcriptomic toxicity T can then be calculated
from GEn.b and GEn.a,

T ¼ ∑M
i¼1 ti;GEn�a∼GEn�b

�
�

�
� ð17Þ

Again, the expected t, when there is no difference
betweenGEn.a andGEn.b, is specified in Eq. (13), which
allows us to carry out a significance test of whether the
drug has statistically significant transcriptomic toxicity.

E and T values should mainly be used to facilitate
comparisons. If we have a new drug with an E value
much greater than that for the old one, but a T value that
is similar to, or smaller than, that for the old one, thenwe
would be inclined to choose the new one over the old
one. Similarly, if a heavier dose of prexasertib leads to
much higher E but the same T, then the heavier dose is
preferred.

Fig. 2 Results of analyzing data in Table 4 by logistic regression
and generalized linear model. (a) Parameter estimation for a model
of dose-dependent mortality (p) of cancer cells. (b) Visualization
of the fitted model. (c) Parameter estimation for a model fitting

cancer cell mortality on the expression of two genes (AG1 and
AG2), with AG1 and the AG1:AG2 interaction being not signifi-
cant. (d, e) The best model with p plotted over gene expression of
AG2
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The transcriptomic toxicity defined in Eq. (17) is
limited for two reasons. First, GEn.a typically cannot
be measured because anti-cancer drugs almost invari-
ably have strong side effect so it is consequently uneth-
ical to recruit heathy human subjects to take the drugs
for measuring GEna. Prednisone (a glucocorticosteroid)
used in some anti-cancer chemotherapies was the only
one tested with healthy volunteers, but with only a
single dose, causing a 72% decrease of the total lym-
phocyte number and a 97% decrease in total eosinophil
count (Schuyler et al. 1984). Such a study would not be
possible today. Second, when anti-cancer drugs are
infused intravenously, numerous numbers of tissues
and cell lineages are affected. A reasonable assessment
of toxicity would need GEnb and GEna from all of these
affected tissues. One alternative is to use animal models
of human diseases such as mouse models of human
cancer (Borowsky 2011; Cheon and Orsulic 2011;
Rudin et al. 2019; Swiatnicki and Andrechek 2019),
especially when oncogenes and tumor-suppressor genes
can be conditionally turned on or off. These animal
models allow us to measure GEnb and GEna as well as
GEmb and GEma for a variety of tissues. Another alter-
native is to use cell lines.

However, in spite of these two available alternatives
(animal models and cell lines), transcriptomic cancer
studies tend to measure only GEmb and GEma, but
almost never GEnb and GEna. It is too wasteful to collect
transcriptomic data that cannot be used to quantify
toxicity without which one cannot say whether one drug
is more preferable than another. This general negligence
to collect relevant data to estimate transcriptomic toxic-
ity hinders cancer research and informed decision-
making in drug administration. I hope that the defini-
tions and illustrations I used in this paper will encourage
researchers to collect more complete and informative
data in the future and to formulate better indices of
efficacy and toxicity.

Conclusion

Drug toxicity prediction is a difficult subject, mademore
so by a lack of definitions. I have proposed informative
definitions for transcriptomic efficacy and toxicity that
are easy to use in real research settings with
transcriptomic data. The conceptual framework associ-
ated with the definitions also highlights the general
negligence of researchers in collecting data relevant to

measure drug toxicity. I expect these definitions will
result in significant improvement of accuracy and pre-
cision in drug development.
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