
Prediction of LiverWeight Recovery by
an Integrated Metabolomics and
Machine Learning Approach After 2/3
Partial Hepatectomy
Runbin Sun1,2†, Haokai Zhao1†, Shuzhen Huang1, Ran Zhang1, Zhenyao Lu1, Sijia Li 1,
Guangji Wang1*, Jiye Aa1* and Yuan Xie1*

1Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing, China, 2Phase I Clinical Trials Unit, Nanjing University Medical School Affiliated Drum Tower
Hospital, Nanjing, China

Liver has an ability to regenerate itself in mammals, whereas the mechanism has not been
fully explained. Here we used a GC/MS-based metabolomic method to profile the dynamic
endogenous metabolic change in the serum of C57BL/6J mice at different times after 2/3
partial hepatectomy (PHx), and nine machine learning methods including Least Absolute
Shrinkage and Selection Operator Regression (LASSO), Partial Least Squares Regression
(PLS), Principal Components Regression (PCR), k-Nearest Neighbors (KNN), Support
Vector Machines (SVM), Random Forest (RF), eXtreme Gradient Boosting (xgbDART),
Neural Network (NNET) and Bayesian Regularized Neural Network (BRNN) were used for
regression between the liver index and metabolomic data at different stages of liver
regeneration. We found a tree-based random forest method that had the minimum
average Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and the
maximum R square (R2) and is time-saving. Furthermore, variable of importance in the
project (VIP) analysis of RF method was performed andmetabolites with VIP ranked top 20
were selected as the most critical metabolites contributing to the model. Ornithine,
phenylalanine, 2-hydroxybutyric acid, lysine, etc. were chosen as the most important
metabolites which had strong correlations with the liver index. Further pathway analysis
found Arginine biosynthesis, Pantothenate and CoA biosynthesis, Galactose metabolism,
Valine, leucine and isoleucine degradation were the most influenced pathways. In
summary, several amino acid metabolic pathways and glucose metabolism pathway
were dynamically changed during liver regeneration. The RF method showed advantages
for predicting the liver index after PHx over other machine learning methods used and a
metabolic clock containing four metabolites is established to predict the liver index during
liver regeneration.
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INTRODUCTION

The liver is the largest internal solid organ (by mass) and has
various essential functions for body homeostasis, including
digestion, balancing glucose and storing glycogen, regulating
blood amino acids, carrying away wastes, detoxifying
chemicals, and metabolizing drugs. The liver has a mysterious
ability to regenerate. It is the only organ that can regenerate itself
to 100% of original weight in mammals (Miyaoka and Miyajima,
2013; Michalopoulos and Bhushan, 2020). It is known that the
liver can restore to its original weight from as little as 25% of the
original liver mass to guarantee the stability of liver weight about
body weight. Based on this feature of the liver, partial
hepatectomy (PHx) is widely used in the clinic for liver
trauma, intrahepatic gallstones, hepatic cyst, hepatic neoplasms
(both benign and malignant), and liver transplantation (Orcutt
and Anaya, 2018; O’Grady, 2000; Xia et al., 2014; Nuzzo et al.,
2008). Liver regeneration is a highly complex process. Different
types of cells and many signaling pathways are involved,
including hepatocyte proliferation, reprogramming of
extracellular matrix, inflammation, immune and metabolic
regulation, etc. (Preziosi and Monga, 2017; Michalopoulos and
Bhushan, 2020).

It is important to obtain accurate liver weight for major
hepatic resection and living donor liver transplantation.
Simply, the total liver volume can be predicted based on body
surface area and body weight (Vauthey et al., 2002). However, this
method cannot be used to measure liver volume after liver
resection. Imaging-based liver volumetric methods include
anatomical structure imaging method and functional imaging
method. Anatomical structure imaging includes computed
tomography (CT) (Ogasawara et al., 1995; Alonso-Torres
et al., 2005; Lim et al., 2014; Kim et al., 2019), magnetic
resonance imaging (MRI) (Hockings et al., 2002; Sahin et al.,
2003; Inderbitzin et al., 2004), ultrasonography (Kitajima et al.,
2008; Kasuya et al., 2011), and functional imaging including
single-photon emission computed tomography (SPECT) (De
Graaf et al., 2008; Stinauer et al., 2012; Yoshida et al., 2014).
These methods have shown reliable liver volume measurements
and have been widely utilized to evaluate postoperative liver
regeneration and assess liver function recovery (Bassignani et al.,
2001; Zamboni et al., 2008; de Graaf et al., 2010; Spira et al., 2012).
These image-based evaluation methods can achieve the liver
weight and the shape of the liver, and functional-based image
methods can further evaluate the liver function. However, these
methods have a certain degree of error and overestimate the
actual liver volume (D’Onofrio et al., 2014). There still remains an
urgent need to develop a new method to evaluate liver
regeneration and liver function after PHx.

Several non-image methods for liver volumetry have been
developed. From a systemic biology view, the microarray data of
rat liver during regeneration and the adaptive logistic regression
identified M6PR→IGF2R and MCM5→STAT1 pathways as
biomarkers for liver regeneration (Chen et al., 2016).
Metabolomics is the profile of endogenous small molecules. It
is widely used in the early detection of hepatocellular carcinoma
(Zhang et al., 2013; Safaei et al., 2016), identification of subtypes

and different stages of non-alcoholic steatohepatitis (Alonso et al.,
2017; Dong et al., 2017), investigation of hepatitis virus infection
(Du Preez and Sithebe, 2013; Huang et al., 2016; Naggie et al.,
2020), prediction of and identification of drug-induced liver
injury (Xie et al., 2019), and reveal the mode of action of
natural products in the treatment of liver disease (Beyoğlu and
Idle, 2020). The metabolomics technique is used for liver
transplantation to discover biomarkers associated with donor-
recipient matching and early allograft dysfunction (Cortes et al.,
2014; Faitot et al., 2018). Specifically, bile salt and triglyceride
levels are proposed to be early predictors of liver volume and
functional increase after liver resection (Hoekstra et al., 2012a;
Hoekstra et al., 2012b). The hepatic ratio of phosphatidylcholine
to phosphatidylethanolamine is also a survival predictor
following partial hepatectomy (Ling et al., 2012). Hyaluronic
acid is metabolized by liver sinusoid endothelial cells. Its level
can be used to evaluate functional liver reserve after liver
resection and prediction of complications associated with liver
resection (Nanashima et al., 2001; Nanashima et al., 2004). The L-
[1–13C]Methionine breath test and the production of 13CO2 are
considered valuable indicators for evaluating liver regeneration
(Ishii et al., 2001). These biomarker-based methods can predict
the regeneration of the liver as well as liver function recovery.

Several models have been proposed to characterize the process
of liver regeneration. A liver growth model based on general
growth law has been introduced to accurately predict liver
transplants’ growth (Shestopaloff and Sbalzarini, 2014).
Furchtgott et al. developed a mathematical model of rat liver
regeneration based on the interplay of cytokines and growth
factors, and Periwal et al. further transferred this model to
humans (Furchtgott et al., 2009; Periwal et al., 2014). These
studies used a single approach and are usually limited by
moderate accuracy. Machine learning is a subset of artificial
intelligence used for clinical diagnostics, prognosis prediction,
precision treatments, health monitoring, and drug discovery and
development (Vamathevan et al., 2019; Goecks et al., 2020).
Machine learning approaches have large flexibility and are free
from prior assumptions, and they are particularly suitable for
datasets with few observations and many variables, especially for
omics data. Traditional statistical methods aim to infer
relationships between variables, while machine learning
algorithms focus on making predictions as accurate as possible
even though some of them are difficult to interpret. Machine
learning disentangles the complex relationships between
numerous variables of omics studies in determining their
effect on the main outcome (Rajula et al., 2020). However,
there is no study about predicting the liver index after PHx by
integrating metabolomics and machine learning algorithms in
our knowledge. Here we use nine machine learning methods
including Least Absolute Shrinkage and Selection Operator
Regression (LASSO), Partial Least Squares Regression (PLS),
Principal Components Regression (PCR), k-Nearest Neighbors
(KNN), Support Vector Machines (SVM), Random Forest (RF),
eXtreme Gradient Boosting (xgbDART), Neural Network
(NNET), and Bayesian Regularized Neural Networks (BRNN)
to select the best regression model between the liver index and
metabolomics data from serum, discover the main metabolic
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pathways during liver regeneration, and finally establish a
prediction model with a metabolite set to predict the liver
index during liver regeneration.

MATERIALS AND METHODS

Chemicals
Methanol (chromatography grade), n-Heptane (chromatography
grade), methoxyamine, pyridine, and N-methyl-N-trimethylsilyl-
trifluoroacetamide+1% trimethylchlorosilane (MSTFA+1%
TMCS) were purchased from Merck KGaA (Darmstadt,
Germany). Stable-isotope-labeled [13C2]-myristic acid was

purchased from Cambridge Isotope Laboratories (Andover,
MA, United States).

Animal Studies
Thirty male C57BL/6J mice (5 weeks old, purchased from
Changzhou Cavens Laboratory Animal Co., Changzhou,
China) were housed under a 12 h light/12 h dark condition
(lights on at 6:00 and lights off at 18:00). All animal care and
experimental procedures protocols were approved by the Animal
Ethics Committee of China Pharmaceutical University (2018-
DMPK-12-06). All mice were fed with a standard chow diet
(AIN-93M, Trophic Animal Feed High-Tech Co., Ltd, Nantong,
China) and tap water ad libitum for 1 week to acclimate the

FIGURE 1 | (A), Flowchart of the animal experiment. Liver weight (B), Body weight (C), and liver index (D) change at different stages after 2/3 PHx. Liver function
index, alanine aminotransferase (ALT) (E), aspartate aminotransferase (AST) (F), and alkaline phosphatase (AKP) (G) were measured for the Sham group and 6, 36, 72,
and 168 h after PHx, serum glucose (H), triglyceride (I), total cholesterol (J), and total bile acids (TBA) (K) were measured. (L), PCNA expression in the livers of mice
before and after PHx.
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environment. The mice were divided into five groups (n � 6),
Sham group (Sham), 6 h after PHx group (6 h), 36 h after PHx
group (36 h), 72 h after PHx group (72 h), and 168 h after PHx
group (168 h). The mice were anesthetized with isofluorane when
doing the PHx surgery. For the Sham group, the abdominal cavity
was opened without cutting the liver and then sewed; for PHx
groups, the left lateral and median liver lobes, including gall
bladder, were resected according to the procedure in literature.
The mice were sacrificed 0 h (Sham group), 6, 36, 72 and 168 h
after PHx. At the time of sacrifice, mice were weighed and
anesthetized by avertin; the whole blood was centrifuged at
8,000 rpm for 5 min to get the serum and was stored at −80°C
for further analysis. Livers were harvested and weighed, and the
liver index was calculated (liver weight/body weight). The
proliferative cell nuclear antigen (PCNA) expression was
measured, and images were collected using an inverted
microscope (Leica DMI 3000B, Germany). A flowchart of the
animal experiment is shown in Figure 1A.

Measurement of Serum Biochemical Index
Levels of serum glucose, triglyceride, cholesterol, total bile acids
(TBA), alanine aminotransferase (ALT), aspartate
aminotransferase (AST), and alkaline phosphatase (AKP) were
measured using kits purchased from Nanjing Jiancheng
Bioengineering Institute (Nanjing, China) according to the
manufacturer’s instructions.

Sample Preparation for GC/MS and
Compound Identification
The metabolites in serum were profiled by a GC/MS-based
metabolomics method as previously reported (A et al., 2005).
Briefly, 50 μL of serum was extracted with 200 μL of methanol
containing 5 μg/ml [13C2]-myristic acid; after oximation and
derivatization, 0.5 μL of the sample were injected into a
SHIMADZU QP2010Ultra/SE GC/MS system (Kyoto, Japan)
with an RTx-5MS fused silica capillary column (30 m ×
0.25 mm ID, J&W Scientific, United States). The raw data
acquired were processed by GCMSSolution (version 4.11). The
metabolites were identified using NIST 14 (National Institute of
Standards and Technology, Gaithersburg, MD, United States),
Wiley 9 (Wiley–VCH Verlag GmbH & Co KGaA, Weinheim,
Germany), and an in-house mass spectra library database (A
et al., 2005; Sun et al., 2019).

The Regression of Liver Index and
Metabolites by Nine Machine Learning
Methods
PCA was performed for dimension reduction using SIMCA-P
13.0 software (Umetrices, Umeå, Sweden). Nine machine
learning methods including LASSO, PLS, PCR, KNN, SVM,
RF, xgbDART, NNET, and BRNN were used for regression
between the liver index and metabolites. The code used was
shown in Supplementary Data Sheet S2. Models were evaluated
by the parameters, including the Mean Absolute Error (MAE),
the Root Mean Squared Error (RMSE), and R square (R2). All of

the machine learning methods were performed and tuned using
the “caret” package in the R project (version 3.6.3). Variable
importance in the projection (VIP) analysis was used to evaluate
metabolites’ contribution to the model.

Pathway Analysis
Metabolomics pathway analysis of the metabolites with VIP >1
was carried out using MetaboAnalyst (www.metaboanalyst.ca).
Hypergeometric test for over-representation analysis and
relative-betweenness centrality for pathway topology analysis
was selected, and Mus musculus (KEGG) library was chosen.

Selection of Metabolite Set for the
Prediction of the Liver Index
Correlation coefficients between liver index, ALT, and metabolites
at different time points were calculated. To further evaluate the RF
method’s ability to predict the liver index after 2/3 PHx, the dataset
was split into the training set and testing set (5:1). The metabolite
with themost significant VIP value, themetabolites ranked top 4, 8,
12, 20, 40, 59 and the whole dataset without one metabolite whose
VIP is 0 (Supplementary Data Sheet S1) was further used to train
the RFmodel and predict the liver index in the testing set, and their
performance was also compared. Models were evaluated by the
parameters including MAE, RMSE, and R2.

Statistical Analysis
For statistical analysis of MAE, RMSE, and R2 in each model,
Kruskal–Wallis Test followed by Wilcox test was used; for
statistical analysis of metabolites among groups, One-way ANOVA
followed by Fisher’s LSD multiple comparison test and corrected by
the Benjamini-Hochberg method to control the False Discovery Rate
(FDR) was conducted by R project (version 3.6.3). The correlation
coefficients were calculated by the “corrplot” package in the R project.
p < 0.05 was considered statistically different.

RESULTS

Regeneration of Liver After 2/3 Partial
Hepatectomy
To investigate liver regeneration progress and the associated
metabolic change after partial hepatectomy, 2/3 PHx in C57BL/
6J mice was performed and samples were collected at five time
points (Sham group, 6, 36, 72, and 168 h after PHx, the total sample
size is 30). The liver index was calculated using liver weight and
body weight. The remaining liver exhibited an elevated growth rate
in the first 3 days and returned to nearly 90% of the original weight
after 7 days (Figures 1B–D). During liver regeneration, ALT
(Figure 1E), AST (Figure 1F), and AKP (Figure 1G) all
showed a significant increase at the early stage and returned to
normal after 72 h. Serum glucose (Figure 1H) was reduced after
PHx. Serum triglyceride (Figure 1I) and total cholesterol
(Figure 1J) showed a slight decrease at 6 h after 2/3 PHx,
increased at 36 and 72 h after 2/3 PHx, and fell at the late
phase of liver regeneration. Total bile acids (TBA) (Figure 1K)
in the serum significantly increased after 2/3 PHx. PCNA staining
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on the livers of sham-operated mice and the livers of mice
following operation revealed apparent DNA replication, and
there were most positive cells at 36 h after 2/3 PHx (Figure 1L).

GC/MS Chromatograms and Overview of
the Metabolomics Data
Typical serum GC/MS chromatograms from each time point
after PHx are shown in Figure 2A. One hundred eighteen

compounds were identified, including organic acids, amino
acids, carbohydrates, purines and fatty acids, the
representative mass spectrum, and the comparison with
mass spectrum in the library were shown in Supplementary
Data Sheet S1. Unsupervised principal component analysis
(PCA) was applied to gain an overview of the metabolomics
data. From the scatter plot (Figure 2B), no outlier was found in
the PCA analysis. A clear separation between the 6 h group,
36 h group, and sham group was observed, whereas the 72 h

FIGURE 2 | (A) Typical GC/MS chromatograms of serum from Sham group and 6, 36, 72, and 168 h after PHx. (B) 3D scoress plot of principal components
analysis of mouse serum from Sham group, 6 h group, 36 h group, 72 h group, and 168 h group, respectively. Each point represents a metabolite profile of a biological
replicate.
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group and 168 h group were closer to the Sham group; this
suggested that PHx induced significant metabolic change at the
early stage and returned to normal during the liver
regeneration process.

Comparison of Machine Learning Methods
and Selection of Important Features
To select the most suitable machine learning model of the
regression between the liver index and metabolites, we
performed and compared nine machine learning methods:
LASSO, PLS, PCR, KNN, SVM, RF, xgbDART, NNET, and
BRNN. We performed 10-fold cross-validation 10 times on
the dataset, and MAE, RMSE, and R2 were calculated to
evaluate the model performance. As shown in Figures
3A–C, the tree-based methods RF method and xgbDART
method had the minimum average MAE, RMSE, and the
maximum average R2. xgbDART method is rather time-
consuming and showed no obvious superiority over the
RF method; thus, we selected the RF method for further
analysis. To choose the most important metabolites
contributing to the RF model, we performed VIP analysis
and the metabolites which ranked top 20 were selected.
Ornithine, phenylalanine, 2-aminobutanoic acid, 2-
hydroxybutyric acid, and lysine had the highest VIP
values (Figure 3D). The relative amounts of these
metabolites were shown in Figure 4A–L.

Pathway Analysis
To reveal the key pathways changed during liver regeneration, the
selected most important metabolites in serum were further
analyzed by the online tool MetaboAnalyst (http://www.
metaboanalyst.ca). The chosen metabolites were mapped to
KEGG metabolic pathways for over-representation and
pathway analyses. The pathway was considered to be
significantly related which had a p value of less than 0.05.
Arginine biosynthesis, Pantothenate and CoA biosynthesis,
Galactose metabolism, Valine, leucine and isoleucine
degradation, and beta-Alanine metabolism, etc. were the most
influenced pathways, Figure 5.

Random Forest Model With a Set of Four
Metabolites Were Selected for the
Prediction of the Liver Index After 2/3 PHx
To further validate the most important metabolites, correlation
analysis was performed and shown by heatmap in Figure 6.
Metabolites including ornithine (Figure 7A), phenylalanine
(Figure 7B), 2-aminobutanoic acid (Figure 7C), 2-
hydroxybutyric acid (Figure 7D), lysine (Figure 7E), glutamic
acid (Figure 7F), ethanolamine (Figure 7G), and threonine
(Figure 7H) all showed an apparent positive correlation with
the liver index. They showed obvious negative correlations with
ALT, Figures 7I–P. The metabolomics data were partitioned into
the training set and testing set, containing 25 samples and five

FIGURE 3 | AverageMAE (A), RMSE (B) and R2 (C) on 10 repeated 10-fold cross-validation of nine machine learning algorithms for prediction of the liver index from
metabolomics data. (D) Variable importance revealed by random forest (RF) method.
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samples, respectively. The comparison of RF methods using a
different number of metabolites showed a significant difference in
RAE, RMSE, and R2 among other models (Figures 8A–C). Then
the models were tested on the testing set, and the regression of
actual liver index and predicted liver index were performed. The
model RF05 containing metabolites ranked top 20 had the
minimum MAE and RMSE. Considering the accuracy of
prediction with as few metabolites as possible, we selected
model RF02 with a set of 4 metabolites including ornithine,
phenylalanine, lysine, and 2-hydroxybutyric acid as the final
prediction model, and the MAE, RMSE, and R2 of the testing
set were 0.002, 0.003, and 0.948, respectively (Figure 8D). The
metabolic map of these metabolites was shown in Supplementary
Figures S1–S4.

DISCUSSION

After 2/3 PHx, the remnant liver initiates the progress of
regeneration and the liver cells would undergo the resting
state of the cell cycle (G0) to G1 transition, then S phase, and

ultimately mitosis. The progress of liver regeneration includes
initiation, progression, and termination, and each of these phases
was tightly regulated by numerous signaling pathways (Caldez
et al., 2018). To explore the metabolic change and then establish a
regression method to predict the liver index at each phase by
metabolites in the serum during liver regeneration, we select four
time points after 2/3 PHx representing different stages. The liver
index at different time points showed a typical growth curve and
indicated that these time points could represent the growth of the
remaining liver. The serum biochemical indexes representing the
liver function and staining results representing the growth of liver
cells also indicated the different phases during liver regeneration.

Machine learning has variable applications in healthcare. The
main functions of machine learning algorithms include
classification, regression, and dimensional reduction. Here we
aimed to establish a relationship between metabolites in the
serum and liver index at a different time of liver regeneration
by regression and select the potential biomarkers of liver
regeneration. We compared nine machine learning algorithms
for regression, LASSO, PLS, PCR, KNN, SVM, RF, xgbDART,
NNET, and BRNN. LASSO is a regression model originally

FIGURE 4 | The relative abundance of metabolites with the highest VIP values in the serum of mice from the Sham group and 6, 36, 72, and 168 h after PHx. The
box plot shows the relative abundance of metabolites, including ornithine (A), phenylalanine (B), 2-aminobutanoic acid (C), 2-hydroxybutyric acid (D), lysine (E), glutamic
acid (F), ethanolamine (G), threonine (H), phosphoric acid (I), glucitol (J), myo-inositol (K) and alpha-hydroxyisobutyric acid (L). Data were represented as mean ± S.D.
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formulated from the linear regression model and performed both
for variable selection and regression. PLS and PCR are methods
where multivariate data is projected into a smaller coordinate
space (dimensional reduction) before regression. SVM method
constructs hyperplanes that can be used for classification and
regression. RF and xgbDART are both tree-based models which
construct a multitude of decision trees. NNET and BRNN are
considered deep learning methods and they simulate biological

neural networks that constitute animal brains. These methods are
more complex non-linear machine learning methods applicable
for analyzing high-dimensional metabolomics data. The
comparison of MAE, RMSE, and R2 of the methods used
showed RF and xgbDART are the most accurate methods.
xgbDART is much more time-consuming than RF, whereas it
offers no significant advantage. Thus we select RF as the method
used for further optimization and analysis. From the VIP analysis

FIGURE 5 |Metabolite pathway analysis based on metabolites displayed significant variation in the serum revealed that a. Arginine biosynthesis, b. Pantothenate
and CoA biosynthesis, c. Galactose metabolism, d. Valine, leucine and isoleucine degradation, e. beta-Alanine metabolism, f. Alanine, aspartate and glutamate
metabolism, g. Glutathione metabolism, h. Phenylalanine, tyrosine and tryptophan biosynthesis, i. Glyoxylate and dicarboxylate metabolism, j. Cysteine and methionine
metabolism, k. Glycine, serine and threonine metabolism, l. D-Glutamine and D-glutamate metabolism, m. Arginine and proline metabolism were the most affected
pathways after 2/3 PHx.
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of RF, we choose different amounts of metabolites to validate the
model performance further and evaluate its prediction ability. A
metabolite set containing ornithine, phenylalanine, lysine, and 2-
hydroxybutyric acid was selected as the potential metabolite set
for predicting the liver index after 2/3 PHx.

Networks, including cytokine, growth factor, and metabolic,
are the essential circuitry required for liver regeneration (Fausto
et al., 2006). Metabolic alteration is proposed to occur
immediately after PHx. The previous gene expression data
implied that metabolic genes are suppressed during liver
regeneration, which is considered paradoxical because it
maintains metabolic homeostasis and supports regeneration
(Fausto et al., 2006). Currently, there is more understanding of
metabolic changes during liver regeneration. Glucose
metabolism, lipid metabolism, bile acid metabolism, amino
acid metabolism, and one-carbon metabolism are essential for

liver regeneration (Huang and Rudnick, 2014; Preziosi and
Monga, 2017). We also observed a significant elevation of
triglycerides and bile acids and the reduction of glucose in the
serum during liver regeneration. It has been reported that glucose
supplementation impairs liver regeneration, and preventing the
accumulation of hepatic fat also suppresses liver regeneration
(Huang and Rudnick, 2014). Dietary caloric restriction
accelerates the initiation of regenerative hepatocellular
proliferation (Cuenca et al., 2001). These studies revealed the
importance of nutrient metabolism in liver regeneration. Bile
acids are important for liver regeneration following partial
hepatectomy, the extra bile acids cause activation of bile acid
receptors including TGR5 and FXR thus preventing
hepatotoxicity and providing signals to the regenerative
process (Fan et al., 2015; van de Laarschot et al., 2016; Kong
et al., 2018). Protein synthesis and amino acid metabolism are

FIGURE 6 | The heatmap shows the correlation coefficients between the liver index and individual metabolites. Each square represents the Pearson’s correlation
coefficient between the metabolite of the row and the column. Magenta color represents a positive correlation and blue color represents a negative correlation.
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essential functions of the liver, and altered amino acid
metabolism is observed during liver regeneration. Amino acids
are not only components of protein but also work as endogenous
signaling molecules. Ornithine is an amino acid that plays a vital
role in the urea cycle. A previous study found that urea cycle
enzymes were significantly perturbated during liver regeneration,
which enhanced urea cycle capacity and increased ammonia
elimination (Meier et al., 2019). 2-hydroxybutyric acid is an

organic acid derived from alpha-ketobutyrate, and alpha-
ketobutyrate is produced by threonine and methionine
catabolism and glutathione anabolism. 2-aminobutyric acid is
a byproduct of cysteine biosynthesis from cystathionine and it
can modulate glutathione homeostasis (Irino et al., 2016).
Glutathione is a critical intracellular antioxidant and
participates in many critical cellular functions including defense
against toxins and free radicals, modulation of cell cycle, and

FIGURE 7 | The correlation coefficients between the liver index and metabolites including ornithine (A), phenylalanine (B), 2-aminobutanoic acid (C), 2-
hydroxybutyric acid (D), lysine (E), glutamic acid (F), ethanolamine (G) and threonine (H), and the correlations between ALT and metabolites including ornithine (I),
phenylalanine (J), 2-aminobutanoic acid (K), 2-hydroxybutyric acid (L), lysine (M), glutamic acid (N), ethanolamine (O), and threonine (P).
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maintenance of immune system homeostasis. Previous literature
reported that glutathione, oxidized glutathione, and cysteine levels
were doubled after PHx (Huang et al., 1998). Further study
confirmed that glutathione plays a role in hepatic NF-κB
activation in vivo and is necessary for the accurate timing of liver
regeneration (Riehle et al., 2013). Urea cycle disorder was reported to
be associated with a reduced level of glutathione, increased
superoxide radical, and diminished activity of antioxidant
mechanisms that may lead to cell damage. We found
endogenous metabolites including ornithine, 2-hydroxybutyric
acid, and 2-aminobutyric acid, the metabolites involved in the
urea cycle and glutathione metabolism, all showed significant
change during liver regeneration, and this may be associated with
the down-regulated expression of glutamine synthase enzyme and
specific activities of urea cycle metabolic pathways (Huang and
Rudnick, 2014), and the cytochrome P450 system was down-
regulated (Solangi et al., 1988). However, the precise mechanisms
behind remain to be verified by further research.

There remain some shortages in this study. Firstly, four time
points were selected to represent the initiation, progression, and
termination phase of liver regeneration. More time points
constituting a complete curve should be evaluated to establish
the mathematical model and accurately predict liver weight.
Secondly, due to the limitation of GC/MS, many metabolites
had not been measured; further use of LC-QTOF/MS is essential

to cover more metabolites. Thirdly, a mechanism study to reveal
the change of metabolic pathways should be performed. Last but
not least, although our model showed good performance in mice,
there remains a gap between animals and humans; thus, the
transformation from mouse to human should be considered for
benefit in the clinic.

CONCLUSION

In conclusion, by using a high-throughput GC/MS-based
metabolomics technology and machine learning algorithms, we
establish mathematical models of liver index and metabolites to
predict liver regeneration after 2/3 PHx and compared their
performance. We finally choose a time-saving RF method and
a set of 4 metabolites containing ornithine, phenylalanine, lysine,
and 2-hydroxybutyric acid as a metabolic clock for the accurate
prediction of liver index during liver regeneration. Glucose
metabolism and amino acid metabolism pathways, including
Arginine biosynthesis, Pantothenate and CoA biosynthesis,
Galactose metabolism, Valine, leucine, and isoleucine
degradation and beta-Alanine metabolism were the most
influenced pathways. In the future, we are planning to utilize
LC-QTOF/MS based metabolomics to cover more metabolites,
and liver regeneration under different circumstances in animals

FIGURE 8 | Average MAE (A), RMSE (B), and R2 (C) on 10 repeated 10-fold cross-validation of random forest method with a different subset of the metabolomics
data for prediction of the liverindex from the train data set. (D), the linear regression between the original liver index with the predicted liver index by the RF method in the
testing data set.
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and humans will be performed to validate our model and
transform the model into clinic.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The animal study was reviewed and approved by Animal Ethics
Committee of China Pharmaceutical University.

AUTHOR CONTRIBUTIONS

YX, JA, and RS designed the study, RS, SH, RZ, ZL, and SL
performed the majority of the experiments, RS and HZ statistically
analyzed the data, YX and RS prepared the original draft, GW and
JA reviewed and edited the manuscript. All authors have read and
agreed to the published version of the manuscript.

FUNDING

This research was funded by the National Natural Science
Foundation of the People’s Republic of China (Grant numbers

81872932, 81703601, 81530098, 81421005), the Key Technology
Projects of China “Creation of New Drugs” (Grant number
2017ZX09301013), Leading technology foundation research
project of Jiangsu Province (BK20192005), Six Talent Peaks
Project in Jiangsu Province (SWYY-061), Sanming Project of
Medicine in Shenzhen (SZSM201801060).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphar.2021.760474/
full#supplementary-material

Supplementary Data Sheet S1 | The comparison of the representative mass
spectrum with mass spectrum in the library.

Supplementary Data Sheet S2 | Original data of metabolomics and VIPs in
each model.

Supplementary Figure S1 | The code of machine learning models.

Supplementary Figure S2 | The metabolic pathway of ornithine: arginine and
ornithine metabolism.

Supplementary Figure S3 | The metabolic pathway of ornithine: glutathione
metabolism.

Supplementary Figure S4 | The metabolic pathway of phenylalanine and lysine:
tropane, piperidine, and pyridine alkaloid biosynthesis.

Supplementary Figure S5 | The metabolic pathway of 2-hydroxybutyrate:
propanoate metabolism.

REFERENCES

A, J., Trygg, J., Gullberg, J., Johansson, A. I., Jonsson, P., Antti, H., et al. (2005).
Extraction and GC/MS Analysis of the Human Blood Plasma Metabolome.
Anal. Chem. 77 (24), 8086–8094. doi:10.1021/ac051211v

Alonso, C., Fernández-Ramos, D., Varela-Rey, M., Martínez-Arranz, I., Navasa, N.,
Van Liempd, S. M., et al. (2017). Metabolomic Identification of Subtypes of
Nonalcoholic Steatohepatitis. Gastroenterology 152 (6), 1449–e7. doi:10.1053/
j.gastro.2017.01.015

Alonso-Torres, A., Fernández-Cuadrado, J., Pinilla, I., Parrón, M., de Vicente, E.,
and López-Santamaría, M. (2005). Multidetector CT in the Evaluation of
Potential Living Donors for Liver Transplantation. Radiographics 25 (4),
1017–1030. doi:10.1148/rg.254045032

Bassignani, M. J., Fulcher, A. S., Szucs, R. A., Chong, W. K., Prasad, U. R., and
Marcos, A. (2001). Use of Imaging for Living Donor Liver Transplantation.
Radiographics 21 (1), 39–52. doi:10.1148/radiographics.21.1.g01ja0739

Beyoğlu, D., and Idle, J. R. (2020). Metabolomic Insights into theMode of Action of
Natural Products in the Treatment of Liver Disease. Biochem. Pharmacol. 180,
114171. doi:10.1016/j.bcp.2020.114171

Caldez, M. J., Van Hul, N., Koh, H. W. L., Teo, X. Q., Fan, J. J., Tan, P. Y., et al.
(2018). Metabolic Remodeling during Liver Regeneration. Dev. Cel 47 (4),
425–e5. doi:10.1016/j.devcel.2018.09.020

Chen, L.-Y., Yang, J., Xu, G.-G., Liu, Y.-Q., Li, J.-T., and Xu, C.-S. (2016).
Biomarker Identification of Rat Liver Regeneration via Adaptive Logistic
Regression. Int. J. Autom. Comput. 13 (2), 191–198. doi:10.1007/s11633-
015-0919-5

Cortes, M., Pareja, E., García-Cañaveras, J. C., Donato, M. T., Montero, S., Mir, J.,
et al. (2014). Metabolomics Discloses Donor Liver Biomarkers Associated with
Early Allograft Dysfunction. J. Hepatol. 61 (3), 564–574. doi:10.1016/
j.jhep.2014.04.023

Cuenca, A. G., Cress, W. D., Good, R. A., Marikar, Y., and Engelman, R. W. (2001).
Calorie Restriction Influences Cell Cycle Protein Expression and DNA

Synthesis during Liver Regeneration. Exp. Biol. Med. (Maywood) 226 (11),
1061–1067. doi:10.1177/153537020122601114

D’Onofrio, M., De Robertis, R., Demozzi, E., Crosara, S., Canestrini, S., and Pozzi
Mucelli, R. (2014). Liver Volumetry: Is Imaging Reliable? Personal Experience
and Review of the Literature. World J. Radiol. 6 (4), 62–71. doi:10.4329/
wjr.v6.i4.62

de Graaf, W., Bennink, R. J., Veteläinen, R., and van Gulik, T. M. (2010). Nuclear
Imaging Techniques for the Assessment of Hepatic Function in Liver Surgery
and Transplantation. J. Nucl. Med. 51 (5), 742–752. doi:10.2967/
jnumed.109.069435

De Graaf, W., Veteläinen, R. L., De Bruin, K., Van Vliet, A. K., Van Gulik, T. M.,
and Bennink, R. J. (2008). 99mTc-GSA Scintigraphy with SPECT for
Assessment of Hepatic Function and Functional Volume during Liver
Regeneration in a Rat Model of Partial Hepatectomy. J. Nucl. Med. 49 (1),
122–128. doi:10.2967/jnumed.107.044255

Dong, S., Zhan, Z. Y., Cao, H. Y., Wu, C., Bian, Y. Q., Li, J. Y., et al. (2017). Urinary
Metabolomics Analysis Identifies Key Biomarkers of Different Stages of
Nonalcoholic Fatty Liver Disease. World J. Gastroenterol. 23 (15),
2771–2784. doi:10.3748/wjg.v23.i15.2771

Du Preez, I., and Sithebe, N. P. (2013). The Use of Metabolomics as a Tool to
Investigate Hepatitis C.Metabolomics 9 (2), 497–505. doi:10.1007/s11306-012-
0467-8

Faitot, F., Besch, C., Battini, S., Ruhland, E., Onea, M., Addeo, P., et al. (2018).
Impact of Real-Time Metabolomics in Liver Transplantation: Graft Evaluation
and Donor-Recipient Matching. J. Hepatol. 68 (4), 699–706. doi:10.1016/
j.jhep.2017.11.022

Fan, M., Wang, X., Xu, G., Yan, Q., and Huang, W. (2015). Bile Acid Signaling and
Liver Regeneration. Biochim. Biophys. Acta 1849 (2), 196–200. doi:10.1016/
j.bbagrm.2014.05.021

Fausto, N., Campbell, J. S., and Riehle, K. J. (2006). Liver Regeneration. Hepatology
43 (S1), S45–S53. doi:10.1002/hep.20969

Furchtgott, L. A., Chow, C. C., and Periwal, V. (2009). A Model of Liver
Regeneration. Biophys. J. 96 (10), 3926–3935. doi:10.1016/j.bpj.2009.01.061

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 76047412

Sun et al. Liver Regeneration Prediction by Metabolomics

https://www.frontiersin.org/articles/10.3389/fphar.2021.760474/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2021.760474/full#supplementary-material
https://doi.org/10.1021/ac051211v
https://doi.org/10.1053/j.gastro.2017.01.015
https://doi.org/10.1053/j.gastro.2017.01.015
https://doi.org/10.1148/rg.254045032
https://doi.org/10.1148/radiographics.21.1.g01ja0739
https://doi.org/10.1016/j.bcp.2020.114171
https://doi.org/10.1016/j.devcel.2018.09.020
https://doi.org/10.1007/s11633-015-0919-5
https://doi.org/10.1007/s11633-015-0919-5
https://doi.org/10.1016/j.jhep.2014.04.023
https://doi.org/10.1016/j.jhep.2014.04.023
https://doi.org/10.1177/153537020122601114
https://doi.org/10.4329/wjr.v6.i4.62
https://doi.org/10.4329/wjr.v6.i4.62
https://doi.org/10.2967/jnumed.109.069435
https://doi.org/10.2967/jnumed.109.069435
https://doi.org/10.2967/jnumed.107.044255
https://doi.org/10.3748/wjg.v23.i15.2771
https://doi.org/10.1007/s11306-012-0467-8
https://doi.org/10.1007/s11306-012-0467-8
https://doi.org/10.1016/j.jhep.2017.11.022
https://doi.org/10.1016/j.jhep.2017.11.022
https://doi.org/10.1016/j.bbagrm.2014.05.021
https://doi.org/10.1016/j.bbagrm.2014.05.021
https://doi.org/10.1002/hep.20969
https://doi.org/10.1016/j.bpj.2009.01.061
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Goecks, J., Jalili, V., Heiser, L. M., and Gray, J. W. (2020). How Machine Learning
Will Transform Biomedicine. Cell 181 (1), 92–101. doi:10.1016/
j.cell.2020.03.022

Hockings, P. D., Roberts, T., Campbell, S. P., Reid, D. G., Greenhill, R. W., Polley, S.
R., et al. (2002). Longitudinal Magnetic Resonance Imaging Quantitation of Rat
Liver Regeneration after Partial Hepatectomy. Toxicol. Pathol. 30 (5), 606–610.
doi:10.1080/01926230290105811

Hoekstra, L. T., Rietkerk, M., van Lienden, K. P., van den Esschert, J. W., Schaap, F.
G., and van Gulik, T. M. (2012). Bile Salts Predict Liver Regeneration in Rabbit
Model of portal Vein Embolization. J. Surg. Res. 178 (2), 773–778. doi:10.1016/
j.jss.2012.06.038

Hoekstra, L. T., van Lienden, K. P., Schaap, F. G., Chamuleau, R. A., Bennink, R. J.,
and van Gulik, T. M. (2012). Can Plasma Bile Salt, Triglycerides, and apoA-V
Levels Predict Liver Regeneration? World J. Surg. 36 (12), 2901–2908.
doi:10.1007/s00268-012-1770-2

Huang, H., Sun, Z., Pan, H., Chen, M., Tong, Y., Zhang, J., et al. (2016). Serum
Metabolomic Signatures Discriminate Early Liver Inflammation and Fibrosis
Stages in Patients with Chronic Hepatitis B. Sci. Rep. 6, 30853. doi:10.1038/
srep30853

Huang, J., and Rudnick, D. A. (2014). Elucidating theMetabolic Regulation of Liver
Regeneration. Am. J. Pathol. 184 (2), 309–321. doi:10.1016/j.ajpath.2013.04.034

Huang, Z. Z., Li, H., Cai, J., Kuhlenkamp, J., Kaplowitz, N., and Lu, S. C. (1998).
Changes in Glutathione Homeostasis during Liver Regeneration in the Rat.
Hepatology 27 (1), 147–153. doi:10.1002/hep.510270123

Inderbitzin, D., Gass, M., Beldi, G., Ayouni, E., Nordin, A., Sidler, D., et al. (2004).
Magnetic Resonance Imaging Provides Accurate and Precise Volume
Determination of the Regenerating Mouse Liver. J. Gastrointest. Surg. 8 (7),
806–811. doi:10.1016/j.gassur.2004.07.013

Irino, Y., Toh, R., Nagao, M., Mori, T., Honjo, T., Shinohara, M., et al. (2016). 2-
Aminobutyric Acid Modulates Glutathione Homeostasis in the Myocardium.
Sci. Rep. 6, 36749. doi:10.1038/srep36749

Ishii, Y., Asai, S., Kohno, T., Takahashi, Y., Nagata, T., Suzuki, S., et al. (2001).
Evaluation of Liver Regeneration Using the L-[1-13C]methionine Breath Test.
J. Surg. Res. 95 (2), 195–199. doi:10.1006/jsre.2000.6012

Kasuya, K., Sugimoto, K., Kyo, B., Nagakawa, Y., Ikeda, T., Mori, Y., et al. (2011).
Ultrasonography-guided Hepatic Tumor Resection Using a Real-Time Virtual
Sonography with Indocyanine green Navigation (With Videos).
J. Hepatobiliary Pancreat. Sci. 18 (3), 380–385. doi:10.1007/s00534-010-
0356-3

Kim, J. E., Kim, J. H., Park, S. J., Choi, S. Y., Yi, N. J., and Han, J. K. (2019).
Prediction of Liver Remnant Regeneration after Living Donor Liver
Transplantation Using Preoperative CT Texture Analysis. Abdom. Radiol.
(Ny) 44 (5), 1785–1794. doi:10.1007/s00261-018-01892-2

Kitajima, K., Taboury, J., Boleslawski, E., Savier, E., Vaillant, J. C., and Hannoun, L.
(2008). Sonographic Preoperative Assessment of Liver Volume before Major
Liver Resection. Gastroenterol. Clin. Biol. 32 (4), 382–389. doi:10.1016/
j.gcb.2008.02.007

Kong, B., Sun, R., Huang, M., Chow, M. D., Zhong, X. B., Xie, W., et al. (2018).
Fibroblast Growth Factor 15-Dependent and Bile Acid-independent Promotion
of Liver Regeneration in Mice. Hepatology 68 (5), 1961–1976. doi:10.1002/
hep.30041

Lim, M. C., Tan, C. H., Cai, J., Zheng, J., and Kow, A. W. (2014). CT Volumetry of
the Liver: where Does it Stand in Clinical Practice? Clin. Radiol. 69 (9), 887–895.
doi:10.1016/j.crad.2013.12.021

Ling, J., Chaba, T., Zhu, L. F., Jacobs, R. L., and Vance, D. E. (2012). Hepatic Ratio
of Phosphatidylcholine to Phosphatidylethanolamine Predicts Survival after
Partial Hepatectomy in Mice. Hepatology 55 (4), 1094–1102. doi:10.1002/
hep.24782

Meier, M., Knudsen, A. R., Andersen, K. J., Ludvigsen, M., Eriksen, P. L., Pedersen,
A. K. N., et al. (2019). Perturbations of Urea Cycle Enzymes during
Posthepatectomy Rat Liver Failure. Am. J. Physiol. Gastrointest. Liver
Physiol. 317 (4), G429–G440. doi:10.1152/ajpgi.00293.2018

Michalopoulos, G. K., and Bhushan, B. (2020). Liver Regeneration: Biological and
Pathological Mechanisms and Implications. Nat. Rev. Gastroenterol. Hepatol.
18, 1–16. doi:10.1038/s41575-020-0342-4

Miyaoka, Y., and Miyajima, A. (2013). To divide or Not to divide: Revisiting Liver
Regeneration. Cell Div 8 (1), 8–12. doi:10.1186/1747-1028-8-8

Naggie, S., Lusk, S., Thompson, J. W., Mock, M., Moylan, C., Lucas, J. E., et al.
(2020). Metabolomic Signature as a Predictor of Liver Disease Events in
Patients with HIV/HCV Co-infection. J. Infect. Dis. 222(12), 2012–2020.
doi:10.1093/infdis/jiaa316

Nanashima, A., Yamaguchi, H., Shibasaki, S., Sawai, T., Yamaguchi, E., Yasutake,
T., et al. (2001). Measurement of Serum Hyaluronic Acid Level during the
Perioperative Period of Liver Resection for Evaluation of Functional Liver
reserve. J. Gastroenterol. Hepatol. 16 (10), 1158–1163. doi:10.1046/j.1440-
1746.2001.02599.x

Nanashima, A., Yamaguchi, H., Tanaka, K., Shibasaki, S., Tsuji, T., Ide, N., et al.
(2004). Preoperative Serum Hyaluronic Acid Level as a Good Predictor of
Posthepatectomy Complications. Surg. Today 34 (11), 913–919. doi:10.1007/
s00595-004-2845-y

Nuzzo, G., Clemente, G., Giovannini, I., De Rose, A. M., Vellone, M., Sarno, G.,
et al. (2008). Liver Resection for Primary Intrahepatic Stones: a Single-center
Experience. Arch. Surg. 143 (6), 570–574. doi:10.1001/archsurg.143.6.570

O’Grady, J. G. (2000). Treatment Options for Other Hepatic Malignancies. Liver
Transpl. 6 (6B), s23–9. doi:10.1053/jlts.2000.18687

Ogasawara, K., Une, Y., Nakajima, Y., and Uchino, J. (1995). The Significance of
Measuring Liver Volume Using Computed Tomographic Images before and
after Hepatectomy. Surg. Today 25 (1), 43–48. doi:10.1007/BF00309384

Orcutt, S. T., and Anaya, D. A. (2018). Liver Resection and Surgical Strategies for
Management of Primary Liver Cancer. Cancer Control 25 (1),
1073274817744621. doi:10.1177/1073274817744621

Periwal, V., Gaillard, J. R., Needleman, L., and Doria, C. (2014). Mathematical
Model of Liver Regeneration in Human Live Donors. J. Cel Physiol 229 (5),
599–606. doi:10.1002/jcp.24482

Preziosi, M., and Monga, S. (2017). Update on the Mechanisms of Liver
Regeneration. Semin. Liver Dis. 37, 141–151. doi:10.1055/s-0037-1601351

Rajula, H. S. R., Verlato, G., Manchia, M., Antonucci, N., and Fanos, V. (2020).
Comparison of Conventional Statistical Methods with Machine Learning in
Medicine: Diagnosis, Drug Development, and Treatment. Medicina (Kaunas)
56 (9), 455. doi:10.3390/medicina56090455

Riehle, K. J., Haque, J., McMahan, R. S., Kavanagh, T. J., Fausto, N., and Campbell,
J. S. (2013). Sustained Glutathione Deficiency Interferes with the Liver
Response to TNF-α and Liver Regeneration after Partial Hepatectomy in
Mice. J. Liver Dis. Transpl. 1 (2).

Safaei, A., Arefi Oskouie, A., Mohebbi, S. R., Rezaei-Tavirani, M., Mahboubi, M.,
Peyvandi, M., et al. (2016). Metabolomic Analysis of Human Cirrhosis,
Hepatocellular Carcinoma, Non-alcoholic Fatty Liver Disease and Non-
alcoholic Steatohepatitis Diseases. Gastroenterol. Hepatol. Bed Bench 9 (3),
158–173.

Sahin, B., Emirzeoglu, M., Uzun, A., Incesu, L., Bek, Y., Bilgic, S., et al. (2003).
Unbiased Estimation of the Liver Volume by the Cavalieri Principle Using
Magnetic Resonance Images. Eur. J. Radiol. 47 (2), 164–170. doi:10.1016/s0720-
048x(02)00152-3

Shestopaloff, Y. K., and Sbalzarini, I. F. (2014). A Method for Modeling Growth of
Organs and Transplants Based on the General Growth Law: Application to the
Liver in Dogs and Humans. PLoS One 9 (6), e99275. doi:10.1371/
journal.pone.0099275

Solangi, K., Sacerdoti, D., Goodman, A. I., Schwartzman, M. L., Abraham, N. G.,
and Levere, R. D. (1988). Differential Effects of Partial Hepatectomy on Hepatic
and Renal Heme and Cytochrome P450 Metabolism. Am. J. Med. Sci. 296 (6),
387–391. doi:10.1097/00000441-198812000-00004

Spira, D., Schulze, M., Sauter, A., Brodoefel, H., Brechtel, K., Claussen, C., et al.
(2012). Volume Perfusion-CT of the Liver: Insights and Applications. Eur.
J. Radiol. 81 (7), 1471–1478. doi:10.1016/j.ejrad.2011.04.010

Stinauer, M. A., Diot, Q., Westerly, D. C., Schefter, T. E., and Kavanagh, B. D.
(2012). Fluorodeoxyglucose Positron Emission Tomography Response and
normal Tissue Regeneration after Stereotactic Body Radiotherapy to Liver
Metastases. Int. J. Radiat. Oncol. Biol. Phys. 83 (5), e613–8. doi:10.1016/
j.ijrobp.2012.02.008

Sun, R., Huang, J., Yang, N., He, J., Yu, X., Feng, S., et al. (2019). Purine Catabolism
Shows a Dampened Circadian Rhythmicity in a High-Fat Diet-Induced Mouse
Model of Obesity. Molecules 24 (24), 4524. doi:10.3390/molecules24244524

Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., et al.
(2019). Applications of Machine Learning in Drug Discovery and

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 76047413

Sun et al. Liver Regeneration Prediction by Metabolomics

https://doi.org/10.1016/j.cell.2020.03.022
https://doi.org/10.1016/j.cell.2020.03.022
https://doi.org/10.1080/01926230290105811
https://doi.org/10.1016/j.jss.2012.06.038
https://doi.org/10.1016/j.jss.2012.06.038
https://doi.org/10.1007/s00268-012-1770-2
https://doi.org/10.1038/srep30853
https://doi.org/10.1038/srep30853
https://doi.org/10.1016/j.ajpath.2013.04.034
https://doi.org/10.1002/hep.510270123
https://doi.org/10.1016/j.gassur.2004.07.013
https://doi.org/10.1038/srep36749
https://doi.org/10.1006/jsre.2000.6012
https://doi.org/10.1007/s00534-010-0356-3
https://doi.org/10.1007/s00534-010-0356-3
https://doi.org/10.1007/s00261-018-01892-2
https://doi.org/10.1016/j.gcb.2008.02.007
https://doi.org/10.1016/j.gcb.2008.02.007
https://doi.org/10.1002/hep.30041
https://doi.org/10.1002/hep.30041
https://doi.org/10.1016/j.crad.2013.12.021
https://doi.org/10.1002/hep.24782
https://doi.org/10.1002/hep.24782
https://doi.org/10.1152/ajpgi.00293.2018
https://doi.org/10.1038/s41575-020-0342-4
https://doi.org/10.1186/1747-1028-8-8
https://doi.org/10.1093/infdis/jiaa316
https://doi.org/10.1046/j.1440-1746.2001.02599.x
https://doi.org/10.1046/j.1440-1746.2001.02599.x
https://doi.org/10.1007/s00595-004-2845-y
https://doi.org/10.1007/s00595-004-2845-y
https://doi.org/10.1001/archsurg.143.6.570
https://doi.org/10.1053/jlts.2000.18687
https://doi.org/10.1007/BF00309384
https://doi.org/10.1177/1073274817744621
https://doi.org/10.1002/jcp.24482
https://doi.org/10.1055/s-0037-1601351
https://doi.org/10.3390/medicina56090455
https://doi.org/10.1016/s0720-048x(02)00152-3
https://doi.org/10.1016/s0720-048x(02)00152-3
https://doi.org/10.1371/journal.pone.0099275
https://doi.org/10.1371/journal.pone.0099275
https://doi.org/10.1097/00000441-198812000-00004
https://doi.org/10.1016/j.ejrad.2011.04.010
https://doi.org/10.1016/j.ijrobp.2012.02.008
https://doi.org/10.1016/j.ijrobp.2012.02.008
https://doi.org/10.3390/molecules24244524
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Development. Nat. Rev. Drug Discov. 18 (6), 463–477. doi:10.1038/s41573-019-
0024-5

van de Laarschot, L. F., Jansen, P. L., Schaap, F. G., and Olde Damink, S. W. (2016).
The Role of Bile Salts in Liver Regeneration. Hepatol. Int. 10 (5), 733–740.
doi:10.1007/s12072-016-9723-8

Vauthey, J. N., Abdalla, E. K., Doherty, D. A., Gertsch, P., Fenstermacher, M. J.,
Loyer, E. M., et al. (2002). Body Surface Area and Body Weight Predict Total
Liver Volume in Western Adults. Liver Transpl. 8 (3), 233–240. doi:10.1053/
jlts.2002.31654

Xia, H. T., Dong, J. H., Yang, T., Zeng, J. P., and Liang, B. (2014). Extrahepatic Cyst
Excision and Partial Hepatectomy for Todani Type IV-A Cysts. Dig. Liver Dis.
46 (11), 1025–1030. doi:10.1016/j.dld.2014.07.007

Xie, Z., Chen, E., Ouyang, X., Xu, X., Ma, S., Ji, F., et al. (2019). Metabolomics
and Cytokine Analysis for Identification of Severe Drug-Induced Liver
Injury. J. Proteome Res. 18 (6), 2514–2524. doi:10.1021/
acs.jproteome.9b00047

Yoshida, M., Shiraishi, S., Sakamoto, F., Beppu, T., Utsunomiya, D., Okabe, H.,
et al. (2014). Assessment of Hepatic Functional Regeneration after
Hepatectomy Using (99m)Tc-GSA SPECT/CT Fused Imaging. Ann. Nucl.
Med. 28 (8), 780–788. doi:10.1007/s12149-014-0872-3

Zamboni, G. A., Pedrosa, I., Kruskal, J. B., and Raptopoulos, V. (2008).
Multimodality Postoperative Imaging of Liver Transplantation. Eur. Radiol.
18 (5), 882–891. doi:10.1007/s00330-007-0840-6

Zhang, A., Sun, H., Yan, G., Han, Y., Ye, Y., and Wang, X. (2013). Urinary
Metabolic Profiling Identifies a Key Role for Glycocholic Acid in Human Liver
Cancer by Ultra-performance Liquid-Chromatography Coupled with High-
Definition Mass Spectrometry. Clin. Chim. Acta 418, 86–90. doi:10.1016/
j.cca.2012.12.024

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Sun, Zhao, Huang, Zhang, Lu, Li, Wang, Aa and Xie. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 76047414

Sun et al. Liver Regeneration Prediction by Metabolomics

https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1007/s12072-016-9723-8
https://doi.org/10.1053/jlts.2002.31654
https://doi.org/10.1053/jlts.2002.31654
https://doi.org/10.1016/j.dld.2014.07.007
https://doi.org/10.1021/acs.jproteome.9b00047
https://doi.org/10.1021/acs.jproteome.9b00047
https://doi.org/10.1007/s12149-014-0872-3
https://doi.org/10.1007/s00330-007-0840-6
https://doi.org/10.1016/j.cca.2012.12.024
https://doi.org/10.1016/j.cca.2012.12.024
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

	Prediction of Liver Weight Recovery by an Integrated Metabolomics and Machine Learning Approach After 2/3 Partial Hepatectomy
	Introduction
	Materials and Methods
	Chemicals
	Animal Studies
	Measurement of Serum Biochemical Index
	Sample Preparation for GC/MS and Compound Identification
	The Regression of Liver Index and Metabolites by Nine Machine Learning Methods
	Pathway Analysis
	Selection of Metabolite Set for the Prediction of the Liver Index
	Statistical Analysis

	Results
	Regeneration of Liver After 2/3 Partial Hepatectomy
	GC/MS Chromatograms and Overview of the Metabolomics Data
	Comparison of Machine Learning Methods and Selection of Important Features
	Pathway Analysis
	Random Forest Model With a Set of Four Metabolites Were Selected for the Prediction of the Liver Index After 2/3 PHx

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


