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ABSTRACT
We have completed a genome-wide linkage scan for healthy aging using data 

collected from a family study, followed by fine-mapping by association in a separate 
population, the first such attempt reported. The family cohort consisted of parents 
of age 90 or above and their children ranging in age from 50 to 80. As a quantitative 
measure of healthy aging, we used a frailty index, called FI34, based on 34 health 
and function variables. The linkage scan found a single significant linkage peak 
on chromosome 12. Using an independent cohort of unrelated nonagenarians, we 
carried out a fine-scale association mapping of the region suggestive of linkage and 
identified three sites associated with healthy aging. These healthy-aging sites (HASs) 
are located in intergenic regions at 12q13–14. HAS-1 has been previously associated 
with multiple diseases, and an enhancer was recently mapped and experimentally 
validated within the site. HAS-2 is a previously uncharacterized site possessing 
genomic features suggestive of enhancer activity. HAS-3 contains features associated 
with Polycomb repression. The HASs also contain variants associated with exceptional 
longevity, based on a separate analysis. Our results provide insight into functional 
genomic networks involving non-coding regulatory elements that are involved in 
healthy aging and longevity.

INTRODUCTION

Aging can be defined as the occurrence of changes 
over time that adversely affect the vitality and functions, 
increasing the mortality rate [1]. The onset of aging 
varies from individual to individual, and the aging-
related changes occur at different rates in different 
individuals at many levels of biological organization. This 
complex phenomenon has both genetic and non-genetic 
underpinnings [2, 3]. The finding that lifespans of various 
model organisms can be altered, sometimes dramatically, 
by single gene mutations suggests a role for genes in 
aging [3, 4]. On the other hand, near doubling of human 

life expectancy in developed countries during the past two 
centuries attests to the complexity of the etiology as well 
as the importance of environmental factors [5].

One quantitative indicator of the genetic basis of 
a complex trait is heritability, which is a measure of the 
extent of genetic control of the trait. The heritability of 
human longevity ranges from 0.15 to 0.35 [6, 7], which 
also implies that 65–85% of the trait can be controlled 
by non-genetic factors. However, studies indicate that 
survival to older ages is under stronger genetic influence. 
For example, siblings of centenarians are four times more 
likely to survive to their early nineties compared with 
siblings of 73-year olds, and siblings of centenarians are at 
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least 8 to17 times more likely to reach age 100 compared 
with their birth cohort controls [8, 9]. Healthy, long-lived 
people are likely to carry more beneficial genetic variants, 
fewer harmful variants or both.

Efforts to find such genetic elements have been 
made using genetic epidemiological methods [10]. A 
major hurdle in genome-wide studies of complex diseases 
is the lack of sufficient statistical power. The lack of power 
in complex trait studies comes from inadequate setting 
of a number of important statistical parameters, such as 
significance level, sample size, and effect size [11, 12]. 
One approach to alleviate the power demand is to base an 
experiment on the prior odds generated from the preceding 
study [11]. A paradigm of this approach is to carry out 
genome-wide linkage analysis and fine-scaled association 
mapping of linkage regions [13, 14]. Accordingly, we set 
up the Healthy Aging Family Study (HAFS) for linkage 
analysis [15]. Our plan was to dissect linkage-defined 
regions with association mapping, using our ongoing 
association studies [16].

For a quantitative measure of heathy aging, 
we developed the frailty index FI34, composed of 34 
common health and function variables [15]. FI34 increases 
exponentially with age, indicating declining health and 
function ability. The rates of increase differ significantly 
between offspring of long-lived parents (≥ 90 years old) 
and offspring of short-lived parents (< 76 years old at 
death), indicating that FI34 is associated with parental 
longevity. The genetic basis of FI34 is substantiated by 
a narrow-sense heritability estimate of 0.39. Using FI34, 
we found elevated levels of resting metabolic rate (RMR) 
linked to declining health in nonagenarians [17]. This 
result points to RMR as an important physiological marker 
of healthy aging among the oldest-old. It also illustrates 
the use of FI34 as a means of identifying additional 
physiological factors involved in healthy aging.

We have completed genome-wide linkage 
scanning followed by fine-scale association mapping 
and found three sites associated with healthy aging at 
12q13–14. These HASs are located in intergenic regions. 
Functional annotation of the HASs indicates that they 
possess genomic features indicative of enhancer or 
silencer activity. Our results indicate that healthy aging, 
and longevity as well, can be controlled by non-coding 
regulatory elements.

RESULTS

A single linkage peak for healthy aging at 
12q13–14

When the non-parametric linkage (npl) analysis in 
the MERLIN package was carried out on the data from 
the HAFS offspring only, the most significant linkage 
peak was found at 77cM (LOD = 2.3, P = 6.0 × 10-4) on 

chromosome 12 (Figure 1A). Because the healthy aging 
phenotype data were unavailable for HAFS parents, we 
inferred healthy aging status of each parent from the 
parent-offspring linear regression, where the slope of 
the regression line is mathematically equivalent to the 
narrow-sense heritability of FI34 (see METHODS). When 
the inferred parental data were incorporated in the npl 
analysis, the linkage peak on chromosome 12 became more 
significant with a higher LOD score (Figure 1B; LOD = 
3.0, P = 1.0 × 10−4). Dense SNP markers can result in 
inflation of linkage when significant linkage disequilibrium 
(LD) between adjacent markers exists (see METHODS). 
However, linkage analysis software assumes marker-
marker linkage equilibrium. Therefore, it is important to 
take into account potential marker-marker LD in linkage 
analysis. We obtained similar linkage results with different 
models of LD between SNP markers (Figure S1). Thus, 
the npl analysis delineated a region suggestive of linkage 
to healthy aging on chromosome 12. The SNPs showing 
LOD of 3.0 lie in a region of about 1 Mb in size.

Three healthy-aging associated sites (HAS)

For fine-scale mapping, we genotyped 175 LHAS 
nonagenarians for whom FI34 data were available, and 
applied linear regressions to genotypes of 330 SNPs that 
are located within the linkage peak (LOD > 2.7). The 
dependent variable was the FI34 score and the independent 
variable was the genotype of the SNP marker in the 
additive mode. Age and sex were included as covariates. 
This way, we tested whether the risk of healthy aging or 
unhealthy aging among the oldest-old increases additively 
as the number of copies of the minor allele increases, after 
adjustment for age and sex. Three groups of SNPs stood 
out in this analysis (Figure 2A): SNPs in HAS-1 (the 
lowest P = 3.5 × 10−3), SNPs in HAS-2 (the lowest P = 4.2 
× 10−3), and SNPs in HAS-3 (the lowest P = 1.3 × 10−2). 
Employing the very conservative Bonferroni correction 
for multiple comparisons to maintain a family-wise error 
rate of 0.05, no SNP exceeded the adjusted significance 
level of 1.52 × 10−4 (Linear regression in Table 1).

Because the linkage outcome was based on the 
binary coding of FI34, we dichotomized FI34 as the binary 
status of healthy versus unhealthy aging (see METHODS) 
and applied logistic regression to the same SNPs with 
age and sex as covariates. This time, SNPs in HAS-2 and 
HAS-3 remained conspicuous, whereas HAS-1 became 
less prominent (Figure 2B). The top SNP in HAS-2  
(P = 2.0 × 10−4) was very close to the significance cutoff 
set by the Bonferroni adjustment (Logistic regression in 
Table 1). HAS-1, -2, and -3, delineated by the top four SNPs 
in each, are ~40 kb, ~340 kb, and ~250 kb long, respectively. 
SNPs in HAS-1 were previously associated with various 
diseases [18], whereas the SNPs in HAS-2 and HAS-3 have 
not been associated with any phenotypes before.
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We also examined association of the same set of 
SNPs with longevity. For this, we genotyped LHAS 
controls of ages from 39 to 59 and compared allele 
frequencies between these controls and the nonagenarian 
cases (Figure 2C). Compared with healthy-aging 
associated SNPs, more SNPs were associated with 
longevity from among the 330 chromosome 12q13–14 
SNPs genotyped, and many of these associations were 
highly significant. Also, the longevity-associated SNPs 
were not limited to the HASs.

Genomic features of HASs

We examined the genomic features of the healthy-
aging associated sites using computational annotation 
tools. As shown previously [18], a number of protein-
coding genes exist in HAS-1, and promoter regions are 
marked with higher levels of epigenetically modified 
histones and DNase I sensitive sites compared to 

non-promoter regions (Figure S2). In addition, the 
promoters contain transcription factor binding sites 
that are co-located with chromatin segments indicative 
of strong enhancer activity. Unlike HAS-1, HAS-2 is 
largely devoid of any protein-coding genes (Figure S3). 
However, it contains several features indicative of 
regulatory elements, such as clusters of H3K4Me1 
and H3K27Ac histone marks, DNase I sensitive sites, 
and transcription factor binding sites. The absence of 
elevated levels of H3K4Me3, which is usually found near 
promoters, is consistent with the absence of promoters 
in HAS-2. All these features coincide with the presence 
of several strong enhancers across multiple cell lines. In 
stark contrast with HAS-1 and HAS-2, HAS-3 lacks such 
active chromatin features (Figure S4). Instead, HAS-3 
has multiple Polycomb-repressed blocks in multiple 
cell lines and a locus encoding a long intergenic non-
coding RNA (lincRNA). The full length of this RNA is 
about 71 kb.

Figure 1: Graphical summary of MERLIN npl analysis on chromosome 12. (A) From offspring data only (LOD = 2.3,  
P = 6.0 × 10−4). (B) From offspring data combined with inferred parental phenotype data (LOD = 3.0, P = 1.0 × 10−4).
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Figure 2: Manhattan plots of association results. (A) –log10 P values from linear regressions of FI34 scores on additive effects of 330 
SNPs, with sex and age differences adjusted, were plotted against SNP positions. Applying a Bonferroni adjustment, the cutoff significance 
P value is 1.52 × 10−4 and its –log10 counterpart is 3.8. (B) The same as in (A) but using logistic regressions of dichotomized FI34 values. (C) –log10 
P values from χ2 tests for differences in allele frequencies between oldest-old cases and young controls were plotted against SNP positions.

Table 1: SNPs associated with healthy aging at 12q13–14
Linear regression Logistic regression

HAS SNP Position† Coefficient P OR P

1

rs10877013‡ 58165085 −0.023 9.3 × 10−3 1.57 7.2 × 10−2

rs10877015 58167788 −0.024 6.6 × 10−3 1.59 6.2 × 10−2

rs923829 58174306 −0.026 3.5 × 10−3 1.60 5.9 × 10−2

rs6581155‡ 58178162 −0.024 6.6 × 10−3 1.58 7.2 × 10−2

2

rs3847663 60542054 0.019 4.2 × 10−2 0.36 4.8 × 10−4

rs10784033 60591563 −0.023 8.3 × 10−3 2.48 7.8 × 10−4

rs10877403 60605534 0.025 4.5 × 10−3 0.36 2.0 × 10−4

3

rs7301866 63833069 0.020 2.9 × 10−2 0.40 1.1 × 10−3

rs1733676 63873895 −0.012 2.2 × 10−1 2.17 5.2 × 10−3

rs7133474 63897318 −0.022 1.3 × 10−2 2.32 2.0 × 10−3

The Bonferroni-adjusted significance level is 1.52 × 10−4 (0.05/330)
†Based on GRCh37s/hg19 assembly
‡Regression outcomes based on imputed data using IMPUTE2 (v2.3.0)
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Functional annotation of SNPs in HASs

Given the non-coding regulatory nature associated 
with healthy aging, our main objective was to identify the 
regulatory elements and their target genes. To do so, we 
searched for functional SNPs that are responsible for the 
linkage and association outcomes. We used ChroMoS to 
obtain functional annotations of SNPs present in HASs. 
ChroMoS assigns putative functions of individual SNPs 
based on genetic and epigenetic data [19]. Of the SNPs 
examined for HAS-1, rs10877013 was assigned strong 
enhancer activity in multiple cell lines (Figure 3A and 
3D). Consistent with this annotation, the SNP falls within 
multiple transcription factor binding sites (Figure 4). For 
HAS-2, rs3847663 was predicted to overlap a strong 
enhancer element in various cell lines (Figure 3B and 
3D). It falls within stretches of histone marks indicative of 
active regulatory elements, a DNase I hypersensitive site, 

and multiple transcription factor binding sites (Figure 5). 
On the other hand, rs7301866 in HAS-3 was predicted to 
be in a Polycomb-repressed site in one cell line (Figure 
3C and 3D). It is located within a segment subject to 
Polycomb repression (Figure 6).

DISCUSSION

According to recent database statistics compiled 
by LongevityMap, of the total 755 loci studied for their 
associations with human aging and longevity, 257 were 
entered as significant [20]. However, most of these genes 
or variants remain to be validated; only a handful of them, 
such as APOE and FOXO3A, have been replicated in 
separate studies [21]. The number of human aging studies 
utilizing genetic linkage analysis is much more limited, 
and most of these linkage results haven’t been pursued 

Figure 3:  Summary of results of ChroMoS (Chromatin Modified SNPs) annotation for the SNPs in HAS-1. (A), HAS-
2 (B), and HAS-3 (C) SNPs known or suspected to be functional are enclosed in a dotted red rectangle. (D) The genome is 
functionally segmented into discrete chromatin states through multivariate hidden Markov modeling of ChIP-seq data from 
multiple cell lines [53]. According to the ‘learned’ chromatin segmentation, ChroMoS graphically assigns individual non-
coding SNPs to these chromatin states coded by different colors [19]. Cell lines are NHLF (normal human lung fibroblasts), 
NHEK (normal human epidermal keratinocytes), K562 (chronic myelogenous leukemia cells), HSMM (human skeletal 
muscle myoblast cells), HUVEC (human umbilical vein endothelial cells), HMEC (human mammary epithelial cells), HepG2 
(human liver carcinoma cells), H1-hESC (human embryonic stem cells), and GM12878 (lymphoblastoid cells).
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further. Currently, the only significant linkage peak 
identified in more than one study is located at 3p24–22 
(Table 2).

By employing linkage analysis followed by 
association mapping, we mapped genomic sites on 
chromosome 12 that are linked to healthy aging, which in 
consequence uncovered multiple, novel genetic markers 
of longevity. Our approach deserves several comments. 
The genome-wide linkage scan is unbiased in that it 
doesn’t need any prior knowledge. Secondly, having 
found a significant linkage, we were able to focus on the 
linkage region with a lowered power barrier. Thirdly, 
our phenotype (expressed as FI34) is well defined and 
characterized, with substantial familial clustering and 
heritability. Fourth, we leveraged the linkage analysis to 
establish association of gene variants with the phenotype 
in a separate cohort.

Typical linkage studies of human aging are carried 
out on the oldest-old with little consideration of the 
individual’s health and/or function ability (Table 2). 
Various health deficits begin to accumulate at age 60~70, 
and older people accumulate deficits at different rates 

[15, 22]. Thus, elderly individuals of the same age may 
differ in their healthy-aging status. Because healthy 
aging is a significant predictor of mortality, the actual life 
expectancy of these individuals may substantially differ 
depending on their healthy-aging status. Therefore, we 
considered it to be more informative and productive to 
incorporate a validated functional measure into a linkage 
analysis than to base the analysis solely on chronological 
age. The number of studies using such a measure of 
healthy aging is very limited. Reed et al. [23] defined 
the healthy phenotype in their study based on a small 
number of variables: reaching age of at least 70 and the 
absence of medical history of several major diseases. On 
the other hand, similar to our study, Edwards et al. [24] 
incorporated a relatively large number of health variables, 
including variables for physical and cognitive functioning, 
to their phenotype of successful aging. Although statistical 
and genetic properties of their phenotypic measure are not 
known, we assume that their measure is similar to our 
well characterized index of healthy aging. The reason 
underlying this assumption is that as long as the numbers 
of health variables are statistically sufficient, different 

Figure 4: A close-up view of HAS-1 including rs10877013 (red-dotted line) provided by the UCSC Genome Browser 
[54]. SNP IDs in black are in introns, green in coding (synonymous), red in coding (non-synonymous), and blue in untranslated regions. 
Loci in which variants have been associated with complex diseases or disorders are shown in red blocks. The UCSC Gene track is based on  
gene prediction data from sources indicated. Coding exons are represented by thick blocks, non-coding or untranslated regions by relatively 
thin blocks, and introns by thin lines. Gene names and blocks in black represent genes entered in the Protein Data Bank (PDB) and those in 
blue are transcripts reviewed or validated by either the RefSeq, SwissProt or consensus coding sequence (CCDS) project. Different colors 
in the histone modification tracks represent results from different cell lines, and peak levels show enrichment levels of the corresponding 
histone marks as determined by ChIP-seq assays. The numbers following ‘CpG’ represent CpG dinucleotide counts. The DNase Clusters 
track shows DNase hypersensitive sites with the darkness being proportional to the sensitivity. The ‘Txn Factor ChIP’ track shows 
transcription factor binding sites from ChIP-seq experiments carried out by the ENCODE project [55]. The DNA binding motifs are from 
the ENCODE Factorbook repository, which can be viewed as a matrix of all ENCODE transcription factor ChIP-seq datasets, arranged by 
cell lines [56]. The darkness is proportional to the signal strength, and the green highlights indicate the highest scoring-site motifs. The ‘Txn 
Fac ChIP V2’ track is similar to the other track, but it employs a different computation method. The ChromHMM tracks, like ChroMoS, 
show chromatin segments corresponding to different functional states as shown in Figure 3D, according to the computational integration of 
ChIP-seq data from multiple cell lines using a Hidden Markov Model [57].
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frailty indices show similar statistical properties, even if 
they are based on different types of health variables [25].

Few of the linkage studies have been replicated, 
which is common in other study designs, especially in 
population-based association studies [26, 27]. The linkage 
region at 4q25 was captured early on in two separate 

studies, but it failed to be corroborated later in another 
study [28]. Our study is similar to the study by Edwards 
et al. [24] in that both incorporated functional measures of 
aging. However, the linkage regions identified by the two 
studies differ. There could be a number of reasons for this, 
such as variation in study design or in genetic background. 

Figure 5: A close-up view of HAS-2 including rs3847663 (red-dotted line) provided by the UCSC Genome Browser. Track 
displays are as described in Figure 4. The names to the left of individual transcription factor binding sites are the HGNC gene names for 
corresponding transcription factors.

Figure 6: A close-up view of HAS-3 including rs7301866 (red-dotted line) provided by the UCSC Genome 
Browser. The gray-colored block in ChrommHMM tracks represents a Polycomb-repressed site. Other track displays are as  
described in Figure 4.
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One of the characteristics of complex traits is the presence 
of multiple layers of gene-gene and gene-environment 
interactions occurring in and between underlying genetic 
networks [16, 27, 29]. Frequencies of risk variants may 
vary across different populations, which may lead to 
variable gene-gene interactions [29]. Moreover, the 
effect of a gene can be allele- and sex-specific [30]. 
Consequently, it is not surprising to see different results 
from different studies involving different populations, 
where allele frequencies and environments likely differ.

In our study, we examined two separate (though 
related) phenotypes for the first time, healthy aging and 
longevity. Somewhat different outcomes were observed 
for association of SNPs depending on the phenotype. 
The allelic association tests of longevity involved both 
young controls and nonagenarian cases, whereas the 
regression tests of healthy aging involved the oldest-old 
cases only. Furthermore, the phenotype of healthy aging 
is not exactly the same as the phenotype of longevity. 
Although FI34 is correlated with mortality/survival, the two 
statistical association tests need not necessarily converge 
on the same SNPs. As shown earlier [15], FI34 predicts 
mortality better than does chronological age. Importantly, 

all the healthy-aging associated sites contained longevity-
associated SNPs, and these results were also confirmed by 
permutation testing with 10,000 replicates.

All the functionally annotated SNPs that we 
examined in the healthy-aging associated sites (HAS) 
are non-coding variants. In particular, HAS-2 and -3 
are located in intergenic regions barren of any known 
mRNA-encoding loci. Thus, our foremost task was to 
assign functionality to the SNPs that could be causative 
for the healthy-aging association. Many post genome-
wide association studies of human pathological traits 
have found non-coding variants capable of modulating 
gene expression by affecting transcriptional enhancer or 
silencer activity [31].

SNP rs10877013 in HAS-1, located within a 
putative binding site for the CCAAT/enhancer binding 
protein (C/EBP), affects enhancer activity of DNA 
fragments containing the SNP in an allele- and orientation-
dependent manner [18]. Data from long-range chromatin 
interaction assays indicate that the targets of this enhancer 
activity include a number of adjacent genes in HAS-1 
[32]. Regarding HAS-2, annotation data indicate that 
rs3847663 overlaps an enhancer element marked by 

Table 2: Summary of linkage studies on healthy aging and longevity
Phenotype Location LOD score (P-value) Reference

Longevity 4q25 3.65 (4.4 × 10−2)a [58]

Healthy aging 4q25 1.67 (3.0 × 10−3)b [23]

Longevity
3p24.2–22.3 4.02 (3.7 × 10−2)c

[5]
9q31.3–34.2 3.89 (5.4 × 10−2)c

Successful aging

Chromosome 6, 4.49d, †

[24]7 3.11e

14 4.17e

Successful aging

Chromosome 6, 3.24d, †

[59]

10, 4.2e

16 3.3d

17, 3.5e

20 3.3e

Longevity 3p24–22 4.19 (1.0 × 10−5)f [60]

Longevity

14q11.2 3.47g

[61]
17q12–22 2.95g

19p13.3–p13.11 3.76g

19q13.11–q13.32 3.57g

Healthy aging 12p13–14 3.0 (1.0 × 10−4)h This study

anon-parametric (empirical P value); b non-parametric (point-wise P value); c non-parametric, Kong & Cox LOD  
score – exponential model (empirical P value); d HLOD; e NPL statistic in MERLIN; f Z-score (point-wise P value); 
 g non-parametric; h non-parametric, Kong & Cox LOD score – linear model (point-wise P value): † Different regions
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multiple transcription factor binding sites in the middle 
of a “gene desert” (Figure 5). Transcriptional enhancers 
are typically located a few genes away from their target 
genes or even on different chromosomes. Enhancers may 
regulate transcription of target genes through long-range 
interactions, mediated by the formation of chromatin loops 
[33]. According to the transcriptome data obtained from 
monocytes [34], several SNPs in HAS-2 are associated 
with transcription of genes on different chromosomes, 
with P values ranging from 9.96 × 10−6 to 1.79 × 10−7. 
Although these eQTL associations are considered not 
significant in this particular cell type (the study-wise 
threshold of significance was set at P < 5.78 × 10−12), these 
findings suggest that these healthy-aging associated sites 
may physically interact with other genomic sites to exert 
their regulatory effects over the course of healthy aging.

HAS-3 is flanked by two genes, AVPR1A and 
DPY19L2, whose bivalent promoters are surrounded 
by Polycomb-group (PcG) protein-repressed sites 
(Figure  S4). It also contains a lincRNA-encoding locus. 
The human genome encodes more than 3,000 lincRNAs, 
and PcG complexes are often associated with lincRNAs 
[35]. At least some of the lincRNAs are known to mediate 
recruitment of the PcG complexes to target sites for 
transcriptional silencing [36]. Chromatin modification and 
compaction mediated by PcG complexes seem to spread 
in cis from the Polycomb binding sites, affecting nearby 
genes on the same chromosome [37]. Recently, Pemberton 
et al. [38] carried out RNA-seq and ChIP-seq on human 
fibroblasts and compiled a list of candidate target genes of 
Polycomb silencing. According to this data set combined 
with the ENCODE data, the best candidate genes subject to 
PcG silencing in HAS-2 are AVPR1A or DPY19L2 or both.

In sum, we have found a novel genomic region that 
is linked to healthy aging. We have taken this linkage 
analysis a step further, for the first time, by fine-mapping 
this genomic region, using a different population sample. 
Association mapping delineated three sites associated with 
healthy aging: HAS-1 and -2 seem to possess enhancer 
activity, whereas HAS-3 has silencer activity. HAS-1 
to 3 also contain variants associated with longevity. We 
envision a mechanism of healthy aging and longevity 
based on non-coding regulatory elements as upstream 
regulators of multiple genes. Unraveling this mechanism 
and identification of the downstream target genes will 
significantly further our understanding of the etiology of 
healthy aging and longevity.

METHODS

Study subjects

The Healthy Aging Family Study (HAFS) and 
demographic characteristics of its participants were 
described elsewhere [15]. The participants are Louisiana 
residents who were at least 90 years old and their offspring 

(N = 320), recruited in sibships. Ethnicity was self-
declared. The Louisiana Healthy Aging Study (LHAS) 
was also described elsewhere [16]. Its participants are 
unrelated individuals (N = 869), ranging in age from 20 
to over 100 years old. Ethnic affiliation was genetically-
inferred using Structure analysis (0.8 assignment 
probability) [16, 39]. Only European-origin participants 
were included in the analyses to avoid confounding by 
population admixture. Ages of participants were verified 
using both documentary evidence (birth certificates, 
passports, and driver’s licenses) and demographic 
questionnaires. All participants provided informed consent 
according to protocols approved by the Institutional 
Review Boards.

Genotyping

Following genomic DNA extraction and 
quantification, genotypes of 5,913 biallelic SNPs for 
324 subjects were generated, using the Illumina Infinium 
Linkage 24 set. Genotype data were imported into 
GenomeStudio Data Analysis Software and analyzed using 
the Genotyping Module. The starting dataset contained 
genotype data for 5, 913 SNPs from a total of 320 subjects. 
The project threshold (GenCall score cutoff) was set at the 
default value of 0.25, and genotypes of samples with call 
rates ≥ 0.9 were exported and further analyzed. SNPs not 
in Hardy-Weinberg proportions (P < 0.01 using unrelated 
subjects) and SNPs with minor allele frequencies below 
1% were eliminated using PLINK [40]. Genotyping errors 
were detected and removed by Mendelian error checking 
using PEDSTATS [41]. A genetic relationship matrix was 
constructed using GCTA [42]. Pedigree errors and cryptic 
relatedness between individuals were further investigated 
using PREST [43]. The likelihood for detection of 
pedigree errors increases with the number of genotyped 
markers, and the use of more than 5,000 genome-wide 
markers greatly facilitated unequivocal error detection. 
The PREST output in combination with the genetic 
relationship matrix and the participant enrollment table 
were used to correct pedigree errors. The detected errors 
include the presence of unrelated individuals in families, 
which is known to commonly occur by sample swabbing 
and mislabeling, misclassification of relationships within 
families (e.g., claimed full-sib instead of actual half-sib), 
and an incorrect report of ethnicity. Any genotype errors 
in the corrected pedigrees were removed by another 
application of PEDSTATS. The final dataset contains 5, 
533 SNPs for 392 subjects, including 98 dummy subjects 
created for missing parents (only one parent was available 
in most of the families).

For association mapping, the Illumina GoldenGate 
assay was performed according to the manufacturer’s 
instructions. SNPs were selected according to the Illumina 
Assay Design Tool. Following completion of the assay, 
all the SNPs and samples were analyzed using Illumina 
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GenomeStudio, and the following quality control measures 
were used: sample call rates ≥ 0.95, SNP call frequency 
≥ 0.95, 10% GenCall score = 0.3, Cluster Sep = 0.1 to 
exclude SNPs with overlapping genotype clusters, AB T 
mean = 0.2 – 0.8 to exclude SNPs where the heterozygote 
cluster has shifted toward the homozygotes, AB R mean  
> 0.8 to exclude SNPs with low intensity data.

FI34 as a quantitative measure of healthy aging

Construction of FI34 and its properties were 
described in detail [15]. The 34 health variables cover 
various diseases, symptoms, conditions, and functional 
abilities. They are adrenal disease, anemia, angina, 
asthma, bathing, body mass index, bronchitis, cataracts, 
chair stand, congestive heart failure, chronic obstructive 
pulmonary disease, diabetes, dressing, emphysema, 
feeding, family history of cancer, Geriatric Depression 
Scale, heart attack, high blood pressure (at the test), high 
cholesterol, history of high blood pressure, heart murmur, 
heart problem, kidney disease, liver disease, Mini-Mental 
State Exam, osteoporosis, seizure, self-rated health, semi-
tandem balance, stroke, thyroid disease, transient ischemic 
attack, and urinary infection.

Estimation of parental healthy aging status

We inferred healthy aging status of each parent from 
offspring data as follows. In selective breeding of animals 
or plants, response (R) is proportional to selection (S) with 
the constant of proportionality being the narrow-sense 
heritability (h2) [44, 45]:

R = h2 × S (1)

In other words, the average phenotypic value of 
offspring (Poff) is equal to h2 times the average phenotypic 
value of parents (Ppar):

Poff = h2 × Ppar (2)

Narrow-sense heritability is the proportion of 
phenotypic variance (V) accounted for by the additive 
genetic variance (Va):

h2 =  Va  ⁄ V (3)

With (3), equation (2) becomes

Poff =  [Va  ⁄ V] ×  Ppar (4)

Va is the covariance (Cov) between parents and 
offspring (slope between independent variable x and 
dependent variable y). Thus, equation (4) becomes

Poff =  3Cov ⁄ Vpar 4 × Ppar

1Vpar =  parental phenotypic variance 2  (5)

Cov/Vpar is the regression coefficient. Thus, equation 
(5) becomes

Poff =  coefficient ×  Ppar (6)

Thus, h2 is equal to regression coefficient (compare 
(2) and (6)). Rearranging (6) leads to

Ppar =  Poff  ⁄ coefficient (7)
Regression of offspring on only one parent 

underestimates narrow-sense heritability by about 50%. 
However, our estimate of h2 of FI34 is based on intraclass 
correlation involving full sib pairs only [15]. Accordingly, 
we were able to estimate phenotypic values of parents 
by dividing offspring phenotypic values by h2. For each 
family, we took the average of offspring FI34 scores as the 
offspring phenotypic value and h2 as 0.39, to infer parental 
FI34 at corresponding age. To use the inferred FI34 values in 
MERLIN analysis (see below), parents were divided into 
two age groups (90–94, 95–104) (Table S1), and parents in 
each age group were dichotomized using the lower limit of 
the 95% CI for the mean FI34 of each age group as a cutoff, 
as described below.

Linkage analysis

To carry out linkage analysis, we used the npl 
module of MERLIN-1.1.2 with –pairs –npl command line 
options [46]. The –pairs option yields the Whittemore and 
Halpern NPL pair statistic to test for allele sharing among 
pairs of affected individuals, whereas the –npl option 
gives the Whittemore and Halpern NPL all statistic to 
test for allele sharing among all affected individuals [46, 
47]. In general NPL all statistics were better than the pair 
statistics (i.e., higher LOD scores and lower P values), 
and the linkage statistics and plots presented in this paper 
are from the all statistics. The npl module of MERLIN 
requires binary traits. The HAFS subjects were divided 
into four age groups: three offspring age groups (60 to 64, 
65 to 69, and 70 to 74) and two parent age groups (90–94, 
95–104) (Table S1). The division into age groups accounts 
for the increase in FI34 with age, in the analyses. Offspring 
in each age group were dichotomized using the lower 
limit of the 95% CI for the mean FI34 of each age group 
as a cutoff. The reason for using the lower limit instead 
of the upper limit or the mean was to be more stringent in 
forming the ‘healthy’ aging group against the ‘unhealthy’ 
aging group. If an FI34 score is lower than the cutoff, the 
subject is coded ‘2’ (yes) for healthy aging; otherwise, the 
subject is coded ‘1’ (no). We obtained similar results from 
using the lower limit of the 90% CI (Figure S5A). With 
the mean FI34 value as the cutoff in each age group, we 
obtained the same linkage peak, but the LOD score was 
lower (Figure S5B). The linkage peak at 12q13–14 was 
not observed in all the npl runs when age group 0 (ages  
< 60) was included (Figure S5C-E).

Modeling marker-marker LD

The LD modeling in MERLIN is based on haplotype 
frequency estimation within clusters of markers [48, 49]. We 
used –rsq 0.16 (or 0.40) along with –grid 2 (or 5) options 
(Figure S1). The rsq option is to create clusters of adjacent 
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markers for which pairwise r2 exceeds 0.16 (or 0.4), and 
the grid option is to have MERLIN carry out analysis at a 
2-cM (or 5-cM) interval along the chromosome. Boyden and 
Kunkel [50] and Edwards et al. [24] used the r2 value of 0.16.

Association mapping and Manhattan plots

We conducted a case-control association analysis 
using the LHAS sample. Following quality control measures 
as described above, we obtained genotype data for 453 SNPs 
in 312 subjects (136 controls of age from 31 to 59 plus 176 
cases of age ≥ 90). The 176 cases were divided into two age 
groups (90 to 94 and 95 to 103), and the cutoff FI34 value 
for each age group was calculated in the same way as the 
cutoff values for the npl linkage analysis (Table S2). The 
same binary coding used in the linkage analysis was used: If 
a FI34 score was lower than the cutoff, the subject was coded 
‘2’ (yes) for healthy aging; otherwise, the subject was coded 
‘1’ (no). All statistical analyses to test SNP associations were 
performed in PLINK. The additive mode of inheritance for 
each SNP assumed an increasing effect of its genotype with 
the increasing dose of the minor allele. The linear regression 
of raw FI34 scores on additive effects of SNPs was performed 
by issuing –linear command line option along with –covar 
and –sex options, which were to adjust for age (in a separate 
covariate file) and sex. Similarly, the logistic regression of 
dichotomized FI34 on additive effects of SNPs was carried 
out by using –logistic. The association for longevity between 
cases and controls was carried out by using the standard 
–assoc option, which generated asymptotic P values based 
on 1-df χ2 statistics. We also performed Fisher’s Exact test 
using –fisher option and permutation by –perm option. The 
PLINK outputs were directly fed into Haploview (v4.2) [51] 
to construct Manhattan plots.

Genotype imputation

IMPUTE2 (v2.3.0) [52] was used to impute 
genotypes for SNPs that were not included in the 
genotyping assay. Before using IMPUTE2, PLINK input 
files were prepared for SNPs that were located adjacent to 
the un-typed SNPs whose genotypes were to be imputed. 
The PLINK files were converted to the IMPUTE2 file 
format using GTOOL (v0.7.5) (http://www.well.ox.ac.uk). 
Imputation was carried out as directed by the user guide, 
using reference files downloaded from https://mathgen.stats.
ox.ac.uk/impute/impute_v2.html#reference. The output files 
were converted to PLINK files for association tests.
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