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Abstract

The Red Blood Cell (RBC) is a metabolically-driven cell vital for processes such a gas trans-

port and homeostasis. RBC possesses at its surface exposing antigens proteins that are

critical in blood transfusion. Due to their importance, numerous studies address the cell

function as a whole but more and more details of RBC structure and protein content are now

studied using massive state-of-the art characterisation techniques. Yet, the resulting infor-

mation is frequently scattered in many scientific articles, in many databases and specialized

web servers. To provide a more compendious view of erythrocytes and of their protein con-

tent, we developed a dedicated database called RESPIRE that aims at gathering a compre-

hensive and coherent ensemble of information and data about proteins in RBC. This cell-

driven database lists proteins found in erythrocytes. For a given protein entry, initial data are

processed from external portals and enriched by using state-of-the-art bioinformatics meth-

ods. As structural information is extremely useful to understand protein function and predict

the impact of mutations, a strong effort has been put on the prediction of protein structures

with a special treatment for membrane proteins. Browsing the database is available through

text search for reference gene names or protein identifiers, through pre-defined queries or

via hyperlinks. The RESPIRE database provides valuable information and unique annota-

tions that should be useful to a wide audience of biologists, clinicians and structural

biologists.

Database URL: http://www.dsimb.inserm.fr/respire

Introduction

Blood is essential to life for (i) the transportation of oxygen and carbon dioxide alongside

metabolites, cells and nutrients, (ii) for homeostasis by participating in temperature regulation

and pH maintenance, and (iii) for blood vessel protection from injury via platelet aggregation.

In volume, blood is composed of about 55% plasma containing water, proteins, electrolytes,

glucose and amino acids and about 45% of red blood cells (RBCs), known as erythrocytes. The
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Etchebest C (2019) Repository of Enriched

Structures of Proteins Involved in the Red Blood

Cell Environment (RESPIRE). PLoS ONE 14(2):

e0211043. https://doi.org/10.1371/journal.

pone.0211043

Editor: Björn Wallner, Linköping University,
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red blood cells derive from hematopoietic stem cells that undergo several differentiation steps

[1,2] leading to cells void of organelles, of protein synthesis material and of nuclear DNA. The

main protein found in RBC is haemoglobin, involved in oxygen and carbon dioxide fixation

and transport. Beside this abundant protein with a vital functional role, strong efforts have

been accomplished to identify other RBC proteins alongside the erythropoiesis process [3–14].

Indeed, many other cellular processes also occur in the RBC including ion and metabolites

exchange with plasma, which is ensured by specialized membrane protein complexes. These

membrane complexes may also carry specific epitopes (characterizing the so-called “blood

groups”), which are vital for blood transfusion.

Many attempts have been made to assemble and organize the existing knowledge on genes

and proteins important in RBC in open/free dedicated databases (Table 1). In these databases,

gene or protein-driven, sometimes genetic, clinical or genomic information is provided. It is

however difficult to gather a cell-centric view of the RBC protein content in different condi-

tions, for instance how variants of a given protein will be linked to new RBC group antigens

definitions [15,16] or alternatively how mutations can be related to diseases from diverse ori-

gins [17]. Consequently, in order to obtain a more comprehensive view of the human RBC

content and its implications in physiological and pathological conditions [18,19], we have set

up a dedicated database that aims at gathering in a one-stop window crucial information

related to RBC. This database is called the Repository of enriched structures of proteins

involved in the red blood cell environment (RESPIRE).

The red blood cell protein content was extracted from review of the erythrocyte content

performed by Goodman and co-workers [24] and completed with very recent proteomics

analyses [25,26] when list of protein identifiers were available. We have also added and curated

this list with the proteins involved in regular red blood cell antigens definition. Proteins in

Goodman’s list that were not identified in subsequent studies were not included in the present

version, even though they were submitted to the whole treatment process. The corresponding

data are available upon request. Data from external databases were processed for direct display

in RESPIRE to limit the burden of gathering different information from various sources. More

importantly, besides collecting scattered data from diverse sources, the originality of RESPIRE

lies in the additional information it brings. This enrichment is obtained by applying cutting-

edge bioinformatics methods resulting in enriched sequence annotation but also original

structural data availability. At different steps, resulting data, e.g. multiple sequence align-

ments, can be downloaded for further processing and use. As it is now well admitted that 3D

structure is an unavoidable link between sequence and function [27], we chose to provide to

the user with as much structural information as possible using current data available or

through state-of-the-art structural bioinformatics prediction methods. Interestingly, since

Table 1. Databases providing access to red blood cells gene and protein expression.

Database name and URL Description Reference

BloodSpot, http://servers.binf.ku.

dk/bloodspot/

Gene expression in mice and human hematopoiesis in normal and pathological

conditions

[20]

Erythrogene, http://www.

erythrogene.com/

Genetic variation of the 36 blood group antigens extracted from the 1000 genomes

project

[21]

HbVar, http://globin.cse.psu.

edu/hbvar

Database linking haemoglobin genomic mutations with thalassemia and

hemoglobinopathies

[22]

Red Blood Cell Collection,

http://rbcc.hegelab.org/

Compendium of proteins detected in red blood cells for which their presence is

qualified by a confidence index

[5]

The Human RhesusBase, http://

rhesusbase.info/

This database integrates a very up-to-date knowledge on the rhesus locus and its

consequence to the RH antigen D expression and phenotype

[23] (Note that Respire Database is cited as

related resources in this database)

https://doi.org/10.1371/journal.pone.0211043.t001
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RBC membrane proteins play an important role in transfusion and in blood physiology, we

paid a specific attention to membrane proteins, particularly to their 3D modelling. In these

regards, a main difficulty arose from the distinction between “membrane-associated” protein

and fully embedded membrane proteins. The corresponding annotation was mainly retrieved

from uniprot or gene ontology databases. Tools to predict membrane protein topology were

also used [28]. Results can be provided upon request. These predictions were also useful to

build the 3D models. Each protein model can be manipulated and visualized in 3D within

RESPIRE without any expert knowledge.

Altogether, this makes RESPIRE a unique resource in RBC knowledge.

The database content is updated monthly, it is possible to follow only one protein entry by

subscribing to its RSS feed, otherwise a more general report is indicated in the database history

tab.

Material and methods

Data sources and preprocessing

Many RBC proteomics studies were performed to list the proteins available in the final stages

of the red blood cell differentiation [3,6–11]. These analyses were initially synthesized by

Goodman and co-workers in a comprehensive list of proteins published in 2013 [24]. From

the gene list presented in their work, a gene to protein mapping was performed using the ID

mapping tool available at UNIPROT [29]. This protein list was completed using the red blood

cell antigen system referenced in HGNC [30] and ISBT [31]. In addition, we considered a list

of proteins recently identified by mass spectrometry analyses [25,26]. However, up-to-date

proteomics analyses do not necessarily agree on RBC proteome content. For instance, the

number of entries given in [26] and [25] slightly differs (1942 and 1815 respectively), 83% pro-

teins being in common. The overlap with Goodman’s list is even smaller (~70%), which might

indicate dubious attribution, even though the compilation was carefully conducted by experts.

Thus, in order to be the most exhaustive as possible, we chose to join the three lists. For each

entry, we searched for additional works that sustain the attribution and used data provided by

7 publications [5,24–26,32–34]. We then proceeded to a careful curation that consisted in

eliminating from Goodman’s list proteins not available in reviewed uniprot entries indicated

in the two recent proteomic studies [25,26]. This procedure allowed us to avoid or at least to

limit the number of proteins with dubious RBC attribution that may originate from contami-

nants. For each entry, the “Evidence” tab recapitulates the publications that support their find-

ing. The definitive list in the database consists of 2475 unique proteins. Out of these proteins,

according to their UNIPROT annotation, 384 are membrane proteins with a single-pass or a

multiple-pass membrane domain (545 in GO annotation), 1190 are cytoplasmic proteins, and

647 proteins are found in the nucleus. Some proteins are found in multiple or smaller com-

partments, a more complex sub-cellular location decomposition from gene ontology annota-

tion is available on the statistics tab in RESPIRE. A representative indication of data

processing for a given protein entry is now described. The incorporation of a protein of inter-

est into the database was initially performed using its UNIPROT identifier from the curated

list of proteins. The UNIPROT [29] xml file was retrieved and then processed using biopython

[35] to extract reference data altogether with identifiers for NCBI’s Reference Sequence [36],

PFAM [37], and the Human Gene Nomenclature Committee [30] if they exist. Second, addi-

tional information is incorporated: (i) Gene Ontology records [38], (ii) mutations and links to

phenotypes when available, (iii) OMIM entries [Online Mendelian Inheritance in Man,

OMIM. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Balti-

more, MD), 2014. World Wide Web URL: http://omim.org/], (iv) experimentally determined
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three-dimensional structures, and (v) binding partners [39]. For membrane proteins, the

expert upstream UNIPROT annotations are transferred without modification for transmem-

brane segments. Data for protein content available along different stages of erythropoiesis

characterized using mass spectroscopy experiments were provided by our partner in the

GR-Ex consortium [12] (http://www.labex-grex.com)

Sequence conservation, coevolution and analysis

Besides the human sequence, which constitutes the main purpose of RESPIRE, we chose to

gain information about the protein family. For this purpose, (i) a BLAST [40] search was per-

formed to retrieve sequences homologous for each protein, (ii) a Multiple Sequence Alignment

(MSA) was obtained with Muscle [41] and (iii) a position conservation score was calculated

using internal programs counting the conservation of each amino acid for every sequence

position. This conservation index allows identifying positions that may play an important role

in function. A search for co-evolving residues was also performed using Freecontact [42] in

Evfold mode [43] since it combines a fast implementation of two existing methods and yields

amongst the best results for membrane proteins [43,44]. Default parameters were used for pro-

cessing this analysis that may bring helpful information to guide further experiments when no

experimental 3D structure is available [27].

Family annotations

The domain decomposition was computed using InterProScan [45]. The domains are dis-

played as an interactive Scalable Vector Graphics with a description or boundaries when the

user positions the cursor on a domain. The InterProScan output contains external hyperlinks

for domain definitions, as well as dedicated ontologies predictions. The SVG was processed to

trigger a query within the RESPIRE database when possible or to link to the upstream descrip-

tion otherwise.

Structural information, annotation and model prediction

Structural annotations for each protein entry (target) were initially extracted from UNIPROT.

Since PDB numbering can be different from the protein sequence in UNIPROT, each PDB is

split by chains and renumbered to UNIPROT numbering using ProDy [46] to ensure an

unambiguous mapping of UNIPROT features. When the 3D structure encompasses a large

part of the target sequence, i.e. a large structural coverage (see below), the secondary structure

assignment of the most representative structure is analysed with DSSP [47]. When the struc-

tural coverage is too low, the secondary structure prediction was done with PSIPRED [48].

In the absence of a 3D structure for the human form, the homology method was applied. It

assumes that similar sequences share a similar 3D fold even when proteins share a very low

sequence identity percentage. This property has led to identifying so-called protein superfami-

lies. Hence, we searched for homologous sequences having an atomic 3D structure available

(called “templates” in the following) in Protein Data Bank (PDB, [49]) using Blast software or

HHblits, a highly sensitive similarity search method based on hidden Markov models [50].

Default recommended parameters were used in both cases. Results of search were classified

into four categories that guided the choice of appropriate tools to establish 3D models.

The categories detailed in Table 2 are based on (i) the coverage on the target sequence (%

cov), which is defined as the percentage of amino acids aligned between the template and the

target sequences, (ii) the sequence identity (%id) between the target and the template sequence

once aligned and (iii) the number of experimental structures needed to obtain a complete

model.

A database of red blood cell proteins
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Thresholds were adapted to account for the differences in sequence characteristics between

soluble and membrane proteins due to the different environment in which they are embedded.

For comparative modelling [51], the thresholds were %id >35 and %cov >70 for soluble pro-

teins, while lower thresholds are applied, %id>25 and %cov>60 for membrane proteins [52].

When the structural coverage was lower, a threading approach (alternatively called fold recog-

nition) was considered to detect far putative homologous template. When no template could

be used to predict the protein structure (no structural coverage), ab initio fragment-based

assembly method was applied. For soluble proteins or single membrane-spanning proteins,

MODELLER software [53,54] was used for the comparative modelling category, while

MEDELLER was used for multiple membrane-spanning proteins [55]. For the threading cate-

gory, I-TASSER [56] was used without distinction between soluble and membrane proteins.

For ab initio category, Rosetta [57] and Rosetta membrane [58] were primarily used. For

model production, each method was executed with default options. The best model produced

was determined for every software by using its internal scoring function: objective function for

MODELLER, cscore for I-TASSER, lowest energy for ROSETTA. Only the best model from

each method according to their internal scoring function is displayed in RESPIRE. This model

evaluation shall be enriched with independent scoring functions [59]. Each model can be

downloaded for visualization in PyMol [60]. Depending on the protein modelling method, the

prediction can take up to one week to be performed.

Description, implementation and architecture of the RESPIRE database

The database is stored in MySQL version 5.5.32 and tables where created using the ORM

implementation as available in the DJANGO framework. Data analysis, parsing and import

were performed with in-house routines based on bioperl [61] or biopython [35]. The project

development was managed using the SCM git and REDMINE. The web server is powered by

DJANGO in WSGI mode under Apache 2.4 in Ubuntu 14.04 LTS, the responsive design is

obtained using Bootstrap (http://getbootstrap.com/), jQuery (http://jquery.com/) and BioJS

[62]. Interactive structure visualization is offered to the user using JSMol [63]. Interactive

sequence-to-structure mapping is performed using JSAV [64].

The database is architected around 10 main tables filled in into two steps (see above). Data

gathering is performed regularly from upstream sources according to their specific release

schedule and updated monthly in RESPIRE (Table 3). In addition to the upstream databases

stored locally, each protein contains on average 35MB of processed data and predictions, for a

total of 80GB. Altogether the computing time dedicated to add structural information and pre-

dictions on the database represents multiple months on a dedicated cluster of 200+ cores.

Results and discussion

The interest of our approach comes from the integration and automated mapping of protein

data related to RBC. The user can find in a single database the protein expression level for a

given cellular differentiation stage, proteins related to erythrocyte diseases and for each protein

Table 2. Category of 3D structural models and tools.

Coverage (% cov) Sequence identity (%id) Number of templates Tools Secondary Structure

Experimental > = 80% ~100% 1 Structure as is DSSP [47]

Comparative modelling 60%< %id < 80% 25% < %id < 100% � 1 Modeller/Medeller PSIPRED [48]

Fold recognition < 60% % id < 25% � 1 I-Tasser PSIPRED

ab initio 0 0 0 Rosetta PSIPRED

https://doi.org/10.1371/journal.pone.0211043.t002
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a structural status deduced from crystallography or NMR experiments. A strong effort was put

to produce three-dimensional models using state-of-the-art methods, whose reliability

depends on the structural content available.

Protein content and selection

The red blood cell needs many differentiation steps to reach the mature, concave-like, nucleus

void, cell also called normocyte or erythrocyte [1,2]. In blood, alongside erythrocytes, there are

also pre-matured erythrocytes, the reticulocytes, both present as circulating cells. These two

RBC are difficult to isolate one from the other [3]. Furthermore, even after careful examina-

tion, mass spectroscopy methods may over detect some proteins within the cells because trace

of peptides can be present in reticulocytes without being present as a whole and functional

protein [3]. One example is the presence of nuclear proteins for normocytes and reticulocytes

where they should be no more detectable [3]. Due to these limitations, we chose to use the pro-

tein content reviews from the literature as the reference of existing knowledge and we will

refine the protein content for every differentiation stage, as new data will permit.

Database statistics

The database contains 2475 proteins for an average sequence length of 380 amino acids. On

average, each protein has 4 sequence variants, and binds to more than 30 other proteins (not

all incorporated in RESPIRE). Half of proteins have (partial) experimental structural data and

more than a quarter of proteins have a model produced exclusively for RESPIRE. More than

1800 diseases are linked to RBC proteins from 3100 OMIM entries. Nearly 8500 gene ontology

functions divided in three classes allow to regroup proteins (biological process, in a cellular

component or possessing a particular molecular function). More than 380 proteins are anno-

tated as integral or single-pass transmembrane proteins. These statistics are regularly updated

Table 3. Schedules for data queries from reference databases, data processing and structural model prediction.

Source and URL Information Upstream

schedule

RESPIRE query Method RESPIRE

update

UNIPROT, https://www.

uniprot.org/

Identifier, protein name, protein description,

sequence, molecular weight, refseq and pdb

identifiers

Monthly� One week following

uniprot update

Automatic with

manual validation

monthly

PDB, https://www.wwpdb.

org/

pdb files (cif, fasta and pdb format) Daily Synchronised with

UNIPROT update

Automatic Monthly ��

OMIM, https://www.omim.

org/

Description entries Daily Synchronised with

UNIPROT update

Automatic Monthly ��

Biogrid, https://thebiogrid.

org/

Interactions Daily Synchronised with

UNIPROT update

Automatic Monthly ��

Gene Ontology, http://www.

geneontology.org/

Annotations Daily Synchronised with

UNIPROT update

Automatic Monthly ��

Interpro, https://www.ebi.ac.

uk/interpro/

Domains Every two

month���
Semestrial Manual On-demand

ISBT, http://www.isbtweb.

org/

Reference antigen definition ISBT

consortium

As required Manual

Models N/A N/A Year Automatic with

manual validation

On-demand

� there is not update on uniprot entries in July.

�� the update is processed after the initial UNIPROT update

��� Estimated from existing InterPro releases

https://doi.org/10.1371/journal.pone.0211043.t003
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and presented in detail on the “Statistics” tab in RESPIRE, with dedicated links to each cate-

gory to restrict the protein search. According to the structural content available for each pro-

tein, 376 proteins were classified in the experimental category (no prediction is needed since

there is sufficient structural data available), 595 proteins belong to the comparative modelling

category, 496 proteins belong to the threading category and 306 do not possess any structural

content and therefore need to be modelled using ab initio methods.

Information available in RESPIRE for each protein

For a given protein entry, the first tab displays the protein function as annotated in UNIPROT

and when this information was updated in UNIPROT (Fig 1A).

The sequence frame contains the protein sequence enriched with a color-coded conserva-

tion index (from blue, low conservation, to red, high conservation), and the DSSP secondary

structure [47] assignment or PSIPRED prediction [48]. This conservation index was computed

after the multiple alignments of related sequences found by BLAST. As classical sequence

alignments can fail in determining the underneath importance of specific amino acids for the

protein structure or function, especially if they are mutated in tandem, a co-evolution study

was performed. Due to their file size, the complete sequence processing (Blast search, Multiple

Alignment) cannot be visualized in RESPIRE, so download buttons are available for the

sequence (UNIPROT), the co-evolution profile and the multiple sequence alignment using

muscle (Fig 1B). A membrane annotation is indicated if this protein is either referenced (i) as

a Single-Pass or Multiple-Pass protein in UniProt, (ii) as a plasma membrane protein in Gene

Ontology, or (iii) if the TOPCONS prediction has detected at least one transmembrane

segment.

In the domains tab, the protein decomposition into subdomains performed using Inter-

ProScan is displayed. Subdomains are assembled into coloured sections with hyperlinks to

their corresponding families in InterPro [45] and hovering on each coloured bar indicates the

domain limits (Fig 1C).

When either a protein structure or a model is available, the structure frame presents the

three-dimensional coordinates in an interactive window (Figs 1D and 2).

It is important to visualize the location of known natural variations or mutations to assess

qualitatively their impact on the protein structure. These interactions can be directly mapped

on the structure by clicking on the dedicated checkbox. If no positions are described in the

UNIPROT upstream entry, no list is provided to the user.

RBC proteins may interact with many proteins to fulfil their function; these interactions are

assembled from various tissues in BioGrid [39]. To integrate these interactions into a func-

tional network, the Interactions tab shows a dynamic responsive graph containing the direct

binding partners available only in the RBC, limited to the first 50 members of the network for

performance issues (Fig 1E).

Many inferences between proteins are derived automatically from data-driven knowledge

associations as performed by the Gene Ontology Consortium [65,66]. This information is

regrouped under the Gene Ontology (GO) frame, which allows browsing the database content

alternatively by clicking on a GO category. From one protein card, it is possible to retrieve all

proteins similarly involved in a specific biological process, in a cellular component or possess-

ing a particular molecular function (Fig 1F).

According to their prevalence in populations, the knowledge concerning some RBC dis-

eases such as sickle-cell disease is widespread in the community [67]. For more specific disease

such as malaria [17,68] or for the determination of new blood group antigens [15], this knowl-

edge is harder to acquire. The knowledge presented in the Genetics tab embeds an extract of
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the OMIM entry for a protein, with a link to the complete entry in the OMIM web site. This

OMIM entry is also processed to offer links to proteins in RESPIRE for RBC diseases or to the

upstream OMIM entry when these diseases are found in other tissues (Fig 1G).

The data presented in our database mainly present the content of the latest stages of the

RBC differentiation. In order to get a broader overview of the protein expression levels during

the RBC maturation process, an interactive diagram is available under the Expression tab (Fig

Fig 1. Description of the enriched protein entry available in the RESPIRE database. Aquaporin-1 protein

(RESPIRE id: 641) serves as an example. (A) Protein name, amino acids length and molecular weight, as parsed from

Uniprot. (B) Sequence details enriched with conserved position in the protein family, secondary structure

representation in cartoon and amino acids co-evolution, color-coded from low conservation (blue) to high

conservation (red) (see text for details). (C) Protein domains decomposition generated using InterProScan. (D)

Protein structure interactive visualisation allowing to map the position of variants and mutants on the displayed

molecule. (E) Binding partners mapping, with links to the corresponding entry in the database or to UNIPROT when

required. (F) Gene Ontology annotations with links to all proteins related to this term in the database, and links to the

Gene Ontology web site when the user wants to complete the definition. (G) Additional clinical and genetic

information concerning the protein, as gathered with permissions from the OMIM database. (H) Profile of the protein

profile expression during hematopoiesis. (I) History of the protein entry, with a complete trace of updates. (J)

Indication of the protein detection in scientific literature.

https://doi.org/10.1371/journal.pone.0211043.g001
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1H). These expression data were carefully determined by our partners of the GR-Ex consor-

tium [12].

Many entries in the database come from external databases, it is therefore important to

track the changes appearing in the protein card. The History tab references all the modification

of the protein entry in the database. It is also possible to register to the protein feed using tools

such as Feedly (https://feedly.com) or Reeder (https://reederapp.com/) to be informed rapidly

when a modification happened (Fig 1H).

Structural annotation and model prediction

In comparison with other databases dedicated to RBC proteins, an important interest of our

database relies on the important information brought by the 3D structure and the possibility

of visualizing experimental structures or models produced specifically for RESPIRE. When

available, experimental PDB structures [43] are presented, but most of the time, these struc-

tures are missing for the human species. We therefore computed the existing experimental

structural coverage to qualify the category for modelling protein structures (see methods). The

proteins belonging (i) to the comparative modelling category were modelled using Modeller

for soluble proteins [53,54] or Medeller for membrane proteins [55]; (ii) to the threading cate-

gory were modelled using I-TASSER [56,69]; (iii) to the ab initio category were modelled with

ROSETTA suite [57]. The membrane content could be considered within ROSETTA using a

dedicated protocol [58]. This focus on membrane proteins is particularly important since

some of them have a high therapeutic interest but they are much less characterized experimen-

tally than globular proteins. To ease a better comprehension of these categories and to provide

an estimation of the model quality, two progress bars are displayed in the Structure tab.

This condensed view allows also interactively to display and retrieve a PDB file or the

model produced for RESPIRE. When the user clicks on a pdb entry, its title and reference are

indicated, when a model is selected, the details of its prediction are provided (Fig 2).

Querying the database

There are many ways to query features in the database. The general principle is to provide

many hyperlinks redirecting within RESPIRE when possible or to the upstream annotation

otherwise. For some annotations, an additional link to an icon directly allows the opening of

the upstream reference in a new window.

Complex queries are also available in a dedicated menu for specific categories, namely pro-

teins with a model (RESPIRE), proteins at the cell membrane (as defined in UNIPROT), pro-

tein defining blood group antigens (ISBT) or proteins associated to a disease (OMIM) (Fig

3A). The results of these queries can be retrieved in Comma Separated Value (CSV) format for

further processing off-line in any spreadsheet editor (Fig 3B). It is also possible to browse the

database by clicking on hypertext links provided at various places, like for instance clicking on

a given gene ontology category under the Genetics tab to retrieve all proteins involved in a spe-

cific process (Fig 3C). It is also possible to use the “search as you type” box to search by UNI-

PROT accession id or protein name (Fig 3D).

For more complex queries, a more advanced form allows the combination of criteria. In

this form, selecting (a) Cell Localization “Single-pass or Multiple pass membrane proteins

(Uniprot)”, (b) Protein name “transport” and (c) Protein Size (AA) “200–800”, there will be

14 answers in RESPIRE related to a protein containing the “transport” keyword in its name

without models in the RBC membrane. Again, this query result can be downloaded as a CSV

file.
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These multiple search strategies are important to retrieve a protein list concerning close but

not overlapping queries. As an example, the membranous status of a protein is complex: (i)

many proteins can have a transient membranous contact for maturation or trafficking within

the cell, (ii) even by limiting only the definition of membranous proteins to the cell membrane

Fig 2. Details of protein structural content. Each experimental structure or produced model is displayed at the top

with a score to rank the more complete structures: first for experimental structures, and then the best model according

to the modelling method internal score. Hovering on each entry name shows in a condensed view the experimental

information or the model origin. By clicking on any entry presented, the corresponding PDB file is uploaded to the

JSmol viewer for interactive manipulations. The more complete JSmol menu can be opened with a right-click on the

JSmol canvas. A list of known variants is shown below the templates window, with a brief description and a link to the

upstream description. By selecting a variation, the user will highlight on the structure the position of the amino acid

mutation. (A) Detail of the structural interactive view for Aldo-keto reductase family 1 member C3. The mutation of a

proline for a serine at position 180 is represented in brown sphere representation. (B) Detail of the CD59 glycoprotein

entry. For this protein, there is no sufficient structural coverage available (indicated in orange, 62% only can be

determined using structural experimental data), so a model was produced using I-TASSER [56,69,70]. This resulting

model is considered an average model with a TM-Score of 0.62.

https://doi.org/10.1371/journal.pone.0211043.g002
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localization, it is still possible to classify a protein as an integral or as a single-pass membrane

protein. This complexity of membrane definition including localizations and/or organisations

is assembled differently in different databases, giving different results for close queries. For

instance, for membrane proteins, 384 proteins are membranous in RESPIRE if the “single-pass

or multiple-pass membrane” annotation of UNIPROT is considered while in Gene Ontology,

the “plasma membrane” annotation (GO:0005886) leads to 545 entries. The possibility to

Fig 3. RESPIRE can be accessed through various queries. Example of precomputed requests. Clicking on the links

will retrieve all proteins pertaining to a given category. (A) Query results concerning the “membrane” annotation in

UNIPROT. 384 proteins are annotated with this membranous localisation. By clicking on a number or letter, the user

can see all the protein names starting with this item, with an indication of an existing structural when the (3D)

keyword is appended to the name, proteins starting with letter E are displayed. (B) By clicking on the button

“Download the protein list”, the user will be provided a Comma Separated Value file containing the protein name, its

identifier in RESPIRE and UNIPROT, the protein length, its structural status and its cellular localisation. (C) A close

“plasma membrane” annotation can be accessed by clicking on the GO entry GO:0005886 in the statistics tab or in any

entry possessing this annotation. This time 545 entries will be displayed and can also be retrieved. (D) To access

rapidly to a protein using its name or description, it is possible to use the “search-as-you-type” facility provided at the

top right in the menu, for instance to retrieve a member of the Solute Carrier Family.

https://doi.org/10.1371/journal.pone.0211043.g003
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address both queries in RESPIRE is the best way for tackling these difficulties in a flexible

manner.

Contact and expert annotation

RESPIRE is a combination of upstream data references and of specifically produced protein

models. Our main objective is to propose a high quality of service with regularly updated infor-

mation. Importantly, any expert in RBC is welcomed to contribute in RESPIRE evolution and

update. In this perspective, a contact form with pre-defined subjects is available if a user is will-

ing to further enrich a given protein entry or report problems. The “Collaboration” subject is

dedicated to more complex demands such as the incorporation of new data in the database,

the additions of links to or the processing of other reference databases. The “Feature Request”

is mostly for database updates on specific subjects like the addition of pre-defined queries,

demands for updating a given protein model. The “Bug report” subject is mostly to pinpoint

specific problems for a given entry. If no demand can be classified with previous subjects, the

“General” subject is open to any remark or contribution. Each request will be processed regu-

larly, and responses to demands should be answered within a week. Depending on the amount

of work required, these demands will be answered rapidly or shall be incorporated in the next

RESPIRE release.

Conclusion and future directions

The importance of RBCs in vital processes has driven the extensive characterization of protein

abundance and expression level using large-scale studies. Up to now, it is difficult to assemble

protein information linking these experiments and reference databases. To address these

needs, we have set up a new database called RESPIRE devoted to red blood cell proteins, start-

ing from a list of proteins available from the literature. The RESPIRE database combines

sequence, structure and functional annotations altogether with original data obtained using

up-to-date bioinformatics methods [17,56–60,69,71–72] in particular 3D models supported or

not by experimental data [73]. These predicted models should be considered carefully, but can

serve as tools to design further experimental validations. As new structural information is

available regularly, low-quality models will be regularly improved.

In the future, we shall continue to enrich this database with experimental results as they

become available in the literature but also with manual curation involving biologist members

of the research consortium GR-Ex. This curation effort is expected to focus on inherited dis-

ease such as sickle-cell disease or Diamond-Blackfan anemia, or to focus on infectious diseases

such as malaria. We will expose convenient access to these data to ease cross-referencing in

more general-purpose databases.

The database is freely accessible, with an unrestricted access to data for download and exter-

nal analysis. The evolution of the database is detailed per protein in a dedicated tab, and glob-

ally in a dedicated page.
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