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ABSTRACT Genomic long reads of the interspecific grapevine rootstock cultivar
‘Börner’ (Vitis riparia GM183 � Vitis cinerea Arnold) were used to assemble its chloro-
plast and mitochondrion genome sequences. We annotated 133 chloroplast and 172
mitochondrial genes, including the RNA editing sites. The organelle genomes in
‘Börner’ were maternally inherited from Vitis riparia.

Long reads generated by single-molecule real-time (SMRT) DNA sequencing tech-
nology (Pacific Biosciences) are one starting point for high-quality chloroplast

(1, 2) and mitochondrion genome sequence assemblies. The cultivated grapevine Vitis
vinifera is highly susceptible to pathogens. Resistant cultivars like the interspecific
hybrid ‘Börner’ (V. riparia GM183 [mother plant] � V. cinerea Arnold [pollen donor]) are
used as rootstocks for growing elite grapevine varieties. We assembled and annotated
the chloroplast (cp_Boe) and mitochondrion (mt_Boe) genome sequences of ‘Börner’
from SMRT reads. All bioinformatics tools were applied with default parameters unless
otherwise noted.

Genomic DNA was extracted from young leaves of cultivar ‘Börner’ (3) and se-
quenced on a Sequel I sequencer (1Mv3 SMRT cells, binding kit v3.0, sequencing
chemistry v3.0, all from PacBio). Potential plastid or mitochondrial reads were filtered
by BLASTN (BLAST 2.7.1�) searches (4) against plastid or mitochondrial sequences
(RefSeq release 91). The following criteria were used: read length, above 500 nucleo-
tides (nt); identity, above 70%; query coverage, above 30%. The 292,574 potential
plastid reads (2,715,983,671 nt in total; N50, 12,829 nt) and the 426,918 potential
mitochondrial reads (3,928,350,102 nt; N50, 12,624 nt) were separately assembled with
Canu v1.7 (5). Each longest contig displayed high similarity to the chloroplast (6) or
mitochondrion (7) genome sequence of V. vinifera. Subsequently, Bandage (8) was used
to confirm that the assembly was correct. Overlapping end sequences from the circular
genomes were manually trimmed, and the start was aligned to that of the grapevine
reference sequences. The assemblies were polished three times with Arrow (SMRT Link
release 5.1.0.26412). The last round of polishing was carried out with the start shifted
to the opposite position of the sequence.

To aid annotation, RNA was extracted from ‘Börner’ tissues using the peqGOLD plant
RNA kit (Peqlab) according to the manufacturer’s instructions. Indexed Illumina se-
quencing libraries were prepared from 1,000 ng total RNA according to the TruSeq RNA
Sample Preparation v2 Guide. The resulting transcriptome sequencing (RNA-Seq) librar-
ies were pooled in equimolar amounts and sequenced in a 2 � 100-nt paired-end
format on a HiSeq 1500 instrument.

cp_Boe (161,008 bp; GC content, 37.4%) and mt_Boe (755,068 bp; GC content,
44.3%) were annotated with the Web service GeSeq v1.66 (specific settings for cp_Boe:
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annotate plastid IR enabled, HMMER profile search [9] enabled, reference sequence V.
vinifera chloroplast annotation [6], and MPI-MP chloroplast references enabled; specific
settings for mt_Boe: reference sequence V. vinifera mitochondrion annotation [7];
settings for both: tRNA annotators tRNAscan-SE v2.0 [10, 11], ARAGORN v1.2.38 [12]
with “Allow overlaps” and “Fix introns” enabled) (13), which uses OGDRAW v1.3 (14, 15)
to visualize the annotation (Fig. 1). RNA editing sites were determined (16) using
RNA-Seq data from five different ‘Börner’ tissues. A total of 133 genes with 90 editing

FIG 1 Annotation of the ‘Börner’ mitochondrial genome. The annotation was created with GeSeq and visualized with OGDRAW. Genes containing introns are
marked with an asterisk (*).
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sites were identified for cp_Boe, encoding 85 mRNAs, 39 tRNAs, 8 rRNAs, and 1
pseudogene. For mt_Boe, 172 genes with 624 editing sites were identified that encode
67 mRNAs, 38 tRNAs, 4 rRNAs, and 63 pseudogenes/gene fragments. While cp_Boe
confirms the maternal inheritance of the chloroplast from V. riparia due to its high
similarity to the chloroplast sequence from V. riparia voucher Wen 12938 (17), mt_Boe
is the first mitochondrion genome sequence from V. riparia and differs from the V.
vinifera mitochondrion (7) at 141 positions in the coding regions.

Data availability. ‘Börner’ RNA-Seq reads (leaves, ENA accession no. ERR3894001;
winter leaves, ERR3895010; inflorescences, ERR3894002; tendrils, ERR3894003; roots,
ERR3895007), raw SMRT sequence reads (plastid, ERR3610907; mitochondrion,
ERR3610837), and chloroplast and mitochondrion genome sequences, including anno-
tation, have been deposited in GenBank/DDBJ/ENA (cp_Boe, ENA accession no.
LR738917; mt_Boe, LR738918) under project no. PRJEB34983. The RNA editing tables,
coding sequences, and protein sequences of genes subject to RNA editing in edited
and unedited form are available as data publications (cpBoe_RNAedit, https://pub.uni
-bielefeld.de/record/2941430; mtBoe_RNAedit, https://pub.uni-bielefeld.de/record/
2941437).
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