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Adoptive T-cell therapy for fungal infections in
haematology patients

Shivashni S Deo1,2 and David J Gottlieb1,2,3,4

The prolonged immune deficiency resulting from haematopoietic stem cell transplant and chemotherapy predisposes to a high

risk of invasive fungal infections. Despite the recent advances in molecular diagnostic testing, early initiation of pre-emptive

antifungal therapy and the use of combination pharmacotherapy, mortality from invasive mould infections remain high among

recipients of allogeneic stem cell transplant. The increasing incidences of previously rare and drug-resistant strains of fungi

present a further clinical challenge. Therefore, there is a need for novel strategies to combat fungal infections in the

immunocompromised. Adoptive therapy using in vitro-expanded fungus-specific CD4 cells of the Th-1 type has shown clinical

efficacy in murine studies and in a small human clinical study. Several techniques for the isolation and expansion of fungus-

specific T cells have been successfully applied. Here we discuss the incidence and changing patterns of invasive fungal

diseases, clinical evidence supporting the role of T cells in fungal immunity, methods to expand fungus-specific T cells in the

laboratory and considerations surrounding the use of T cells for fungal immunotherapy.
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EPIDEMIOLOGY OF INVASIVE FUNGAL DISEASES IN

HAEMATOLOGICAL MALIGNANCIES

Haematopoietic stem cell transplant
A large prospective surveillance study of 16 200 adult and paediatric
haematopoietic stem cell transplant (HSCT) recipients over 2001 to
2006 in the United States reported the overall 1-year cumulative
incidence of invasive fungal diseases (IFDs) in allogeneic HSCT
recipients was 3.4% but reached 8.1% and 7.7% in patients
undergoing transplantation from human leukocyte antigen (HLA)-
mismatched-related and matched-unrelated donors respectively.1

In autologous transplant recipients, the rate was 1.2%.1 The incidence
of IFD among adult and paediatric HSCT patients in China is higher,
reported at 8.9% after allogeneic and 4.0% after autologous
transplantation.2 The cumulative incidences at 6 months in recipients
of haploidentical and unrelated HSCT were 13.2% and 12.8%,
respectively, compared with 4.3% in patients who received HLA-
matched HSCT.2

Analyses of the distribution of IFDs showed that invasive
aspergillosis is most common, accounting for 40–70% of infections,
followed by invasive candidiasis (~25%), zygomycosis (~8%) and
other moulds (~7%).1–3 In paediatric HSCT patients however,
Candida is the predominant fungal pathogen, responsible for 51%
of IFDs compared with Aspergillus (26%).4 The 1-year mortality
associated with IFDs is ~ 75% in HSCT patients with invasive
aspergillosis, ~ 65% in patients with invasive candidiasis, ~ 70% in

patients with invasive zygomycoses and over 90% in patients with
invasive fusariosis.1

Various risk factors contribute to the high incidence of IFDs in
allogeneic HSCT recipients. These include severe neutropenia,
lymphopenia, HLA disparity between the donor and recipient,
graft-versus-host disease, the use of corticosteroid and immunosup-
pressive therapy, and diabetes.2,3,5,6 Following allogeneic HSCT, full
immune recovery can take up to a year. Innate immunity, including
neutrophils and phagocytes, typically recovers within weeks after
grafting.7 However, recovery of adaptive immune components take
longer, for example, B cells and CD8 T cells can take months to
recover.7 CD4 T-cell counts may be low for months to years and
recovery is prolonged in older patients with poor thymic function and
in patients receiving prophylaxis or treatment for graft-versus-host
disease.7 The reason for the lower incidence of IFDs in autologous
HSCT is not entirely clear but is likely attributable to lower intensity
conditioning, a shorter period of neutropenia and the absence of HLA
disparity and graft-versus-host disease, and the consequent absence of
mandatory immunosuppressive medication.8

Acute leukaemia
A large-scale retrospective study of 411 000 patients with
haematological malignancy in Italy between 1999–2003 reported an
overall IFD rate of 4.6%, with incidence rates of 12% in acute myeloid
leukaemia and 6.5% in acute lymphoblastic leukaemia.9
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Invasive aspergillosis is the most common form, accounting for
over 50% of all IFDs in acute leukaemia patients.9 The percentage of
patients with invasive aspergillosis who die from fungal disease has
fallen over the last two decades, largely as a result of better diagnosis
and the early initiation and use of improved fungal pharmacotherapy.
In patients with acute leukaemia, neutropenia, quantitative and

qualitative alterations in monocytes and tissue macrophages, the use of
broad-spectrum antibiotics, renal insufficiency, prior fungal
infection and anti-fungal therapy, and active haematological disease
leading to suppression of immune function are important risk factors
for the development of IFDs.10 In addition, colonisation of fungi
in the gastrointestinal mucosa following acute mucosal damage
caused by cytotoxic drugs is a risk factor in the pathogenesis of
yeast-related IFDs.

Common fungal pathogens, treatment and changing patterns of
IFDs in haematology patients
A number of studies have looked at the distribution of fungal isolates
observed in clinical specimens obtained from recipients of HSCT.1,3,11

Aspergillus fumigatus was the most common fungal pathogen in both
autologous and allogeneic transplantation settings. Other positively
identified Aspergillus species included A. terreus, A. niger and A. flavus.
Among Candida infections, C. albicans and C. glabrata were most
common, followed by C. parapsilosis, C. tropicalis, C. krusei and
C. lusiteniae. The Mucor, Rhizopus and Absidia species were common
agents of zygomycoses. The less common fungal pathogens included
Fusarium, Scedosporium, Pneumocystosis, Cryptococcus, Alternaria,
Exophiala and the Paecilomyces species. Notably, co-infection by
multiple fungal species is common in recipients of HSCT,11 making
treatment and management of IFDs challenging.
Amphotericin B was the mainstay of the treatment of invasive

fungal infections until the mid-1990s. It has been replaced in the past
two decades by more effective and less toxic drugs such as the
less nephrotoxic lipid formulations of Amphotericin B, the broad
spectrum triazoles (voriconazole, itraconazole, fluconazole and
posaconazole), the echinocandins (caspofungin and micafungin)
and the pyrimidine analogues (flucytosine). Voriconazole, posacona-
zole, caspofungin and lipid formulations of Amphotericin B are the
common choices for treatment and prophylaxis of IFDs in haematol-
ogy patients, also being administered empirically to patients with
febrile neutropenia persisting 3–7 days after treatment with
broad-spectrum antibacterials. Advances in molecular diagnostic
testing and detection of the serum biomarkers β-glucan and galacto-
mannan have facilitated prompt, targeted treatment and early initia-
tion of pre-emptive therapy.12 The selection of antifungal drug
depends on the type, site and severity of fungal infection, potential
for organ toxicity and possible interaction with other drugs. Caspo-
fungin is the drug of choice for treatment of invasive candidiasis,
voriconazole for invasive aspergillosis and lipid formulation of
amphotericin B for zygomycosis; however, combination therapy using
two or more of these agents is increasingly common.3 Although these
antifungal drugs are mostly effective in the treatment and management
of IFDs, the cost associated with their use remains high. A more
serious concern associated with the use of antifungals is the emergence
of drug resistance. The overall resistance of Candida species to
fluconazole and voriconazole is reported at around 3–6%.13 Of
notable mention is the increase of fluconazole resistance in C. glabrata
from 7% in 2001 to 12% in 2004 as shown by data from the
ARTEMIS Global Antifungal Surveillance Program.14 Triazole resis-
tance in A. fumigatus is increasingly being recognised, with resistance
now reported in up to 6% of clinical isolates in the United States,

United Kingdom and the Netherlands.15–17 Although there has been
no significant epidemiological shift in the susceptibility of Candida
species to echinocandins, a case of breakthrough infections occurring
after echinocandin therapy in an allogeneic HSCT recipient has been
reported.18 The prevalence of flucytosine resistance in yeast is below
2%; however, the high risk of yeast developing resistance to flucytosine
has prompted its use in combination with other antifungal therapy, in
particular Amphotericin B.
A number of mechanisms contributing to drug resistance in fungi

have been proposed, for example, the induction of efflux pumps
encoded by the multidrug-resistant or Candida drug-resistant genes,
point mutations in genes encoding ERG11 or FKS in Candida and
Cyp51A point mutations in Aspergillus.15,19 Although overall the
incidence of antifungal resistance is low, it remains a serious problem
in the management of high-risk haematology patients, particularly in
those receiving a second transplant or having received prior antifungal
therapy. The agricultural use of azole fungicides has also ignited
concerns about the possibility of induction of resistant strains of
fungi.20 The emergence of previously less common IFDs in the
haematology setting, for example, C. krusei, C. glabrata, zygomycetes
and mucormycetes presents further clinical challenge for the treatment
and management of IFDs.

ANTIFUNGAL IMMUNITY

Innate immunity
The innate immune system forms the first line of defence against
fungal infection and serves two main functions (1) to mediate direct
fungal destruction through phagocytosis or production of fungicidal
molecules and (2) to orchestrate adaptive immune response through
cytokine production, antigen presentation and T-cell stimulation. The
cells with well-defined roles in fungal innate immunity include
monocytes, macrophages, neutrophils and immature dendritic cells
at the lining of the mucosal surface. Recognition of fungi is by pattern
recognition receptors (PRRs), such as Toll-like receptors
(for example, TLR2, TLR4 and TLR9), C-type lectin receptors
(for example, Dectin-1, Dectin-2, DC-SIGN and mannose receptor)
and galectin family proteins (for example, Galectin 3) expressed by the
host cells. These receptors recognise fungal pathogen associated
molecular patterns (PAMPs), which include zymosan, phospholipo-
mannan, O-linked- and N-linked-mannans, β- and α-glucans, chitin
and β-mannosides. The expression of these PAMPs by various fungal
morphotypes and the corresponding PRR activated by them has been
reviewed in depth by Romani.21 The engagement of PRRs on innate
cells activates signalling cascades, such as the MyD88-, Syk- and Ras-
dependent pathways leading to phagocytosis and the production of
defensins, chemokines, cytokines and reactive oxygen species. Den-
dritic cells are unique in their capacity to decode fungal information,
migrate to the local lymph nodes and activate adaptive fungal
responses, both by production of immunomodulatory cytokines (such
as type-1 interferon (IFN), interleukin (IL)-4, IL-6, IL-10, IL-12 and
IL-23) and direct stimulation of T cells. Specific single-nucleotide
polymorphisms occurring in cytokine, cytokine receptor or PRR genes
which alter components of the innate fungal immune response and
thereby increase susceptibility or resistance to fungal infections have
been reported.21 Clinically, neutropenia and defects in the formation
of reactive oxygen species (as observed in chronic granulomatous
disease) are well-recognised factors for the development of IFDs.22,23

In recent years, natural killer (NK) cells have received a lot of interest
for their potential role in innate fungal immunity. Although the exact
mechanisms by which NK cells recognise fungus or fungus-infected
cells are not completely understood, direct effects of NK cell-derived
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perforin and IFNγ on fungal hyphal death have been observed.24,25

Furthermore, early initiation of NK activity is protective in neutro-
penic mice with invasive aspergillosis.26,27

Adaptive immunity
Similar to innate immunity, fungus-specific adaptive immunity also
serves two main functions (1) act in concert with innate immunity to
clear fungal infection and (2) induce long-term immunological
memory in the event of a recall infection by the same or similar
pathogen. The role for CD4 T cells in fungus-specific adaptive
immunity is now well established and specific responses by all CD4
T-cell subsets (T helper (Th)-1, Th2, Th17 and regulatory T cells) have
been observed. The type of response is orchestrated by the milieu of
cytokines produced by innate cells, for example, production of IL-12
by dendritic cells results in a predominant Th1 response, IL-23 and
IL-6 result in a Th17 response, IL-4 results in a Th2 response and
IL-10 in a regulatory T cell response. Protective immunity, correlating
with production of defensins, inflammation, neutrophil recruitment
and fungal clearance is observed following activation of Th1 and Th17
cells. In contrast, the activation of Th2 and regulatory T cells
corresponds to inhibition of fungal clearance and immunosuppres-
sion, respectively.
Th1 response leading to production of IFNγ, tumour necrosis factor

(TNF)-α and IL-2 is very well characterised and there is a strong body
of evidence suggesting that defects in Th1 numbers and cytokine
response correlate with higher fungal burden.28–30 The production of
Th1 cytokines by T cells is mediated by direct contact with activated
dendritic cells, as the use of a major histocompatibility complex class
II blocking antibody abrogates the Th1-specific response to fungi.31

Th1 cells also form the basis of immunological memory to specific
fungal infections32 and A. fumigatus-specific T cells can be detected in
low frequency in the peripheral blood of healthy individuals.33 Further
evidence supporting the antifungal role of Th1 cells is discussed in the
section ‘Clinical evidence supporting the role of T cells’ below. A
protective role of Th17 cells in fungal immunity, in particular to
Candida infections, has also been observed.34,35 While the contribu-
tion of CD4 T cells in fungal adaptive immunity is very well
characterised, recent studies have reported that CD8+ T cells can also
mediate protective immunity against Aspergillus and Candida
infections.36,37

IMMUNOTHERAPY FOR FUNGAL INFECTIONS

In a recent review, Armstrong-James and Harrison discussed various
immunotherapy options for fungal infections.38 These include the use
of IFNγ therapy for chronic granulomatous disease, cryptococcal
meningitis and transplant-associated fungal disease; antibody
therapies using 18B7 (targeting Cryptococcus neoformans capsular
polysaccharide) for cryptococcal meningitis and Mycograb (targeting
Candida heat-shock protein-90) for invasive candidiasis; adoptive cell
therapies using antigen-specific T cells and antigen-pulsed dendritic
cells for invasive aspergillosis and/or candidiasis; granulocyte transfu-
sions for neutropenic sepsis; and gene therapy (targeting the mutated
nicotinamide adenine dinucleotide phosphate oxidase gp91 subunit)
for chronic granulomatous disease. Although many of these have
shown promising results in pre-clinical studies, only IFNγ therapy has
proceeded to the clinical main stage, now being approved for use in
patients with chronic granulomatous disease.38

Clinical observations supporting the role of T cells in fungal
immunity
The identification of the adaptive immune system as a crucial
component of host antifungal immunity did not surface till the early
2000s when lymphopenia was first identified as an important risk
factor for the development of IFDs. This was prompted by studies
reporting a high incidence of late-onset infections (occurring after the
period of neutrophil recovery) in HSCT recipients and a high
incidence of fungal infections in non-neutropenic HIV-infected
patients. Recent data from the Transplant-Associated Infection
Surveillance Network database from 23 transplant centres across the
United States was consistent with those findings, reporting the median
time from transplantation to the onset of candidiasis, aspergillosis,
fusariosis and zygomycosis as 61, 99, 123 and 135 days, respectively,1

correlating with the period of T-cell immunodeficiency. As previously
highlighted, Th1 type CD4 T cells have a crucial role in fungus-specific
immunity.
The roles for the Th1 cytokines IFNγ and TNFα in protecting

against fungal infections have been demonstrated through the use of
neutralising antibodies in murine models of invasive aspergillosis.29,30

These observations are consistent with clinical findings. For example,
the increased secretion of IFNγ by lymphocytes in response to
stimulation with Aspergillus antigens correlates with a better outcome
in transplant patients with invasive aspergillosis.39 Conversely, the
administration of TNFα inhibitors to patients for the treatment of
inflammatory diseases such as rheumatoid arthritis increases the
incidence of fungal infections.40 The specific roles for these cytokines
in fungal response is now well understood; TNFα increases
the oxidative killing of Aspergillus hyphae by neutrophils, enhances
the phagocytic capacity of alveolar macrophages and promotes
neutrophil accumulation in the lungs of Aspergillus-infected
animals.30,41 IFNγ promotes increased phagocytosis, nitric oxide
production and fungal killing by macrophages, and skews the fungal
response towards a protective Th-1 type.42

In HSCT patients, A. fumigatus-specific T-cell immunity is defective
for up to a year following transplantation, correlating with the period
when patients are at highest risk of infection.33,43 In a recent study by
Jolink et al., A. fumigatus Crf1 and Catalase-1-specific CD4+ T cells
were detected in the blood of patients recovering from invasive
aspergillosis, but not in patients with progressive disease.44 Consistent
with the observations in transplant patients, an inverse correlation
between CD4+ T-cell numbers and the incidence of IFDs has been
observed in HIV-infected patients.28 We have shown that A. fumiga-
tus-specific T cells, which have been expanded in vitro, predominantly
produce Th1 cytokines, in particular TNFα, but also IFNγ, when
restimulated.31 Specific Th1 cell responses against Fusarium45 and
Candida have been demonstrated by others.46–48

T-CELL THERAPY FOR FUNGAL INFECTIONS

Murine studies
The first in vivo evidence for the importance of the adaptive immune
system in dealing with fungal infections came from studies performed
by Cenci et al.49 Multiple intranasal inoculations of A. fumigatus
conidia in immunocompetent mice caused a transient, self-limiting
infection that conferred resistance to subsequent infection,49

suggesting induction of immunological memory after the first fungal
encounter. In later studies, the treatment of mice with a culture filtrate
of Aspergillus protected against subsequent intranasal or intravenous
infection with live fungal conidia.32 Improved survival in treated mice
correlated with increased recruitment of lymphocytes, macrophages
and neutrophils to the site of infection and reduced local and systemic
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fungal burden. Higher levels of IFNγ and IL-2 in the culture
supernatants of activated lung cells were observed in treated mice.
Splenic CD4+ T cells from treated mice showed strong proliferative
response to restimulation with antigen in vitro and upon adoptive
transfer, prolonged the survival of unimmunised mice subsequently
infected with a lethal dose of A. fumigatus.32 This study was the first to
provide evidence that Aspergillus-specific immunity could adoptively
be transferred from one host to another, suggesting a core role for cells
with immunological memory in this protective response. In subse-
quent studies, Bozza et al.51 demonstrated an intermediary role for
dendritic cells in the CD4+ T-cell response to A. fumigatus. Splenic
dendritic cells transfected with conidial RNA of A. fumigatus induced
proliferation of and IFNγ production by allogeneic CD4+ T cells
in vitro. In an adoptive T-cell transfer model, the infusion of allogeneic
conidia-pulsed or conidial RNA-pulsed dendritic cells protected mice
otherwise susceptible to aspergillosis against infection-induced death.
This protection correlated with in vivo production of IFNγ by CD4+

T cells. Subsequent experiments in mice receiving T-cell-depleted
allogeneic stem cell grafts showed that infusion of Aspergillus conidia
or conidial RNA pulsed donor-derived dendritic cells before infection
increased resistance to infection, restricted fungal growth and pre-
vented disease dissemination. The use of Apsergillus-specific CD4+

T cells isolated from the spleens of immunised mice which were
restimulated in vitro were also protective, extended the life of mice and
were associated with accelerated recovery of myeloid and lymphoid
compartments. These studies taken together support the notion that
fungus-specific immunity in an immunocompetent host is induced
through fungal exposure. Most importantly, this immunity can be
adoptively transferred through use of fungus-antigen pulsed dendritic
cells or fungus-specific T cells to an immunocompromised host.

Human studies
There is only one reported study to date which has assessed the safety
and efficacy of adoptively transferred fungus-specific T cells in
humans. This was performed by Perruccio et al. in patients under-
going haploidentical stem cell transplant with rigorously T-cell-
depleted grafts.43 Peripheral blood mononuclear cells from healthy
donors were stimulated with irradiated donor-derived antigen-pre-
senting cells, which had been pulsed with heat-treated conidia of
Aspergillus. CD4+ T cells were cloned by limiting dilution and
expanded with the support of donor-derived feeder cells and IL-2.
Ten haploidentical stem cell transplant recipients with evidence of
invasive aspergillosis received a single infusion of 1× 105–1× 106 cells
per kg of expanded donor-derived anti-Aspergillus T-cell clones a
median of 21 days post transplantation. Aspergillus-specific CD4+

T cells were detected within 3 weeks of infusion and 9 of 10 patients
cleared the infection within 7.8± 3.4 weeks. In all treated patients,
fungal galactomannan levels measured between 6 and 12 weeks of
infusion declined to below 1 ngml− 1. In contrast, in the matched
control cohort, who did not receive adoptive T-cell therapy, 6 of 13
patients succumbed to infection within 4.8± 1.2 weeks of diagnosis
and Aspergillus galactomannan levels remained elevated for the
duration of the study. In addition, CD4+ T-cell clones could only be
detected in very low frequencies 9 to 12 months after transplantation
in this cohort. Although this was only a small study, it has provided
proof-of-principle data for the clinical efficacy of in vitro expanded
Aspergillus specific T cells in humans.

GENERATION OF FUNGUS-SPECIFIC T CELLS FOR CLINICAL

CELL THERAPY

Since the demonstration of clinical efficacy of A. fumigatus specific
T cells in humans, a number of groups have published methods to
expand fungus-specific T cells in vitro. These studies have focused on
the following: (1) identifying a suitable antigen source to use for
specific stimulation of fungus-specific cells and (2) identifying a
reliable cell culture method to expand fungus-specific T cells. Results
from some of these studies with promising outcomes are summarised
in Table 1.

Antigens
Very little is known about specific epitopes in fungi that induce an
antifungal T-cell response. In a recent study, Bacher et al.
determined the immunogenic capacity of selected proteins in A.
fumigatus by analysing activation-dependent expression of CD154 by
flow cytometry.51 The stimulation of healthy donor blood mono-
nuclear cells with overlapping peptide mixes or recombinant proteins,
such as Aspf1, Aspf16, Aspf22, Catalase-1, Gel1, Crf1, Crf2 and Pmp20
proteins induced specific CD154 and TNFα co-expression.
Of considerable interest was the finding that the T-cell responses
to single A. fumigatus proteins represented only a small fraction of the
total T-cell response observed against the crude lysate, confirming the
presence of a number of distinct immunodominant antigens. An
analysis of 22 patients with invasive aspergillosis showed that positive
T-cell response towards two or more of the Aspergillus antigens Pep1,
Crf1, Gel1, Sod1, α1-3 glucan and β1-3 glucan correlated with a
favourable disease outcome, indicating the presence of protective
immunogenic epitopes within these fungal proteins.52 In contrast,
patients with a complete absence of IFNγ response or a response to
only one antigen showed poor disease outcome. In a recent
study, Jolink et al. identified five novel Crf1 epitopes and 30 novel
Catalase-1 epitopes restricted to specific HLA-DR alleles.53 Despite all
of these studies, only one specific epitope has to date reliably
been used to expand fungus-specific T cells in vitro. This is the p41
peptide encoded within the Aspergillus Crf1 protein. This
epitope, identified by Stuehler et al., was shown to be restricted to
the HLA-DRB1-03, -04 and -13 alleles, and could successfully be
used to expand A. fumigatus-specific T cells from donors with the
appropriate HLA alleles.47 Expanded cells demonstrated cross-
reactivity with C. albicans, owing to epitope sharing between
these fungi.
The previously published murine vaccination and disease

prevention studies have used live or heat-treated conidia and conidial
RNA.32,43,49 In the human study, Perruccio et al. used heat-treated
conidia for the expansion of Aspergillus-specific T-cell clones.43 Results
from all these studies have been promising, but in the current
regulatory environment many such antigen sources will not be
approved for manufacturing of cells for clinical use. In 2004,
Braedel et al. described a cellular extract (lysate) of the germinated
spores from a clinical isolate of A. fumigatus lysed in Tris-HCl.54 This
lysate showed potent lymphoproliferative activity and was successfully
used to culture Aspergillus-specific T cells.55 We adapted the method of
Braedel et al.54 to produce a water-soluble lysate free from acid or
adjuvants from the germinated conidia of an environmental strain of
A. fumigatus and used it to culture Aspergillus-specific T cells for
clinical use. This lysate displayed lymphoproliferative activity in vitro,31

similar to that observed using an acid-based lysate.54 The advantage of
using such an antigen source is the representation of the majority of
antigenic epitopes and relevance for a range of HLA types, which
would be absent if an HLA-specific epitope is used. In a more recent
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study, a combination of overlapping peptide mixes from Crf1, Gel1
and Pmp20 proteins of Aspergillus was shown to induce a T-cell
response to almost similar levels to that observed with the lysate,
raising the possibility of using overlapping pepmixes from known
immunogenic proteins to generate cells for clinical use.56

Isolation and expansion of fungus-specific T cells
Various methods to expand fungus-specific T cells in vitro have been
assessed. In studies by Beck et al.55 and Tramsen et al.57,
an immunobead capture method based on activation-dependent
production of IFNγ was used to isolate Aspergillus-specific cells
following stimulation of bulk peripheral blood mononuclear cells
with lysate; isolated cells were expanded in vitro with the support of
autologous feeder cells, further stimulation with autologous dendritic
cells pulsed with antigen, and IL-2. More recently, Tramsen et al.
applied the same method to expand T cells with specificity against
Aspergillus, Candida and Fusarium in a single culture using a
combination of lysates from these fungi.46 In 2011, Khanna et al.
described an immunobead selection based on activation-dependent
expression of CD154 to isolate fungus-specific T cells; isolated cells
were cultured with autologous feeder cells, IL-2, IL-7 and IL-15.58

In our study, we used two stimulations of bulk peripheral blood
mononuclear cells using autologous dendritic cells pulsed with
A. fumigatus lysate, then expanded the cells with a cocktail of IL-2,
IL-7 and IL-15.31 Despite differences in the isolation and expansion of
fungus-specific T cells, all of these methods have generated numbers
that can be scaled for clinical use. The clinical utilisation of each
of these methods will depend on the starting cell number required
(for example, studies by Beck et al.55 and Tramsen et al.57 required
large starting cell numbers, which can perhaps only be achieved using
a leukapheresis product or a stem cell collection), the availability
of clinical grade reagents, the cost of manufacturing and the feasibility
of the procedure for routine clinical cell production.

Genetic manipulation to confer direct antifungal activity to T cells
Antigen-specific T cells can induce direct cytotoxic activity against
virus, for example cytomegalovirus-infected cells. However, this is not
clearly evident in the case of fungal infections and as previously
discussed, the majority of responses observed against fungi both
in vitro and in vivo are CD4 T-helper cell mediated. Kumaresan et al.
recently described genetic modification of T cells to express a chimeric
antigen receptor encoding the fungal PRR Dectin-1 in association with
T-cell receptor signalling components.59 Cells expressing Dectin-1
could be enriched through stimulation with antigen-presenting cells
coated with Dectin-1 agonist and expanded in vitro with the support
of IL-2 and IL-21. Cultured cells demonstrated direct antifungal
activity in vitro and showed efficacy in murine studies.

IMPORTANT CONSIDERATIONS FOR THE USE OF T CELLS

FOR FUNGAL IMMUNOTHERAPY

It is clear that fungus-specific T cells can reliably be generated in vitro.
However, certain factors will be crucial when considering the use of
T-cell immunotherapy for fungal infections. Selection of the patient
and timing of T-cell infusion will undoubtedly be paramount for the
success of T-cell therapy. These are discussed below.
There are toxicity concerns associated with use of T cells to treat

active infection, these include the overstimulation of antigen-specific
T cells that could potentially result in cytokine release syndrome and
tissue damage. Although Perruccio et al. reported no such adverse
effects,43 it is conceivable that the site and extent of systemic infection
will be an important factor when assessing suitability of the patient forT
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T-cell therapy. Genetically modifying T cells to include an inducible
suicide gene that can electively be activated in the event of toxicity,
such as that explored in cancer immunotherapy,60–62 will be useful to
address toxicity concerns.

Timing of T-cell infusion may be critical and it is likely that
infusion of T cells at a time when patients are at highest risk of
infection, i.e. within the first 3 months after HSCT or after conclusion
of immunosuppressive therapy will be most beneficial. In a recent
study, Tramsen et al. showed that commonly used immunosuppres-
sive drugs have adverse effects on proliferation and cytokine produc-
tion by Aspergillus-specific T cells.63 These data suggest that adoptive
immunotherapy using fungus-specific T cells may be best used in the
context of non-pharmacological graft-versus-host disease strategies
such as CD34+ selection or post-transplant cyclophosphamide. In
addition, infusion of T cells may be most effective in patients who
have achieved complete or partial recovery of their innate immune
system. Methods to bypass requirement of the innate immune system,
for example, through the use of genetically engineered T cells, such as
Dectin-1-expressing T cells as recently demonstrated in murine
models,59 may allow fungus-specific T-cell therapy to be more rapidly
administered. This latter strategy however is still in early develop-
mental phases and will require intensive pre-clinical testing before it is
deemed safe for human use.

CONCLUSION

Profound systemic (in particular cellular) immune suppression
resulting from HSCT and intensive chemotherapy predisposes patients
to potentially fatal IFDs. Despite advances in diagnostic testing, the
introduction of azoles and the use of the best available prophylactic
and empirical anti-fungal pharmacotherapy, immunosuppressed hae-
matology patients continue to die from fungal-infection-related
diseases. Just as resolution of neutropenia is the key to minimising
risk from bacterial sepsis, improvements in cellular immunity are key
to reducing risk from fungal infection and improving IFD outcomes.
Data in literature support the role of Th1 cells in fungal adaptive
immunity. Adoptive transfer of fungus-primed T cells isolated from
immunised mice has clinical efficacy in murine models of invasive
aspergillosis. Allogeneic donor-derived fungus-specific T-cell clones
have also shown clinical efficacy in a small cohort of haploidentical
stem cell transplant patients. Various methods to expand A. fumigatus-
specific T cells in the laboratory have now been described and can be
scaled to produce clinical grade T cells. Whether the use of fungus-
directed T-cell therapy will improve patient outcomes and reduce the
need for fungal pharmacotherapy will not be known until larger-scale
clinical trials are conducted. It is possible that the benefits of cell
therapy for fungal prophylaxis and treatment may parallel those seen
for viral infections such as cytomegalovirus, Epstein–Barr virus and
adenovirus.64–69 Specific T-cell therapy may be a novel therapeutic
option for a group of patients for whom current treatment options are
at best suboptimal.
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