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Abstract

Visual tracking in aerial videos is a challenging task in computer vision and remote sensing

technologies due to appearance variation difficulties. Appearance variations are caused by

camera and target motion, low resolution noisy images, scale changes, and pose variations.

Various approaches have been proposed to deal with appearance variation difficulties in

aerial videos, and amongst these methods, the spatiotemporal saliency detection approach

reported promising results in the context of moving target detection. However, it is not accu-

rate for moving target detection when visual tracking is performed under appearance varia-

tions. In this study, a visual tracking method is proposed based on spatiotemporal saliency

and discriminative online learning methods to deal with appearance variations difficulties. Tem-

poral saliency is used to represent moving target regions, and it was extracted based on the

frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is

used to represent the target appearance details in candidate moving regions. SLIC superpixel

segmentation, color, and moment features can be used to compute feature uniqueness and

spatial compactness of saliency measurements to detect spatial saliency. It is a time consum-

ing process, which prompted the development of a parallel algorithm to optimize and distribute

the saliency detection processes that are loaded into the multi-processors. Spatiotemporal

saliency is then obtained by combining the temporal and spatial saliencies to represent moving

targets. Finally, a discriminative online learning algorithm was applied to generate a sample

model based on spatiotemporal saliency. This sample model is then incrementally updated to

detect the target in appearance variation conditions. Experiments conducted on the VIVID

dataset demonstrated that the proposed visual tracking method is effective and is computa-

tionally efficient compared to state-of-the-art methods.
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Introduction

Visual tracking is an active research topic in computer vision. It has been used for many appli-

cations, such as activity recognition, surveillance, robotics, and human-computer interaction

[1]. It has also been used for aerial video processing, such as tracking and object recognition,

and is essential for intelligent remote sensing technologies such as unmanned aerial vehicle

(UAV). In contrast to fixed cameras, aerial videos is more portable and can conduct reconnais-

sance and surveillance [2]. However, visual tracking algorithms and systems often fail on aerial

videos. The sources of this failure include appearance variations in the target image caused by

relative camera and target motion and inadequate spatial resolution or noise, scale changes,

and pose variations [3–5]. The explicit modelling of target appearance provides one approach

to deal with the problem of the variation of the target’s appearance during tracking. Usually,

appearance modelling subsystems are composed of modules that provide a visual representa-

tion and a means of updating the model. [6]. The visual representation significantly influences

the performance of appearance modelling due to changes in target appearance in the images.

A suitable representation could use visual properties, such as color, texture, intensity gradients,

and saliency to represent the targets and other objects in the scene. The represented targets

can be incrementally updated based on the updated model to generate sample model of target

[7]. Therefore, an efficient visual representation is crucial to describe the target in the scene

and generate a sample model [4,8].

Recently, biological features reported promising results in computer vision systems. With

recent development involving biological features, visual saliency detection have attracted the

attention of researchers for extracting Attentional Regions (AR) in the images [9]. The visual

saliency detection is inspired by biological human mechanisms, specifically eye mechanisms

and vision fixation, indicating that human perception is sensitive to more salient regions

[10,11]. The salient regions in the image are called saliency. Based on the visual saliency detec-

tion and AR extraction, various studies have been carried out to detect moving objects in vid-

eos. The visual saliency detection methods for moving object detection can be categorized into

temporal, spatial, and integrated (spatiotemporal)-based methods. Temporal saliency is gener-

ally used to extract the motion cues in videos. However, temporal saliency detection alone is

not efficiently able to detect the moving regions due to the lack of spatial information, leading

to missing detail of the target appearance representation [2]. However, spatial-based saliency

detection are mostly used to process static images [2]. Therefore, the temporal and spatial

saliencies can be integrated and called spatiotemporal saliency, which is capable of effectively

detecting moving regions.

Spatial saliency detection is the main task in spatiotemporal saliency, as it deals with the tar-

get’s visual representation. Numerous spatial saliency detection methods have been proposed

in literature, based on multi-scale image features [11], graph-based visual saliency (GBVS)

[12], quaternion discrete cosine transform (QDCT) [13], Fourier Transform (FT) [14], fre-

quency-tuned [15], and integrated visual features [16]. Although various spatial saliency detec-

tion methods have been proposed, it is still necessary to improve its efficiency in dealing with

target appearance variations. This improvement also needs to account for processing time,

since visual tracking require quick image processing [2,6]. The current spatiotemporal saliency

detection methods are only used to detect moving targets in simple scenarios, and did not

account for appearance variation difficulties. This difficulty can significantly influence target

detection for visual tracking performance, and neglecting this aspect could result in misidenti-

fication of targets. This paper focuses on spatiotemporal saliency detection to deal with the

appearance variation difficulties in aerial videos, including a proposed spatial saliency detec-

tion method for visual target representation.

Visual target tracking in aerial videos
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The updated model is essential for appearance modelling. It basically uses adaptive methods

to deal with appearance variations [7]. The adaptive methods require online algorithms that

can be learned and updated incrementally [7]. On-line learning algorithms are categorized

into generative-based and discriminative-based methods. The former are mainly focused on

how it can fit models from the target [6,7], with examples being Gaussian Mixture Models

[17,18], kernel density estimation [19], and subspace learning [20,21]. The discriminative-

based methods concentrates on binary classification, and is able to classify objects in the scene

into target and non-target regions discriminatively. Some discriminative-based methods

boosts [22,23] Support Vector Machine (SVM) [24], randomized leaning [25], discriminant

analysis [26,27], and code book learning [28]. Discriminative online learning methods can

increase the efficiency of online predictive performance results compared to its generative

counterpart [6,7].

Several visual tracking methods have been proposed based on appearance modeling. This

paper reviews the existing related methods tabulated in Table 1. It will also address the visual

representation and update model for each method. Details of the flow for study design and

search strategy through the review have been provided in S1 File and S2 File as supplementary

materials.

This paper proposes a spatiotemporal saliency and discrminative on-line learning method

for handling appearance variations in visual target tracking in aerial videos. The temporal

saliency is used to extract moving target regions based on frame differences and Sauvola

thresholding algorithm. The spatial saliency is used to represent the target appearance repre-

sentation for the extracted moving regions. In the case of spatial saliency detection, SLIC

superpixel segmentation, color, and moment features are used to compute region uniqueness

and spatial distribution of saliency measurements. However, it is a time consuming process,

and a parallel algorithm is proposed to deal with it. The algorithm is based on region (extracted

moving regions) distribution in a multi-core platform. Spatiotemporal saliency is then

obtained by combining the temporal and spatial saliencies to represent moving targets. Finally,

a discriminative online learning algorithm is applied to generate sample models, which are

then incrementally updated to detect the target in appearance variation conditions. The details

of the proposed method will be elucidated in the materials and methods section. The contribu-

tions of this study are as follows:

1. A spatial saliency detection method is proposed to effectively represent the target appear-

ance based on region uniqueness and spatial distribution measurements.

2. A parallel spatial saliency detection algorithm is proposed and implemented in a multi-core

platform to enhance the processing-time for the spatial saliency detection process.

3. A spatiotemporal saliency and discriminative on-line learning method is proposed for

visual target tracking in aerial video to overcome the difficulty of moving target detection in

appearance variation conditions.

The rest of this paper is structured in the following order: materials and methods detail the

proposed methods of this work. Section 4 discusses the experimental results and performance

evaluation. Finally, Section 4 presents the conclusion.

Materials and methods

This section discusses the proposed methods outlined in this work. It consist of modules,

which are target region extraction, saliency-based visual target representation, feature match-

ing, target motion representation, and update modelling, as per Fig 1. This research work has

Visual target tracking in aerial videos
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been conducted and reported according to PRISMA checklist guideline (refer to S3 File) to fol-

low the best practices in systematic review reporting. The details of the proposed method are

detailed in the following subsections.

Table 1. Review of some related methods.

Methods Visual representation Model Update Advantages/disadvantages

Zhang et al.,

[3]

Mean shift color segmentation, Dense Optical

flow estimation, affine transformation calculation

to represent large segments, pixel-based

Subordinate degree calculation for segment

representation.

Multiple background model estimation,

updating model by merging similar

background models.

The proposed method is able to detect the moving

targets in complicated conditions, moving camera

and by multi-model background estimation.

However, Optical flow-based visual

representation are high computational cost. Low

processing speed (4s per frame.).The proposed

method is for fixed target size and is not able to

detect targets with different size.

Xianbin et al.,

[57]

Kanade–Lucas–Tomasi (KLT) features for ego

motion estimation, Using motion consistence,

background Kanade–Lucas–Tomasi features are

separated, and a target is represented.

Incorporation of camera ego motion and particle

filter to represent the target position.

Ego camera motion model is constructed

based on background features. In order to

update the model HSV color histogram and

Hu moment are utilized.

The proposed method is able to track the targets

in airborne videos when the camera and target are

moving.

However, the appearance modeling in this visual

tracking method is able to detect the moving

target in simple background. Since it is not

included online learning model updating, it is

difficult to extend the application of this method

in complicated conditions such as occlusion and

illumination changes.

Aeschliman

et al., [58]

SURF-based feature Segmenting the target from

the background.

Spatial distribution of the corresponding pairs

in the images with background modeling

The proposed method is able to construct an

accurate background model to target tracking

when both camera and targets are moving. It is

able to track the targets when appearance

variations caused by shadows and lighting

changes. However, prior parameters setting for

camera calibration are required. Manually

initialization of target representation is required

in the tracking process.

Shen et al., [2] Multi cue spatial-color sub-regional distribution.

Histogram-based (color) contrast. Spatiotemporal

saliency target representation.

No background or target appearance

modeling.

The propose method is fast and able to detect the

moving target when the camera and target are

both moving.

However, there is no melding of background and

not efficient in complicated conditions such as

cluttered-background, occlusion and

illumination. High false alarm rate in appearance

scenarios.

Yu et al., [59] Optical flow, Tensor Voting Background modeling The proposed method is able to detect the moving

targets efficiently in noisy background and long-

term occlusions.

However, the proposed method is not included

spatial information for target representation;

which is not able to describe the details of target

appearance.

Lan et al., [52] Kanade-Lucas-Tomasi (KLT) feature, Relative

distance change (RDC) measure to represent the

target in background scene that is based on a

classification of matched feature pairs

No background or target appearance

modeling.

The proposed method is fast and accurate in

moving object detection in airborne Video.

Relative distance change (RDC) measure is

proposed to distinguish the target from

background scene, which is invariant to image

rotation, translation, and scaling. However, There

is no melding of background and target, and it is

not efficient in complicated conditions such as

cluttered-background, occlusion and

illumination.High false alarm rate in appearance

scenarios.

https://doi.org/10.1371/journal.pone.0192246.t001
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Target Region Extraction (TRE)

The TRE module involves two sub-modules: temporal saliency detection and target region

localization.

Temporal saliency detection. Moving regions attracts more attention in videos [10].

These regions are generally called AR [29]. AR is extracted using temporal saliency informa-

tion, upon which they are called candidate mask (CM) regions. To obtain CM regions, frame

difference and Sauvola local adaptive thresholding algorithms are used alongside the following

details:

Frame Difference. The frame differencing algorithm is used to identify moving objects in

consecutive frames. This basic technique employs the image subtraction operator, which takes

two images (or frames) as input to produce an output [30]. Eq 1 can be used to calculate the

Fig 1. Our proposed framework.

https://doi.org/10.1371/journal.pone.0192246.g001

Fig 2. Visual comparison for thresholding algorithms.

https://doi.org/10.1371/journal.pone.0192246.g002
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difference between the two frames:

ðDIFF½i; j� ¼ I1½i; j� � I2½i; j�ÞÞ ð1Þ

where I1 and I2 are two subsequent image frames, and i and j are pixel coordinates for each

frame.

Image thresholding, The result of frame difference included noises as well. A local adaptive

thresholding, in the form of Sauvola algorithm [31], was utilized to threshold the image and

remove unwanted regions (noises). In order to show why we used the Sauvola thresholding algo-

rithm, an experiment was carried out, and the comparison results presented. As illustrated in Fig

2, the result of Sauvola thresholding algorithm is better than other algorithms in the context of

the number of noises. The Sauvola algorithm was shown to satisfy performance in noisy images,

as per [32,33]. Based on the obtained results from the experimental and previous studies, the Sau-

vola local adaptive thresholding algorithm is used for thresholding and segmentation purposes.

Target region localization. Once the temporal saliency module has identified the CM

regions, the localization module is applied to localize the extracted CM regions based on con-

nected component and blob identification algorithms [34]. This module involves the following

steps:

Edge segmentation. Canny edge segmentation is ran on the binarized image to further

improve the extracted region [35].

Blob Identification. The output of the edge segmentation contains many pixels and regions.

Most of them are unwanted and needs to be removed. A blob analysis can be used to remove

them, and is performed based on the connected components and region properties.

Candidate Mask (CM) Generation. The area and centroid features are used to recognize

the location of each ROI. The ROI uses Xpos and Ypos as the centroid coordination of each

region that can be obtained using moment features. Based on the obtained value of the cen-

troid coordination and blob region size identification, the candidate mask (CM) are generated,

as shown in Fig 3.

Saliency-based Visual Target Representation (SVTR)

SVTR represent the target appearance. It can be used for target detection and target sample

model generation. Saliency-base features have been investigated by many researchers for target

detection due to its high performance [2]. By adopting the visual saliency detection issue, this

paper proposed a visual saliency detection to represent targets in aerial videos. SVTR consist of

two steps: sub-region generation and spatial saliency detection, detailed in the following

subsections.

Parallel candidate mask segmentation. The purpose of this step is to segment the CM

region into sub-regions and distribute it into different processors. The sub-regions are used to

distinguish the non-target region and target region, examples being the 4_5.jpg and 16_5.jpg

images shown in Fig 3. These images are non-target regions that can be distinguished using

sub-regions segmentation. The SLIC algorithm [36] can be used for sub-region segmentation,

but it is computationally expensive [37] and is time consuming in the case of spatial saliency

detection. To circumvent these drawbacks, an algorithm is proposed for the distribution of the

CM regions into different CPU platforms so that they can be processed in parallel. The core

concept of this algorithm is to perform the segmentation process on the candidate mask region

in parallel instead of the whole image. In this work, the SLIC algorithm is applied to the CM

regions instead of the whole image in our algorithm. The proposed algorithm can very well

decrease the computation cost of the SLIC algorithm. Fig 4 shows the proposed algorithm for

parallel candidate mask segmentation.

Visual target tracking in aerial videos
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1. CM regions Counting, this step counts the number of CM regions.

2. Threads Assignment, the number of threads are identified based on number of CM regions.

Then, each CM region is assigned to a thread.

3. SLIC-based Segmentation, SLIC is used to segment the CM regions and generate sub-

regions.

In SLIC-based segmentation, the proposed algorithm can be extended to the usage of the

SLIC algorithm in video-based on parallel implementation [38]. Based on the SLIC and paral-

lel algorithm, the CM regions can be segmented to generate sub-regions, as per Fig 5.

Spatial saliency detection. This section details the detection of more suitable sub-regions

based on spatial saliency. In order to detect spatial saliencies, region uniqueness and spatial

Fig 3. Candidates mask generation.

https://doi.org/10.1371/journal.pone.0192246.g003
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distribution (compactness of regions) measurements are investigated. Color and moment fea-

tures are used for uniqueness and compactness measurements. The color contrast feature is

used for dissimilarity measurement of a sub-region compared with its neighbor regions, and

the moment feature is utilized to measure the compactness of two different sub-regions (dis-

tance distribution between sub-regions). Details of uniqueness and compactness measurement

are as follows:

1) Spatial uniqueness measurement. The uniqueness for a sub-region was measured to deter-

mine if it exhibit similar color contrast with its neighbors’. The color feature for both regions

are then extracted, and their similarities are measured using an Earth mover’s distance (EMD)

algorithm. Eq 2 utilizes the EMD to measure color similarity measurement in the following

form:

Ci ¼
Pn

j¼1;j6¼iexp
� Di;j

aj

 !

ð2Þ

where aj is the area of region Rj, and Di, j denotes the EMD to measure the distance of the

mean color between Ri and Rj. Eq 2 indicates the regions whose colors are different from other

regions in the image. The color similarity measures of all regions are then normalized into the

range of [0, 1], and the color saliency of Ri is interpreted by Scol
i ¼ 1 � Ci. Higher color saliency

values are assigned to regions where higher color dissimilarity is recognized compared to

other sub-regions.

Fig 4. Parallel algorithm for candidate mask segmentation.

https://doi.org/10.1371/journal.pone.0192246.g004

Fig 5. Segmented sub-regions using SLIC. (a) A candidate mask (CM) region, (b) Sub-region generation based on

proposed parallel SLIC segmentation algorithm.

https://doi.org/10.1371/journal.pone.0192246.g005
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2) Spatial compactness measurement. The pixels of the those sub-region that included high

saliency values are used to determine compactness [39]. Compactness is defined when two

individual sub-regions are close to one other. Spatial moments feature is used to measure the

compactness of the sub-regions. First and second-order of moment feature is used for spatial

moment feature [40]. The Raw moment FD(m, n) is used to calculate the moment features.

Accounting for the fact that �m and �n are components for the region centroids, the FD(m, n)

for (p + q) can be defined as [3,16],

Mpq ¼
P

p

P
qm

p nq FD ðm; nÞ ð3Þ

Considering the FD(m, n) as 2D continuous function, the moment feature can be calculated

using Eq (4),

Mpq ¼ ∬mp nq FDðm;nÞ ð4Þ

where the centroid coordinates can be calculated as:

�m ¼
M10

M00

; �n ¼
M01

M00

Then, the obtained values (region centroids) from the moment feature are used for sub-region

compactness measurement. The sub-region compactness is measured based on distance mea-

surement of identified center points of two spatial moments. Eq 5 can be used to measure com-

pactness.

Ds
i ¼

PN
j¼1
kpi � pjk

2
ð5Þ

where the kpi − pjk
2 is a quadratic term of distance between the centroid of sub-region i and j.

Saliency integration. The meaningful integration of temporal and spatial saliencies is

necessary to produce a final spatiotemporal saliency map [41]. In this paper, adopted from

[16], the final saliency map is generated by integrating the temporal and spatial saliencies.

Feature matching

During the spatiotemporal saliency detection, the generated features based on color and

moments features are integrated, and a feature vector is generated for individual sub-regions.

The generated feature vector for new sub-regions are compared with previous generated fea-

ture vector extracted from prior frames. An Euclidean distance is used to measure the differ-

ence between these two feature vectors [42]. Based on the obtained value from the Euclidean

distance, it can be surmised whether or not a new sub-region belongs to a target region. The

recognized sub-regions are used as targets for target motion representation and model update.

Target motion representation

This module localizes the target and represent the motion features of the moving target region.

A tracking and detection algorithm, adopted from [43], is used for target motion representa-

tion [40]. The tracking and detection algorithm is based on the output from the spatiotemporal

saliency and a blob region extraction algorithm. The output of the spatiotemporal saliency,

which consist of temporal saliency extraction, is integrated with blob analysis to localize the

targets in the videos.

Visual target tracking in aerial videos
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Model update

The recognized target region derived from the feature matching process are used to generate a

model to represent the targets in appearance variation conditions. This model also requires

incremental update to obtain more samples from target appearance changes.

This study adopts a Multiple Instance Learning (MIL)-based algorithm to generate and

update the model. Principally, the MIL algorithm requires instances (image patches) and dis-

criminative classifier to classify and label the instances into positive (target regions) and nega-

tive (non-target region) [44,45]. The former is then collected into a set called bags, which are

incrementally updated through on-line discriminative classifier to distinguish the positive and

negative instances.

In this study, the positive instances are defined as different parts or a whole region of target,

while the negative instances consider the regions surrounded around target region belonging

to the background. In order to distinguish the positive and negative instances, the extracted

features from the feature matching process are used for each instances. The features from new

instances are compared to existing features from previous instances, which were already

located in the bag. A similarity measurement based on template matching algorithm was car-

ried out for this comparison. This matching process is used for instances classification to iden-

tify and label the positive and negatives instances. Finally, the positive instances are collected

into bags. These bags could contain many samples from the target regions, which can be incre-

mentally updated for more samples. Fig 6 shows an example of generated bag (positive

instances) and negative ones for a particular target. The positive instances are collected in the

bag and labeled X1, while the negative instances are labeled Xn. For appearance variation such

as pose and scale, the update modelling is also performed to generate the models. The gener-

ated model is updated to cover the pose and scale variations of target in upcoming frames.

Experimental results

This section details the experimental results and performance evaluation of the proposed

method. The proposed method was used various standard videos to confirm its efficiency. The

videos are collected from VIVID dataset [46], and report appearance variation difficulties,

such as complicated background, illumination changes, scale changes, and pose variations.

The results from the videos are visually and quantitatively compared to those outputted by

other methods. The visual comparison reports the image results by the proposed and other

methods, while quantitative analysis involves performance measurements based on precision,

recall, F-measure evaluation metrics, and processing time.

VIVID dataset

The VIVID dataset consist of different types of aerial videos for visual tracking evaluation [46].

The videos are captured using a single camera mounted on an aerial device at 30 frames per

second (fps). The VIVID dataset is constructed for the purpose of visual target tracking and

testing, and provides a range of complicated scenarios such as arbitrary and abrupt camera

motion, varying illumination, occlusions, fast-moving targets, which makes a suitable dataset

for testing visual object tracking [47]. The details of the videos are shown in Table 2. These vid-

eos confirmed that the VIVID dataset is excellent for testing visual tracking method in appear-

ance variations and complicated conditions [48] (see S1 File for more details).

Visual target tracking in aerial videos
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Visual comparison

In this section, the visual comparison presents the result of moving target region segmentation

process for the proposed method and other methods. Visual comparison was performed in two

categories: region segmentation and motion-based detection. For the former, comparison were

made between the proposed method and other methods: Itti [11] and GBVS [12] methods, as

shown in Figs 7 and 8. The Itti and GBVS methods are considered as laying the foundation for

saliency-based detection systems. They are mainly used as benchmarks for new visual saliency

detection algorithms. On the other hand, the proposed method is compared to a common

motion-based detection algorithm in the form of frame differencing method, as shown in Fig 9.

Fig 6. Labelling of positive instances in a bag and negative ones for a particular target.

https://doi.org/10.1371/journal.pone.0192246.g006

Table 2. Details of VIVID data set.

Video Number of frames Image size

EgTest01 1821 640 � 480

EgTest02 1301 640 � 480

EgTest03 2571 640 � 480

EgTest04 1833 640 � 480

EgTest05 1764 640 � 480

https://doi.org/10.1371/journal.pone.0192246.t002
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Fig 7. The moving target segmentation for aerial images, first row is original image, second row is the frame

difference technique, and the third row is our proposed segmentation method.

https://doi.org/10.1371/journal.pone.0192246.g007

Fig 8. Visual comparison for moving target region segmentation for saliency-based methods and our proposed.

https://doi.org/10.1371/journal.pone.0192246.g008
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Quantitative analysis

The quantitative analysis consists of performance evaluation and comparing the proposed

method to other methods. In this paper, recall, precision, and f1-measure evaluation metrics

are measured to evaluate its performance [48]. Basically, some variables need to be defined to

measure the performance metrics, which are True Positive (TP), True Negatives (TN), False

Positive (FP), False Negative (FN).

• TP: Detected salient regions corresponding to a target,

• TN: No detection of salient regions where there is not a target,

• FP: Detected salient regions that do not correspond to a target,

• FN: No detection of salient regions where there is, in fact, a target.

According to variable definitions, the performance metrics are measured using Eqs (6), (7),

and (8).

i. Precision,

Precision ¼
Pn

i¼1

TP
TPþ FP

� �

� 100% ð6Þ

ii. Recall,

Recall ¼
Pn

i¼1

TP
TP þ FN

� �

� 100% ð7Þ

iii. F1-measure

F-measure is regarded as an integrated performance criterion of precision and recall,

Fb ¼ ð1þ b
2
Þ �

precision � recall
ðb

2
� precisionÞ þ recall

� �

ð8Þ

Fig 9. Visual comparison for moving target detection methods. The first row is original images, the second row is

frame difference method and third row is our proposed method.

https://doi.org/10.1371/journal.pone.0192246.g009
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Here, we set β = 1 to calculate the harmonic mean of recall and precision,

F1 � measure ¼ 2�
precision� recall
precisionþ recall

� �

ð9Þ

where the F1-measure is the harmonic mean of precision and recall, and is extensively used in

pattern recognition community to evaluate the performance [48]. Table 3 shows the precision,

recall, and F1-measure metrics results for the proposed method.

The proposed visual tracking is compared with other visual tracking methods, such as the

Variance Ratio [28], Color-based Probabilistic [49], and Wang et al., [50], Shen et al., [2], Yin

et al., [51], Lan et al., [52], annealed mean shift (AMS) [53], Landau Monte Carlo (WLMC)

[54], N-Fold Wang-Landau (NFWL) [54], and cascade mean shift (CMS) [55]. The compari-

sons were conducted based on the F1-measure. Table 4 shows the5quantitative comparison

results for the proposed method and other relevant methods.

On average, the proposed method achieves comparable performance compared to other

visual tracking methods within this dataset. In some sequences, our method outperformed

other techniques; in sequences 3 and 5, the presence of occlusion and overlap led to Wang’s

method performing slightly better as shown in Fig 10.

Furthermore, Youden’s test is also accomplished on achieved results to prove the efficacy of

the proposed method. The Youden’s test was introduced by Youden in 1950 [56] which is a

measurement to statistically analysis the performance of the algorithms and methods. Princi-

pally, this measurement is utilized J variable for performance analysis. This J variable can be

calculated using following equation:

J ¼
TP

TP þ FN
þ

TN
TN þ FP

� 1 ð10Þ

In this experiment, the Youden’s (J)measurement were calculated for each video (EgTest(s)

frame sequences) separately. For this measurement, each video was firstly divided into four

sections to test the performance in different range (number of frames). For example, EgTest02

contains 1821 frames in total. It was divided to four sections as 150, 450, 1150 and 1821 num-

ber of frames. For each section, the Youden’s J value was calculated for each sections and vid-

eos as shown in Fig 11.

The EgTest videos have different environment complexities. These complexities include

vehicles overlapping, natural objects (trees) occlusion and very small vehicles. The complexi-

ties can be directly influenced on detection results. With increasing the complexities, they lead

to increase false negative and decrease true negative. For example, if the targeted vehicle tries

to pass front another vehicle, an overlapping complexity can be occurred. In this case, the

overlapped vehicles as salient region and target cannot be detected and then it is caused to

increase false negative. Considering the complexity issue, Youden measurement shows that

our method has better results on EgTest01 and EgTest04. These two videos have less

Table 3. Proposed method evaluation based on precision- recall and F1-measure metrics.

Video Precision Recall F1-measure

EgTest01 96.73 98.85 97.78

EgTest02 66.00 84.97 74.29

EgTest03 80.68 84.94 82.76

EgTest04 83.91 89.32 86.53

EgTest05 68.11 82.62 74.67

https://doi.org/10.1371/journal.pone.0192246.t003
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complexity in compared to other videos. EgTest05 obtainedn less Youden’s J value that relates

to its environment complexity. Finally, the experiments for the methods were conducted on a

platform with an Intel Core 2 Quad Core 2.83 GHz CPU with 4 GB of RAM. The processing

time was measured based on wall-clock time computation [38]. The tick_count class from a

wall-clock (located in tbb/tick_count.h) is used to measure the wall-clock. The average pro-

cessing time for our proposed method is 38.61 ms.

Conclusion

A spatiotemporal saliency and discriminative on-line learning method was proposed for han-

dling complicated conditions and appearance varitions in visual target tracking for aerial

video. We used visual saliency-based detection to represent visual targets. Temporal saliency

was used to represent the moving target regions, and is extracted based on frame difference

with Sauvola local adaptive thresholding algorithms, while spatial saliency was used to repre-

sent the target appearance details in candidate moving regions. For the spatial saliency detec-

tion, SLIC superpixel segmentation, color, and moment features were used to compute the

feature’s uniqueness and spatial distribution of saliency measurements. The spatial saliency

detection is a time consuming process, and a parallel algorithm was derived and loaded into

the multi-processors to optimize and distribute the saliency detection processes. Spatiotempo-

ral saliency was then obtained by combining the temporal and spatial saliencies to represent

moving targets. Finally, a discriminative online learning algorithm was applied to generate a

sample model based on spatiotemporal saliency. This sample model was incrementally

Table 4. Quantitative comparison of visual tracking methods and our proposed method based on F1-measure.

Video Variance

Ratio

Color-based

probabilistic

Wang

et al.

Liang

et al.

Shen

et al.

Yin

et al.,

Lan

et al.,

AMS WLMC NFWL CMS The proposed

method

EgTest01 68.32 65.03 72.53 76.78 96.30 93.06 91.87 84.12 68.47 63.85 84.72 97.78

EgTest02 56.67 65.24 53.30 60.81 73.31 61.40 47.63 76.18 62.82 59.85 78.14 74.29

EgTest03 77.16 65.08 85.84 77.39 71.12 60.68 48.39 71.78 61.14 58.51 72.63 82.76

EgTest04 84.61 59.71 83.52 81.40 65.31 52.29 70.08 68.62 53.04 52.73 74.54 86.53

EgTest05 82.01 71.15 83.87 80.56 50.13 75.62 71.96 63.96 58.80 56.75 70.08 74.67

https://doi.org/10.1371/journal.pone.0192246.t004

Fig 10. Illustration of quantitative comparison for visual tracking methods and ours.

https://doi.org/10.1371/journal.pone.0192246.g010
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updated to detect the target in appearance variation conditions. Extensive experiments were

conducted on the VIVID dataset, including 5 videos with appearance variations difficulties.

The performance of proposed visual tracking was evaluated, and the results compared with the

other methods. The experimental results confirmed that the proposed method is superior to

the other methods. Future works can address other difficulties and challenges in visual track-

ing, such as the presence of more complicated backgrounds, overlapping, and out-of-plane

difficulties.
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