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Abstract

Norovirus (NoV) is the greatest cause of infectious intestinal disease in the UK. The burden
associated with foodborne outbreaks is underestimated in part because data are dispersed
across different organisations. Each looks at outbreaks through a different lens. To estimate
the burden of NoV from seafood including shellfish we used a capture-recapture technique
using datasets from three different organisations currently involved in collecting information
on outbreaks. The number of outbreaks of NoV related to seafood including shellfish in
England was estimated for the period of 2004-2011. The combined estimates were more
than three times as high (V=360 using Chao’s sample coverage approach) as the individual
count from organisation three (N = 115), which captured more outbreaks than the other two
organisations. The estimates were calculated for both independence and dependence between
the datasets. There was evidence of under-reporting of NoV outbreaks and inconsistency of
reporting between organisations, which means that, currently, more than one data source
needs to be used to estimate as accurately as possible the total number of NoV outbreaks
and associated cases. Furthermore, either the integration of reporting mechanisms or simpli-
fying the process of reporting outbreaks to organisations is essential for understanding and,
hence, controlling disease burden.

Introduction

Norovirus (NoV) infection is the commonest cause of diarrhoea and vomiting worldwide [1].
The virus has a low infectious dose and frequently leads to outbreaks [2]. Most infections are
acquired through person to person contact, leading to secondary and tertiary transmission
[3, 4]. The reservoir for human NoV is the gastrointestinal tract of humans. Consumption
of bivalve shellfish, most often raw oysters, is commonly associated with NoV infections
[5]. This is usually as a result of contamination of the water in which the oysters are grown
and harvested [6]. The virus adheres to the intestinal tract of the oysters and depuration is
not effective at removing NoV [7]. In addition, contamination of shellfish by infectious
food handlers, as is commonly reported for other food commodities [8], may contribute to
the burden of shellfish-related outbreaks.

In the UK, data on outbreaks of NoV associated with shellfish can be reported to three
agencies. The mechanisms driving the reporting to each of the three organisations differ.
One organisation is responsible for collating data on human illness separating NoV outbreaks
in hospitals from those associated with food. A second has food safety as its primary remit and
the third takes responsibility for microbiological testing of shellfish. The reporting process
takes different pathways depending upon the origin of reports of illness and whether the illness
is thought to be foodborne. It is complicated by the fact that symptomatic individuals are dis-
couraged from visiting their general practitioner (GP) to prevent person to person spread of
NoV and this also contributes to underreporting [9].

Capture-recapture analyses have been used in epidemiology since Wittes and Sidel’s work
on estimating the frequency of adverse reactions to methicillin using information from several
different sources [10]. They have been used to estimate the number of human foodborne infec-
tions with agents such as Salmonella [11] and to evaluate the number of cases missing from
surveillance programs, for example, scrapie in the UK [12]. Many of the earlier methods which
apply capture-recapture methodology in the context of epidemiology for assessing under-
ascertainment assume independence of reporting sources. For example, the well-established
method of Peterson [13] provides a simple way in which two independent lists can be used
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together to estimate the true number of individuals in the com-
munity. Chapman [14] provides a modified version of the
Peterson estimator, which again assumes independence of lists
but corrects for biases introduced by a small overlap between
lists. If there is positive dependence between the two lists (so
that membership of one list makes membership of another
more likely), both the Peterson and the Chapman estimators
will prove unreliable.

The first objective of the study was to estimate the number of
NoV outbreaks associated with seafood in England between the
years 2004 and 2011 using outbreak reporting data from three dif-
ferent organisations in England. Capture-recapture methods will
be used to estimate the number of outbreaks by observing
which of the three organisations receive reports of individual out-
breaks and exploiting information on their occurrence with the
other two organisations. The second objective was to determine
the levels of dependence between pairs of lists and to ascertain
whether an outbreak was more or less likely to appear on one
list if it had appeared on another to improve the estimate of the
number of outbreaks.

Methods
Data

Datasets from three different governmental organisations con-
sisted of: date of outbreak; date of reporting; location of outbreaks;
type of location e.g. restaurant; the affiliation of the outbreak
reporter e.g. local government, member of the public etc; and
details about the outbreak including the pathogen (and strain),
suspected food vehicle, number of cases and number at risk
where known. Outbreaks were compiled into lists, each list corre-
sponding with one of the three organisations.

An outbreak was defined as cases of NoV reported to an
organisation. Organisation one (O1) recorded outbreaks from
2004 and 2015, organisation two (O2) recorded outbreaks from
2003 to 2011 and organisation three (O3) recorded outbreaks
from 1995 to 2015. The only common food vehicle for outbreaks
for all three organisations was seafood.

Criteria for inclusion

Outbreaks which originated from England between January 2004
and December 2011 and were associated with seafood were
included so that all datasets were temporally comparable.
Outbreaks were excluded if they were recorded as occurring in
the same establishment (based on the name of the establishment
and geographical location) within the same month or the dur-
ation of a month that overlapped 2 months within a dataset to
avoid counting an outbreak from recontamination by the same
source twice. When this occurred the first notification was
included in the study and subsequent notification was excluded.

Matching between organisations

A definite match between sources was determined by date (out-
breaks occurring within 2 weeks of each other were deemed to
be the same outbreak), the name of the establishment in which
the outbreak was recorded and its geographical location.

In cases where matching was performed, information was
judged to contain sufficient detail to inspire confidence that the
matching was accurate (e.g. using features such as establishment,
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location and date in combination). Cases, where an outbreak
occurred in a private setting, could potentially have been ambigu-
ous but were found to have occurred in different months which
enabled a distinction between them to be drawn.

Statistical methods

Estimating the number of outbreaks assuming dependence

Our working hypothesis is that there will be positive dependence
between lists given that the same individuals, for example,
Environmental Health Officers, may, in practice, be notifying dif-
ferent bodies, either at the same time or within a narrow time-
window. To account for this, we initially use the sample coverage
approach proposed by Chao and Tsay [15] and illustrated further
in Chao et al. [16]. We use R package CARE1 [17], run in R ver-
sion 3.4.1 [18], to calculate Petersen, Chapman and Chao and
Tsay population estimates and their associated 95% confidence
intervals. Within this, dependence is modelled using a group of
parameters called the coefficients of variation. For a pair of lists
j and k, the coefficient of variation between the lists is defined as

E[(Pj — p)(Pik — )]
M

Yik =

where Pj; is the probability of outbreak i being in list j and ; is the
probability being in list j, averaged over all outbreaks.

The coefficient of variation relates to the covariance of samples
j and k. The coefficient is generalisable to sets of three lists. The
magnitude of yj; measures the degree of dependence between
samples j and k, with heterogeneous samples being independent
if and only if y; = 0. Positive dependence is indicated by y;>0
(and similarly negative dependence by yjx <0).

Before estimating the population size N, we must describe the
overlap between the different groups and combine this informa-
tion with the information on dependence provided by the y;
terms using a quantity called the sample coverage, which was ori-
ginally proposed by Turing and Good [19] and is expanded upon
in the context of under-ascertainment by Chao et al [16].
Consider the three list case. Given an outbreak from list three,
to determine overlap, we are interested in the probability that out-
break had also been identified by the combined lists one and two.
The overlap fraction is then the sum of the conditional probabil-
ities of each outbreak i appearing on list three who also appear on
list one and two combined, divided by the sum of the conditional
probabilities of all outbreaks i appearing on list three (i.e. putting
all those who appear on lists one and two combined and those
who do not, together). This relationship can be considered for
any of the three lists and so the sample coverage is defined as
the average of the three possible overlap fractions (list three
given list one and two combined; list two given list one and
three combined; and list one given list two and three combined).
This information is used to produce three estimates of N, of
which two are potentially of interest for our purposes: N, which
models dependence between lists and is appropriate if sample
coverage proves to be high; and N, which again models depend-
ence between lists but is appropriate if the estimated sample
coverage proves to be low. Confidence intervals (CI) are placed
around the population size estimates using bootstrap methods
as described in Chao et al. [16].

A second approach to accounting for the dependence in the
occurrence of outbreaks upon the lists from the different
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organisations involves the use of Poisson log-linear models as
described by Cormack [20]. Models were fitted to the counts of
outbreaks occurring on different combinations of lists. Observed
counts for each organisation were modelled as Poisson random
variables with expectation equal to the true underlying rate of out-
breaks multiplied in each case by some function of the outbreak
capture process for that organisation. The model assumes that
there is a closed population of outbreaks so that the true number
of outbreaks is fixed across the duration of the study. The meth-
ods derive from ecology where this assumption may be question-
able but given that there is no equivalent of birth and death in
epidemiological modelling of this nature this assumption is rea-
sonable. Again, capture histories for the organisations are
obtained by linking outbreaks. We fit the model including all
main effects (O1, O2 and O3) and considering all possible differ-
ent combinations of lists for interactions ([1,2] and [2,3]; [1,3]
and [2,3]; [1,2] and [1,3]; [1,2] only; [1,3] only; [2,3] only):
note it is not possible with three lists to include all pairwise com-
binations as this results in over-parameterisation.

Models were fitted using the Rcapture R package [21]
described in Baillargeon and Rivest (2007) [22] in R version
3.4.1 [18]. We compare models using the Akaike Information
Criterion (AIC) [23].

Exploring sources of heterogeneity

Possible sources of heterogeneity between organisations were
reporting sources, seasonality (winter (November—April) and
summer (May-October)) and the size of the outbreak. We inves-
tigated these through descriptive analyses, graphical analyses and
where possible through fitting Poisson log-linear models.

Results

In total, there were 193 distinct outbreaks which were ascertained
in at least one of the lists. Of these, 149 outbreaks occurred in
winter and 43 outbreaks occurred in summer. O1’s list contained
75 outbreaks, O2’s list contained 66 outbreaks and O3’s list con-
tained 115 outbreaks. The co-occurrence of outbreaks on the dif-
ferent combinations of lists is shown in Figure 1. Overlap was
greatest for Ol and O3 and least for O1 and O2. Only six out-
breaks were common to all three organisations, whereas 136 out-
breaks were only found on one list.

The numbers of outbreaks estimated using the methods of
Petersen, Chapman and Chao, Tsay et al. are shown in Table 1.
Taking account of dependence between the lists the sample
coverage-based approach suggested that as the estimated sample
coverage was low (C = 0.46) the estimator N is preferable. The
number of distinct outbreaks using the three lists was estimated
as Ny = 360 (95% CI 299-457). All estimates were higher than
for outbreaks recorded by individual organisations and the num-
ber of distinct outbreaks. The only exception to this was the
Petersen and Chapman estimates using only the lists from Ol
and O3, both of whose confidence intervals overlapped with the
number of distinct outbreaks overall (n = 193). They did not, how-
ever, overlap with the number of distinct outbreaks that the lists
for only O1 and O3 had in common (n=127), which were
lower than for all other combinations of lists and methods used.

The associations between organisations were assessed using
the coefficient of variation. The association between the O1 and
O3 lists was positive (N, as 0.80), whereas the associations
between the O1 and O2 lists was negative (N, as —0.42) and
the O2 and O3 lists were negative (N, as —0.15). The coefficient

Organisation 3

Organisation 1

Fig. 1. Co-occurrence of outbreaks within the three sources.

Table 1. The estimates of the number of outbreaks of norovirus due to seafood
in England, 2004-2011

List Peterson Chapman Chao
combinations estimates estimates estimates
Organisations 619 (350-992) 565 (350-992) NA

1and 2

Organisations 201 (177-239) 199 (177-239) NA
land3

Organisations 422 (304-590) 408 (304-590) NA

2 and 3

Organisations NA NA Nl = 360
1,2and 3 (299-457)

of variation helps to explain the discrepancies in the various esti-
mates presented in Table 1. If only lists one and three had been
used to derive an estimate of the true number of outbreaks, the
positive dependence between the lists would result in the best esti-
mate of outbreaks being underestimated. Conversely, if list two
had been used in combination with either list one or list three
then the true number of outbreaks would be over-estimated as
a consequence of the negative dependence between lists two
and one and lists two and three.

The interactions (co-occurrence of outbreaks on different lists)
between lists for the whole dataset and for the Winter sub-dataset
were modelled using Poisson log-linear models. AICs for all pos-
sible combinations of interactions between lists are displayed in
Table 2, for full information about the model see Table SI.
There were two different models that could not be fitted repre-
sented as NA in Table 2. The model containing all possible inter-
actions had as many parameters as data points resulting in it
being overfitted. When there was very small overlap between
lists 1 and 3 only and lists 2 and 3 only there was numerical
instability in model fitting. The most satisfactory model as judged
by the AIC allowed for main effects plus an interaction between



Table 2. AICs for all interaction models
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All data - Abundance (95% profile log-likelihood Winter data Abundance (95% profile log-likelihood
Interactions AlC confidence interval) only - AIC confidence interval)
Including all interactions NA NA NA NA
listed below
Organisations (1,2) +(1,3) 46.1 416 (305-656) 44.8 257 (194-411)
Organisations (1,2) +(2,3) 54.1 239 (216-277) 51.1 174 (159-200)
Organisations (1,3) +(2,3) NA NA NA NA
Organisations (1,3) 452 480 (356-706) 446 314 (234-472)
Organisations (1,2) 63.0 276 (243-325) 54.8 188 (168-218)
Organisations (2,3) 62.6 269 (235-322) 62.6 194 (171-230)

lists one and three (AIC =46.1). The main effects represent data
for outbreaks appearing on list one only, list two only and list
three only. The interactions beyond this for lists one and two
only and lists two and three only are small (n=2 and n=12
respectively), whereas the interaction between lists one and
three are much larger (n=37). Therefore the effect of assuming
independence only assumes independence between list two and
the other lists.

The best estimate of the number of outbreaks from this model
is 480 (95% profile log-likelihood-based CI 356-706), which is
two and a half times higher than that from the distinct number
of outbreaks and those reported by individual organisations
(n=193). The range of estimated outbreaks using this method
overlapped with those from all other estimates with the exception
of both the Petersen and Chapman estimates using O1 and O3.
The need for information from O2 to be included is borne out
by both the Chao estimate and the Poisson log-linear model that
indicated that the only important interaction was between lists
one and three. There is less overlap between O2 and the other
two organisations indicating that it contains extra information.

Sources of heterogeneity

Setting of the outbreak

Exploring heterogeneity by setting (where the outbreak occurred),
all outbreaks on all lists had a recorded setting. A bar chart of the
number of outbreaks from each of a set of settings on each of the
three lists is shown in Figure 2.

The principal points of note are that the scope of settings for
the lists from O1 and O3 are very similar, with the predominant
focus being on restaurants; whereas the scope of settings for O2 is
rather wider, covering a range of environments in which food may
be served.

Seasonality

The date on which the outbreak began was recorded for 192 of the
193 outbreaks. The pattern of recorded outbreaks by month is
shown in Figure 3.

The majority of outbreaks reported by all three organisations
occurred in the winter months (# = 149) compared with summer
months (n=43) (Table 3). The spread of outbreak reporting in
02 and O3 extends across the whole year. In contrast, O1 records
no outbreaks from August to November (Table 3). This may be
explained by reporting source when comparing the remit of O2

with the differing remits of O1 and O3. The July spike observed
for O3 is largely explained by a series of temporally proximate
but geographically distinct outbreaks in 2007, which relate to a
common risk factor. The July outbreaks for O2 differ entirely
from those for O3 and are spaced throughout the study period
(one in 2004; three in 2005; two in 2009; and one in 2011).
One outbreak was excluded from this subgroup analysis because
its season of occurrence was unrecorded. Poisson log-linear mod-
els were carried out for winter data and included all possible com-
binations of interactions between lists. AICs from all fitted models
are again displayed in Table 2.

Considering the winter models displayed in column three of
Table 2, as in the whole dataset model inclusion of the interaction
between lists one and three only produces the simplest model with
the lowest AIC (AIC=44.6), suggesting that the interaction
between the lists of O1 and O3 is important for the estimation
of the number of Winter outbreaks. The corresponding estimate
of the number of winter outbreaks is 319 (95% profile
log-likelihood-based CI 233-471). This is substantially higher
than the distinct number of outbreaks and the number of out-
breaks recorded by each organisation.

Source of reporting

The recording of the reporting source is very comprehensive for
all three organisations (95%, n=71 for organisation 1; 100%,
n =66 for 02; 87%, n =100 for O3). O1 and O3 receive the major-
ity (89%, n=63 and 78%, n="78) of their outbreak reports from
local government-based sources; in contrast, O2 receives the major-
ity (59.1%, n=39) of its outbreak reports from health-related
sources e.g. hospitals. On occasion, outbreaks which have been
reported by one organisation to another do not feature on the
original organisation’s list.

Size of outbreak

Of the 193 outbreaks, 98.4% (N =190) reported at least one esti-
mate of the number of people affected. For outbreaks reported to
more than one organisation the number of people affected, where
recorded, varied between organisations. This may be explained by
time-point during the outbreak i.e. at the start, middle or end, that
the organisation was contacted. Just one outbreak indicated more
than 500 people affected and for seven distinct outbreaks, the
number affected indicated 50 or more cases. The majority of out-
breaks for which a count was recorded indicated between 1 and 49
cases in total for 182 outbreaks. All but one of the larger out-
breaks were recorded by more than one organisation.
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Fig. 3. Bar chart of the number of outbreaks by month and organisation, 2004-2011.

Discussion

This is the first time that an estimate of the burden of outbreaks
associated with seafood in England has been made. The combined
estimates were more than three times as high the individual count
from O3, which captures more outbreaks than the other two orga-
nisations. The higher estimates from the combined approach suggest
that substantial under-reporting of NoV outbreaks takes place. The
findings are reliant on the accuracy of the matching of outbreaks
between the three different sources. Care was taken to ensure this
through the simultaneous consideration of outbreak location and
date of occurrence where provided, with clear criteria concerning
what constitutes the same outbreak being specified from the outset.

The consequences of under-reporting are many-fold. First,
under-reporting may affect the way that food producers, food
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handlers and the general public handle, prepare and consume sea-
food, since their perceived risk of food poisoning may be lower
than the actual risk. Second, secondary (and other subsequent)
transmission will be underestimated following the initial under-
estimating of cases infected from contaminated seafood [24]
assuming that the numbers of secondary cases are low or have
not contacted health services. Finally, without taking under-
reporting properly into account the public health significance of
NoV may be greatly under-estimated, with implications for infec-
tion and disease control.

Capture-recapture methods provide a practical and statistically
robust way of accounting for under-reporting of gastrointestinal
disease outbreaks caused by non-notifiable agents such as NoV
that is only notifiable if foodborne. The use of multiple lists
together with explicit modelling of the correlation between lists



Table 3. Frequency of occurrence of outbreaks on different combinations of
organisational lists throughout the year, and divided into Summer and Winter

All data Summer Winter
List combination N (%) N (%) N (%)
Organisation 1, 2 and 3 6 (0.04) 0 (0.00) 6 (0.04)
Organisation 1 and 2 2 (0.01) 0 (0.00) 2 (0.01)
Organisation 1 and 3 37 (0.24) 1 (0.02) 36 (0.26)
Organisation 2 and 3 12 (0.06) 3 (0.07) 9 (0.07)
Organisation 1 only 30 (0.19) 1 (0.02) 29 (0.18)
Organisation 2 only 46 (0.19) 17 (0.40) 29 (0.20)
Organisation 3 only 59 (0.26) 21 (0.49) 38 (0.24)

allows for a more accurate estimation of both the number of out-
breaks and associated uncertainty. The difference in the number
of estimated outbreaks for different combinations of lists reflects
the level of dependence between the lists, with negative depend-
ence between organisations yielding a higher outbreak estimate
and a high positive dependence a similar estimate to the numbers
of outbreaks on the lists. When estimating the number of out-
breaks of a non-notifiable organism, we suggest that where pos-
sible a minimum of three sources of information should be
taken into account, since with fewer than three lists the modelling
of dependence between sources is impossible and the inclusion of
such dependence is important for providing an accurate represen-
tation of the under-reporting process.

Poisson log-linear models could only be fitted to winter out-
break data and not summer data due to data sparsity. O1 received
no reports in summer. There are several reasons why reported
summer NoV levels may be low and these may be separated
into issues related to contamination and food consumption, and
issues related to the reporting process. Considering the former,
levels of norovirus in the UK produced oysters are shown to be
higher during winter than summer [25, 26]. The effects of this
could be exacerbated by specific consumption patterns, for
example, consumption of shellfish on St. Valentine’s Day [27].
In contrast, traditionally, people were deterred from consuming
of seafood in the summer in the UK (‘not eating shellfish when
there was no r in the month’), primarily due to the reproductive
cycle of certain shellfish, for example the native oyster (Ostrea
edulis), leading to poor eating condition [28] and this may lead
to lower consumption of shellfish in the summer months in the
UK. However, the majority of UK oyster growers farm Pacific
oysters (Crassostrea gigas) that can be eaten throughout the year
so shellfish are available all year around. Considering the possible
effects of the reporting process, summer cases of gastrointestinal
illness may be less likely to be reported as suspected NoV due
to the perception that NoV is predominantly a winter disease,
and this will have an obvious consequence for the reported num-
ber of cases reaching national statistics.

This study could not be replicated for other food sources such
as lettuce and raspberries [29, 30] which have been contaminated
with NoV and implicated in outbreaks. The pathway by which
foods other than seafood are tested for NoV in England is very
different from the seafood testing pathway and this limits the
applicability of capture-recapture approaches in such contexts.

Dependence between organisations has previously been taken
into account using three lists or more in epidemiological
capture-recapture studies, for example, Dunbar et al. estimating

J.L. Hardstaff et al.

tuberculosis cases [31]. This may be explained through the
mechanisms by which the organisations receive their reports.
The use of the capture-recapture methodology in the context of
estimating the burden of NoV associated with seafood is novel.
The outbreak counts held by the different organisations depend
upon the mechanisms by which outbreak investigations and ill-
nesses are reported. For example, in a study of Salmonella out-
breaks in France, reporting to one organisation was more likely
if an outbreak was community-based, and reporting to a different
organisation was more likely if the outbreak was caused by a par-
ticular strain of Salmonella. In contrast, positive dependence was
likely between the two organisations that were associated with
food [11], the same factor that led to overlap between two of
the organisations in this study (one and three). This phenomenon
commonly occurs when observing interactions between diagnos-
tic surveillance centres and centres which collect incidences of
notifiable illnesses, for example, as found by Nardone et al. [32]
when evaluating the surveillance of Legionnaires’ disease in
France. Capture-recapture approaches are useful for integrating
surveillance systems whose dependencies vary due to data collec-
tion [12] and interpreting the sensitivity of mandatory reporting
and associated attributable factors [32].

This is the first time that the burden of NoV outbreaks due to
seafood consumption in England has been estimated using
capture-recapture on datasets from three different agencies. This
study has shown that the burden of outbreaks associated with
shellfish is much more substantial than the partial view afforded
by interrogating surveillance data held by individual agencies.
Using data from different agencies could take into account report-
ing differences due to the remits of the agencies involved and util-
ise available data more effectively. What is required is that the
three agencies involved co-operate to produce an integrated sur-
veillance system that will improve estimates of the burden of
NoV associated with shellfish and provide better intelligence for
public health action.

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/50950268818003217
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