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ABSTRACT

Oligonucleotides containing 5-(N-aminohexyl)
carbamoyl-modified uracils have promising features
for applications as antigene and antisense therapies.
Relative to unmodified DNA, oligonucleotides con-
taining 5-(N-aminohexyl)carbamoyl-20-deoxyuridine
(NU) or 5-(N-aminohexyl)carbamoyl-20-O-methyl-
uridine (NUm), respectively exhibit increased binding
affinity for DNA and RNA, and enhanced nuclease
resistance. To understand the structural implications
of NU and NUm substitutions, we have determined the
X-ray crystal structures of DNA:DNA duplexes con-
taining either NU or NUm and of DNA:RNA hybrid
duplexes containing NUm. The aminohexyl chains are
fixed in the major groove through hydrogen bonds
between the carbamoyl amino groups and the uracil
O4 atoms. The terminal ammonium cations on these
chains could interact with the phosphate oxygen
anions of the residues in the target strands. These
interactions partly account for the increased target
binding affinity and nuclease resistance. In contrast
to NU, NUm decreases DNA binding affinity. This
could be explained by the drastic changes in sugar
puckering and in the minor groove widths and hydra-
tion structures seen in the NUm containing DNA:DNA
duplex structure. The conformation of NUm, however,
is compatible with the preferred conformation in
DNA:RNA hybrid duplexes. Furthermore, the ability
of NUm to render the duplexes with altered minor
grooves may increase nuclease resistance and elicit
RNase H activity.

INTRODUCTION

Chemical modification of nucleic acids is being studied
extensively as an approach for the development of
nucleic acid-based therapies, such as antigene, antisense
and small interfering RNA (siRNA) methods and for applica-
tions in biotechnology. In the case of the antigene method,
oligonucleotides are aimed at DNA molecules in the
single-stranded (1) or double-stranded state (2) to block
gene transcription. On the other hand, the goal with antisense
oligonucleotides is to form a hybrid duplex with the
mRNA, thereby inhibiting gene expression at the level of
translation (3). Regardless of the target nucleic acids and
the levels at which they inhibit gene expression, it is desirable
for these putative oligonucleotide therapies to possess high
target binding affinity and specificity, resistance against
nuclease degradation and cell permeability. The efficacy of
antisense oligonucleotides can be enhanced by activating
RNase H to cleave only the RNA strand of the DNA:RNA
hybrid duplex.

In view of these, a wide variety of oligonucleotides con-
taining modifications at the nucleobase (4–11), the sugar
ring or the phosphodiester backbone have been introduced
(12). The most common phosphodiester-modified oligo-
nucleotide is phosphorothioate DNA (PS DNA) in which
one of the non-bridging phosphate oxygen atoms is replaced
with sulfur. PS DNAs are easy to synthesize, and have
increased nuclease resistance compared to unmodified DNA
oligonucleotides (13). However, there are also some disad-
vantages of PS DNAs, such as low binding affinity for
RNA targets (14) and non-sequence-specific activity (15,16).
On the contrary, polyamines are known to have high binding
affinity for DNA and to increase duplex (17) and triplex
stabilities (18). Thus, we synthesized oligonucleotides carry-
ing various polyamines at the nucleobases (19–23) or at the

*To whom correspondence should be addressed. Tel: +81 45 924 5709; Fax: +81 45 924 5748; Email: atakenak@bio.titech.ac.jp
Present address:
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sugar rings (24–26). Some of these modifications stabilized
duplexes and triplexes and enhanced nuclease resistance. In
particular, incorporation of 5-(N-aminohexyl)carbamoyl-20-
deoxyuridine (NU; Figure 1a) into DNA strands increased
the thermal stability of the corresponding DNA:DNA duplexes
by �4.3�C (20) (see Figure 1c). Since 20-modifications are
known to increase binding affinity for RNA and to improve
nuclease resistance (27), we also synthesized oligonucleotides
containing 5-(N-aminohexyl)carbamoyl-20-O-methyluridine
(23) (NUm in Figure 1a). Such oligonucleotides formed
stable hybrid duplexes with complementary RNAs, with an
increase of �3.9�C relative to their unmodified DNA:RNA
counterparts. They also showed slightly higher binding
affinities for RNA compared to the oligonucleotides
containing NU. However, NUm residues decreased binding
affinity for DNA (Figure 1c). Interestingly, the oligonucleo-
tides containing NUm further exceed the improved resistance
of those containing NU against degradation by both exo-
and endo-nucleases. The hybrid duplexes formed between
DNA strands containing NUm and RNA could act as
substrates for RNase H, on the condition that the NUm residues
are separated by at least five continuous unmodified 20-
deoxyribonucleotides.

In this paper, we report the X-ray crystal structures of
B-form DNA:DNA duplexes containing either NU or NUm,
and of an A-form DNA:RNA hybrid duplex containing
NUm. Based on these duplex structures, we analyzed the
correlations between the conformational changes brought
about by the NU and NUm residues and the desirable thera-
peutic properties, such as target binding affinity and nuclease
resistance. In addition, we determined the effects of the NU
and NUm residues on the minor groove dimensions and
hydration structures, since such parameters are expected to
affect recognition by nucleases and RNase H.

MATERIALS AND METHODS

Synthesis, purification and crystallization

The oligonucleotides with sequences shown in Figure 1b
were synthesized on a DNA/RNA synthesizer (Applied
Biosystem Model 392), as described (23). The reverse-
phase high-performance liquid chromatography (HPLC)
purified oligonucleotides were analyzed by matrix-assisted
laser desorption/ionization time-of-flight mass spectrometry.
Initial screenings of the crystallization conditions were
performed using the hanging drop vapor diffusion
method, equilibrating 2 ml droplets against 1 ml of a reservoir
solution. The optimized conditions for growing the two
DD1 (DD1a and DD1b) and DD2 crystals were as follows.
DD1a: 0.4 mM DNA, 20 mM sodium cacodylate (pH 6.0),
40 mM potassium chloride, 2.5 mM magnesium chloride,
1.5 mM spermine tetrahydrochloride and 5% (v/v) 2-methyl-
2,4-pentanediol (MPD), equilibrated against 45% (v/v)
MPD. DD1b: 0.75 mM DNA, 20 mM sodium cacodylate
(pH 6.0), 40 mM potassium chloride, 6 mM spermine tetra-
hydrochloride and 5% (v/v) MPD, equilibrated against 35%
(v/v) MPD. DD2: 0.75 mM DNA, 20 mM sodium cacodylate
(pH 5.5), 40 mM sodium chloride, 5 mM magnesium chlo-
ride, 5 mM cobalt hexamine and 5% (v/v) MPD, equilibrated
against 35% (v/v) MPD. Crystals for DR1 and DR3 were
obtained, but they were not suitable for X-ray experiments.
Only DR2 was successfully crystallized under three condi-
tions, and the crystals will be referred to as DR2a, DR2b
and DR2c, hereafter. The optimized crystallization conditions
were as follows. DR2a: 0.5 mM DNA:RNA hybrid, 25 mM
sodium cacodylate (pH 7.0), 50 mM sodium chloride,
50 mM barium chloride, 5 mM spermine tetrahydrochloride
and 5% (v/v) MPD, equilibrated against 35% (v/v) MPD.
DR2b: 0.5 mM DNA:RNA hybrid, 25 mM sodium cacodylate

Figure 1. Structures of the modified nucleoside analogs (a), sequences and numbering schemes (b), and thermal denaturation of the DNA:DNA and DNA:RNA
duplexes (c). The thermal denaturation of the duplexes was performed as described in (23).
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(pH 7.0), 25 mM lithium chloride, 5 mM spermine tetrahy-
drochloride and 5% (v/v) MPD, equilibrated against 35%
(v/v) MPD. DR2c: 0.5 mM DNA:RNA hybrid, 25 mM
sodium cacodylate (pH 7.0), 25 mM lithium chloride,
2.5 mM spermine tetrahydrochloride and 7.5% (v/v) MPD,
equilibrated against 35% (v/v) MPD.

Data collection

All crystals were picked up from their droplets with a
nylon loop (Hampton Research) and transferred into liquid
nitrogen (100 K). X-ray data for all three DNA:DNA crystals
and for the DR2a and DR2b crystals were taken at the
BL18b beamline of Photon Factory in Tsukuba (l ¼ 1.00
s). The CCD detector was positioned 100, 150 and
170 mm away from the DNA:DNA, DR2a and DR2b
crystals, respectively. Each set of the patterns, using 1�

oscillation and a total range of 180�, was processed with
the program DPS/MOSFLM (28–31). For the DR2c crystal,
the diffraction data were collected on the NW12 beamline
of Photon Factory (l ¼ 1.00 s). Data for DR2c were
recorded on a CCD detector positioned 180 mm away
from the crystal. A total of 180 frames were taken with 1�

oscillation, and the patterns were also processed with
DPS/MOSFLM. All intensity data were scaled and merged,
and finally converted into independent structure factors
using the programs SCALA and TRUNCATE in the CCP4
suite (32). The crystal data and data collection statistics are
listed in Table 1.

Structure determination and refinement

Initial phases were derived by molecular replacement with
the program AMoRe (33) using the atomic coordinates of
the corresponding unmodified DNA:DNA (34) and
DNA:RNA (35) duplexes as probes. The molecular structures
were constructed and modified on a graphic workstation
with the program QUANTA (Accelrys Inc.). The atomic
parameters were refined with the program CNS (36) through
a combination of rigid-body, crystallographic conjugate
gradient minimization refinement and B-factor refinements,
followed by interpretation of an omit map at every nucleotide
residue. Newly defined patches for the NU and NUm residues
were used. The electron densities of some atoms in the
aminohexyl chains of the NU and NUm residues were poor,
but their positions derived with appropriate conformations
were used in the subsequent refinements. The statistics of
structure refinements are summarized in Table 1. Examples
of the quality of the final electron density maps are depicted
in Figure 2. All global and local helical parameters, as well as
the torsion angles and pseudorotation phase angles of sugar
rings, were calculated using the program 3DNA (37).

RESULTS AND DISCUSSION

DNA:DNA duplexes

Overall features of the DNA:DNA duplexes and sugar
conformations of the NU and NUm residues. The average
local helical parameters for the modified and unmodified

Table 1. Crystal data, statistics of data collection and statistics of structure refinement

Type of duplex DNA:DNA DNA:RNA
Crystal code DD1a DD1b DD2 DR2a DR2b DR2c

Crystal data
Space group P212121 P212121 P212121 P61 P61 P61

Unit cell (Å)
a 25.4 25.5 25.2 51.4 52.2 52.5
b 39.3 40.8 40.5 51.4 52.2 52.5
c 65.8 64.5 63.9 44.2 42.6 42.5

Za 1 1 1 1 1 1
Data collection

Resolution range (Å) 19–1.6 20–1.5 19–1.6 31–2.3 43–2.1 43–2.0
Observed reflections 173 849 175 706 154 852 100 453 95 848 87 626
Unique reflections 10 074 11 296 9980 3021 3931 4587
Completeness (Å) 100.0 99.7 99.8 99.8 99.9 99.9

In the outer shell (Å) 100.0 99.6 99.8 100.0 100.0 100.0
Rmerge (%)b 4.7 4.4 5.3 5.9 6.9 3.6

In the outer shell (%) 25.7 25.6 27.5 21.9 24.7 29.6
I/s (Å) 8.4 7.4 7.9 8.3 5.1 12.5

In the outer shell (Å) 2.8 3.0 2.8 3.3 3.0 2.5
Structure refinement

Resolution range (Å) 10–1.6 10–1.5 10–1.6 10–2.3 10–2.1 10–2.0
R-factor (%)c 17.9 19.3 21.5 21.6 22.2 21.7
Rfree (%)d 21.9 24.5 26.6 27.6 25.1 25.3
R.m.s.deviation

Bond distances (Å) 0.004 0.004 0.004 0.006 0.007 0.007
Bond angles (�) 1.0 0.9 0.9 0.9 1.1 1.1

No. of ions 1K+, Mg2+ 1K+ 3Co2+, 1Mg2+ 3Na+, 2Ba2+ — —
No. of water molecules 210 236 236 66 46 62

aNumber of duplexes in the asymmetric unit.
bRmerge ¼ 100 · Shklj|Ihklj � <Ihklj>| / Shklj<Ihklj>.
cR-factor ¼ 100 · SkFo| � |Fck / S|Fo|, where |Fo| and |Fc| are the observed and calculated structure factor amplitudes, respectively.
dCalculated using a random set containing 10% of observations that were not included throughout refinement (51).
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DNA:DNA duplexes, as well as for the high-resolution
A- and B-form DNA:DNA duplexes (38) are listed in
Table 2. These parameters show that all three modified
DNA:DNA duplexes adopt the B-form conformation. The
modified DNA:DNA crystals are isomorphous to the unmodi-
fied crystal with similar unit cell dimensions (34). Least-
squares superpositions of the DD1a, DD1b and DD2 struc-
tures onto the unmodified DNA:DNA duplex show the
r.m.s. differences to be 0.31, 0.46 and 0.81 s, respectively.
Closer inspection of the superposed structures (Figure 3a–c)
revealed significant geometric deviations between the back-
bones of the DD2 and unmodified duplexes. The largest
deviations occur at the locations of the NUm residues, attested
by the changes in the backbone torsion angles (data not
shown).

In the unmodified DNA:DNA duplexes, the deoxyriboses
of the T8 and T20 residues adopt the C10-exo and the
C20-endo conformations, respectively (see Supplementary
Figure S1). The sugar conformations of the NU8 and NU20
residues in DD1a and DD1b are O40-endo and C10-exo,
respectively, and thus differ only slightly from their unmodi-
fied counterparts. On the contrary, the sugar groups of both
NUm8 and NUm20 in DD2 adopt the C30-endo conformation,

which is typical in A-form duplexes. Although, some residues
in the modified and unmodified DNA:DNA duplexes have
the same C30-endo conformation, the changes at these 8th
and 20th positions in DD2 represent the biggest shifts in
sugar conformation. Subsequently, such shifts in the sugar
conformation affects the geometry of the backbone and
could be the reason behind the destabilization of the
DNA:DNA duplex as evidenced by the decreased Tm value
of DD2 (Figure 1c).

Conformational features and interactions of the aminohexyl
chains in the DNA:DNA duplexes. In all the modified
residues, the amide group of the carbamoyl modification is
associated in the syn conformation relative to the O4 carbonyl
atom of the uracil base, possibly forming a planar six-
membered ring through an N–H...O hydrogen bond, and
allowing the long aminohexyl chain to project towards the
major groove. The aminohexyl chain, nevertheless, exhibits
conformational flexibility and as such, is capable of interact-
ing with intrastrand and interstrand residues as well as with
adjacent duplexes and solvent molecules (Figure 4). For
instance, the NU20 and NUm20 residues of DD1a and DD2,
respectively, extend towards the 50-direction, and could inter-
act with neighboring T19 residues on the same strand
(Figure 4a and c). In contrast, the NU20 residue of DD1b pro-
trudes towards the 30-direction, and could interact with the
interstrand C3 residue (Figure 4b). In all these interactions
involving the modified residues at the 20th position, the ter-
minal ammonium groups on the aminohexyl chains are asso-
ciated to the phosphate groups. Thus, the positive charge on
the aminohexyl chain could neutralize the negative charge on
the phosphate backbone. It is possible that these neutraliza-
tions contribute to the stability of DNA:DNA duplex forma-
tion (39). There are several reports on synthetic polyamines
neutralizing phosphate backbones in DNA:DNA duplexes,
but this is the first case in which a polyamine attached to
the base group demonstrates such neutralization.

Minor groove widths and hydration of the DNA:DNA
duplexes. As is characteristically seen for AT tracts in
DNA (34), narrowing of the minor groove of the DD1a and
DD1b duplexes are observed (Figure 5). The minor grooves
of these NU containing DNA:DNA structures are similar to
that of the unmodified duplex. On the other hand, the DD2
structure has a minor groove that is wider than that of the
unmodified structure, with the widths at the NUm8:C21
and C9:NUm20 phosphate pairs being greater than their
counterparts in the unmodified structure by 3.6 and 1.9 s,
respectively.

Hydration structures with cations in the minor grooves are
said to stabilize B-form DNA:DNA duplexes. Those that are
associated with the AT tracts of the minor grooves of
unmodified DNA:DNA duplexes are composed of the prim-
ary and the secondary layers (Figure 6a). Similar hydration
structures were also found in DD1a and DD1b (Figure 6b
and c). In these NU containing duplexes, however, a few solv-
ent molecules are slightly displaced or lacking. In contrast,
only 6 of the 11 solvents in the primary and secondary layers
were found in DD2 (Figure 6d). The hydration structure is
peculiar to AT tracts in DNA because of their unusually
narrow minor grooves. Thus, it is possible that the widened

Figure 2. Final 2|Fo| � |Fc| maps contoured at 1s level for the base pairs:
NU8:A17 in DD1b (a) and NUm5:A14 in DR2a (b).

Table 2. Average local helical parameters of the DNA:DNA and DNA:RNA

duplex structures

Structure x-disp.
(Å)

Inclination
(�)

helical
twist (�)

helical
rise (Å)

DNA:DNA
DD1a �0.2 2 36 3.3
DD1b 0.0 1 36 3.3
DD2 �0.2 1 36 3.2

Unmodified DNA:DNAa �0.2 3 36 3.3
DNA:RNA

DR2a �4.0 12 31 2.8
DR2b �4.0 12 31 2.9
DR2c �4.0 12 31 2.9
Unmodified DNA:RNAb �4.0 12 32 3.0

B-DNAc 0.05 2.1 36.5 3.29
A-DNAc �4.17 14.7 32.5 2.83

aShui,X. et al. (34).
bXiong,Y. and Sundaralingam,M. (35).
cHigh-resolution A- and B-form DNA:DNA structures taken from the survey
of Olson et al. (38).

1972 Nucleic Acids Research, 2007, Vol. 35, No. 6



minor groove of DD2 hindered the formation of the regular
hydration structure.

Changes in the minor groove dimension and hydration are
also believed to affect nuclease resistance. Cleavage of
DNA:DNA duplexes by DNase I, an endonuclease, is pre-
sumably influenced by the minor groove width, with the
duplexes having wider grooves being more DNase I resistant
(40). The excellent nuclease resistance conferred by the NUm

can thus be partly ascribed to the ability of the 20-O-methyl
modification to widen the minor groove. Other duplexes con-
taining 20-modifications were found to contain hydration net-
works that span the modifications, sugar rings and phosphate
backbones (41–43), which may also enhance nuclease resis-
tance. In DD2, a water molecule is hydrogen bonded to the
O20 atom of the methoxyl groups of NUm8 and NUm20 (see
Supplementary Figure S2a and b). In the latter residue, the
water is hydrogen bonded to another one, and together they
link the O20 methoxyl atoms and the phosphate groups to
support the preferred C30-endo pucker. However, the methyl
group is surrounded by four water molecules, which are

separated by long distances (3.3–4.0 s). This finding suggests
that the methyl group hinders the entrance and interaction of
water molecules in the region between the uracil base and the
sugar ring. Thus, the 20-O-methyl substitution could induce
steric hindrance and interfere with nuclease recognition of
the phosphate backbone.

DNA:RNA hybrid duplex

Overall structural features of the DNA:RNA hybrid duplex
and sugar conformations of the NUm residues. The NUm

containing DNA:RNA hybrid duplex adopts the A-form
conformation, with all of the average local helical parameters
being similar to those for the unmodified and the high-
resolution A-form duplex structures (Table 2). The present
and the unmodified DNA:RNA (35) crystals belong to the
same space group, but have slightly different cell dimensions.
Superimpositions of the DR2a, DR2b and DR2c duplex
structures onto that of the unmodified duplex structure yield
r.m.s.d. of 0.82, 1.0 and 1.1 s, respectively (Figure 3d–f).

Figure 3. Superimpositions of the DD1a (a), DD1b (b) and DD2 (c) duplexes with the unmodified DNA:DNA duplex structure, and of the DR2a (d), DR2b (e)
and DR2c (f) duplexes with the unmodified DNA:RNA duplex structure. The present duplexes are shown in thick red lines while the unmodified duplexes are
shown in thin blue lines. The aminohexyl, carbamoyl and methoxyl groups are colored green.
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To compare the strand conformations based on the locations
of the NUm residues, the DNA and RNA strands were sepa-
rately superimposed onto the unmodified ones. The resulting
average r.m.s. differences for the DNA and RNA strands are
also small at 0.72 and 0.89 s, respectively.

Most of the sugars in DR2a, DR2b and DR2c, including
those of the NUm residues, adopt the C30-endo pucker similar
to those of the unmodified hybrid duplexes
(see Supplementary Figure S1). This mostly unified A-form
character of the sugars in the DNA:RNA hybrid duplexes is
similarly observed in the X-ray structures of other DNA:RNA

hybrids (44,45). On the contrary, in solution structures of
DNA:RNA hybrid duplexes, the sugar conformations of the
deoxyribonucleotides were intermediate between C20- and
C30-endo, while those of the ribonucleotides were C30-endo
(46–48).

Conformational features and interactions of the aminohexyl
chains in the DNA:RNA hybrid duplex structures. Similar to
the case in the DNA:DNA duplexes, the carbamoyl modifi-
cations of the NUm residues are associated in the syn
conformation to the uracil base. Furthermore, flexibility of

Figure 4. Intraduplex interactions involving the 20th residues in the DD1a (a), DD1b (b) and DD2 (c) DNA:DNA duplexes, and the 5th residues in the DR2a (d),
DR2b (e) and DR2c (f) DNA:RNA duplexes. The carbon atoms in the aminohexyl, carbamoyl and methoxyl modifications are colored green, and the water
molecules are colored pale blue. Broken and dotted lines indicate possible hydrogen bonds and van der Waals interactions, respectively. The values indicated are
in angstroms (Å).

Figure 5. The minor groove widths in the DD1a (&), DD1b (*), DD2 (4) and unmodified (·) DNA:DNA duplexes, and in the DR2a(&), DR2b (�), DR2c (~)
and unmodified (*) DNA:RNA hybrid duplexes. The minor groove width is defined as the distance between the closest interstrand phosphates, diminished by 5.8
s to account for the van der Waals radii of the phosphate groups (50). X is thymine in the unmodified duplexes and NU or NUm in the modified duplexes.
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the aminohexyl chains was observed. All the aminohexyl
chains in the NUm5 residues may be involved in interactions
with residues in the same DNA:RNA hybrid duplex, with or
without water mediation (Figure 4). The terminal ammonium
cations of the aminohexyl chains of NUm5 in DR2a and in
DR2c could interact with the phosphate oxygen atoms of
the A11 (Figure 4d) and the C6 (Figure 4f) residues,
respectively. In DR2b, the aminohexyl chain could form
interactions not only with the backbone oxygen atom of
A11 but also with that of G10 (Figure 4e). Again, these
neutralizations of the phosphate negative charges could lead
to the stable DNA:RNA hybrid duplex formations, which
are demonstrated by the increased Tm values (Figure 1c).

In addition to stabilizing DNA:RNA hybrid duplexes, the
terminal ammonium cations on the aminohexyl chains
could also render single-stranded DNAs with resistance to
exonucleases. A crystallographic study on the complexes
between DNA polymerase I Klenow fragment (a 30 exonu-
clease) and oligonucleotides containing 20-O-aminopropyl
substituents revealed that the exonuclease resistance of such
oligonucleotides is partly brought about by the interference
of the positively charged aminopropyl substituent with the
metal ion binding required for exonuclease activity (49).
The aminohexyl chains carrying a positive charge at their
termini can protect oligonucleotides against exonuclease
degradation by occupying the sites for binding of the essential
metal ions or by interacting with the 30 phosphate groups,
which is exemplified in the DR2c structure.

Minor groove widths and hydration in the DNA:RNA hybrid
duplex structures. Figure 5 shows that in the present
DNA:RNA hybrid duplex structures the minor grooves are
narrower at the regions where the 20-O-methyl modifications
protrude compared to those in the unmodified hybrids. It has
been proposed that RNase H recognizes DNA:RNA hybrids
that have minor groove widths that are between those of
the A- and B-form duplexes (35,46). Although, the minor
groove widths we observed are still not compatible with
that required for RNase H recognition, further investigation
on the dimensional changes in the minor grooves of NUm

containing DNA:RNA hybrid duplexes is necessary. Our pre-
vious study revealed that a minimum of five consecutive gap
residues between NUms is essential to constitute a substrate of
Escherichia coli RNase H. Thus, X-ray structural analyses on
DNA:RNA hybrid duplexes that satisfy this gap requirement
may shed light into the mechanism of RNase H activation by
NUm containing DNA:RNA hybrids.

As in the NUm containing DNA:DNA duplexes, water
molecules were found to link the O20 methoxyl atoms of
the NUm5 residues and the phosphate oxygen atoms of the
C9 residues in the neighboring duplex in DR2a, DR2b and
DR2c (see Supplementary Figure S2). In addition, these
waters are also bound to the O30 atom of NUm. Again,
these bound water molecules may help improve nuclease
resistance by steric hindrance, but the protruding methyl
group could interfere with RNase H activation.

CONCLUSION

In this study, we have determined and analyzed the three
crystal structures of NU or NUm containing DNA:DNA
duplexes and the three crystal structures of an NUm containing
DNA:RNA duplex. These are the first X-ray structures of
duplexes containing polyamines attached to nucleotide
bases. Our analysis provides insights into the origins of
improved target binding affinity, nuclease resistance and
ability to elicit RNase H activity, as well as clues for the
development of the next-generation antigene and antisense
oligonucleotides. Interactions that occur between the amino-
hexyl chains and the phosphate backbones illustrate the
neutralizations of the negative charges on the backbone,
and explain the increased affinity of NU or NUm containing
oligonucleotides for nucleic acid targets. The conformations
of the sugar rings in the modified residues support the
assumption that duplex stability is affected by structural
homogeneity. The NU residues adopt conformations that are
closer to those of unmodified B-form DNA residues, and
could thus be incorporated into antigene DNAs without
compromising DNA target binding affinity. On the other

Figure 6. Hydration structures in the minor grooves of the unmodified (a), DD1a (b), DD1b (c) and DD2 (d) DNA:DNA duplexes. The unmodified duplex is
shown in blue lines while the present duplexes are shown in red lines. The aminohexyl, carbamoyl and methoxyl groups are colored green. In the unmodified
duplex, the cyan spheres are water molecules and the gray spheres are solvent molecules partially occupied by sodium ions and water molecules. In DD1a and
DD1b, the water molecules are in cyan, and the potassium ions are in gray.
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hand, NUm residues prefer the C30-endo conformation, which
is typical for A-type RNA residues. Therefore, NUms are
suitable for incorporation into antisense DNAs. In addition,
the widths and the hydration structures in the minor grooves
of NUm containing duplexes are altered by the 20-O-methyl
modifications. These alterations on the minor grooves could
subsequently lead to changes in the binding modes of
nucleases and RNase H. Further studies on the structures of
complexes of potential therapies, their targets and these
minor groove-binding enzymes could deepen our under-
standing on the mechanisms of nuclease resistance and
RNase H activity.

DATA BANK ACCESSION CODES

The atomic coordinates have been deposited in the Protein
Data Bank (PDB) with the ID codes 2DP7, 2DPB, 2DPC,
2DQO, 2DQP and 2DQQ for DD1a, DD1b, DD2, DR2a,
DR2b and DR2c, respectively.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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36. Brünger,A.T., Adams,P.D., Clore,G.M., DeLano,W.L., Gros,P. and
Grosse-Kunstleve,R.W. (1998) Crystallography and NMR system: a
new software suite for macromolecular structure determination. Acta
Crystallogr. D, 54, 905–921.

37. Lu,X.J. and Olson,W.K. (2003) 3DNA: a software package for the
analysis, rebuilding and visualization of three-dimensional nucleic acid
structures. Nucleic Acids Res., 31, 5108–5121.

38. Olson,W.K., Bansal,M., Burley,S.K., Dickerson,R.E., Gerstein,M.,
Harvey,S.C., Heinemann,U., Lu,X.J., Neidle,S., Shakked,Z. et al.
(2001) A standard reference frame for the description of nucleic acid
base-pair geometry. J. Mol. Biol., 313, 229–237.

39. Matsuda,A., Ueno,Y. and Takenaka,A. (2004) Thermal stability and
nuclease-resistance properties of oligonucleotides having an

aminoalkyl side chain at the nucleobase and sugar moieties.
In Schinazi,R.F. and Liotta,D.C. (eds), Frontiers in Nucleoside and
Nucleic Acids. IHL Press, MA, USA, pp. 549–576.

40. Suck,D. (1994) DNA recognition by DNase I. J. Mol. Recognit., 7,
65–70.

41. Tereshko,V., Portmann,S., Tay,E.C., Martin,P., Natt,F., Altmann,K.-H.
and Egli,M. (1998) Correlating structure and stability of DNA duplexes
with incorporated 20-O-modified RNA analogues. Biochemistry, 37,
10626–10634.

42. Teplova,M., Minasov,G., Tereshko,V., Inamati,G.B., Cook,P.D.,
Manoharan,M. and Egli,M. (1999) Crystal structure and improved
antisense properties of 20-O-(2-methoxyethyl)-RNA. Nature Struct.
Biol., 6, 535–539.

43. Prhavc,M., Prakash,T.P., Minasov,G., Cook,D.P., Egli,M. and
Manoharan,M. (2003) 20-O-[2-[2-(N,N-Dimethylamino)ethoxy]ethyl]
modified oligonucleotides: symbiosis of charge interaction factors and
stereoelectronic effects. Org. Lett., 5, 2017–2020.

44. Horton,N.C. and Finzel,B.C. (1996) The structure of an RNA/DNA
hybrid: a substrate of the ribonuclease activity of HIV-1 reverse
transcriptase. J. Mol. Biol., 264, 521–523.

45. Kopka,M.L., Lavelle,L., Han,G.W., Ng,H.-L. and Dickerson,R.E.
(2003) An unusual sugar conformation in the structure of an
RNA/DNA decamer of the polypurine tract may affect recognition by
RNase H. J. Mol. Biol., 334, 653–665.

46. Fedoroff,O.Y., Salazar,M. and Reid,B.R. (1993) Structure of a
DNA:RNA hybrid duplex. Why RNase H does not cleave pure RNA.
J. Mol. Biol., 233, 509–523.

47. Gyi,J.I., Lane,A.N., Conn,G.L. and Brown,T. (1998) Solution
structures of DNA·RNA hybrids with purine-rich and pyrimidine-rich
strands: comparison with the homologous DNA and RNA duplexes.
Biochemistry, 37, 73–80.

48. Hantz,E., Larue,V., Ladam,P., Le Moyec,L., Gouyette,C. and
Dinh,T.H. (2001) Solution conformation of an RNA-DNA hybrid
duplex containing a pyrimidine RNA strand and a purine DNA strand.
Int. J. Biol. Macromol., 28, 273–284.

49. Teplova,M., Wallace,S.T., Tereshko,V., Minasov,G., Symons,A.M.,
Cook,P.D., Manoharan,M. and Egli,M. (1999) Structural origins of the
exonuclease resistance of a zwitterionic RNA. Proc. Natl Acad. Sci.
USA, 96, 14240–14245.

50. Conner,B.N., Takano,T., Tanaka,S., Itakura,K. and Dickerson,R.E.
(1982) The molecular structure of d(ICpCpGpG), a fragment of
right-handed double helical A-DNA. Nature, 295, 294–299.
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