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This paper focuses on the feature gene selection for cancer classification, which employs an optimization algorithm to select a subset
of the genes. We propose a binary quantum-behaved particle swarm optimization (BQPSO) for cancer feature gene selection,
coupling support vector machine (SVM) for cancer classification. First, the proposed BQPSO algorithm is described, which is
a discretized version of original QPSO for binary 0-1 optimization problems. Then, we present the principle and procedure for
cancer feature gene selection and cancer classification based on BQPSO and SVM with leave-one-out cross validation (LOOCV).
Finally, the BQPSO coupling SVM (BQPSO/SVM), binary PSO coupling SVM (BPSO/SVM), and genetic algorithm coupling SVM
(GA/SVM) are tested for feature gene selection and cancer classification on five microarray data sets, namely, Leukemia, Prostate,
Colon, Lung, and Lymphoma. The experimental results show that BQPSO/SVM has significant advantages in accuracy, robustness,

and the number of feature genes selected compared with the other two algorithms.

1. Introduction

Nowadays, cancer has been one of the most common lethal
factors for human beings. Missed and mistaken diagnosis
sometimes makes people lose the best chance for appropri-
ate treatments. Therefore, more auxiliary measurements are
needed to promote the accuracy of cancer diagnosis and
clinical test combined with medical ways [1-4]. With the
rapid development of information sciences and molecular
biological sciences, gene microarray technology brings peo-
ple large amount of high-throughput gene profiles which are
widely used in cancer diagnosis, clinical inspection, and other
aspects. However, microarray expression data are highly
redundant and noisy, and most genes are uninformative with
respect to studied classes, as only a fraction of genes may
present distinct profiles for different classes of samples. As
such, effective methods of selecting feature genes for cancer
are critically necessary. These methods should be able to

robustly identify a subset of informative genes embedded
out of a large data set which is contaminated with high
dimensional noise.

It was Golub et al. who first employed gene expression
data for cancer classification [5]. They proposed to use gene
expression data of acute leukemia for cancer classification
by adopting “SNR” index to calibrate the contribution of
genes to the cancer classification and by using a weighted
voting mechanism to distinguish cancer types [5]. This
study demonstrated that the use of gene expression data to
determine cancer types for the auxiliary medical diagnosis
is an effective measure. Afterwards, an increasing number of
researchers in the fields of biology and information sciences
have proposed many effective feature gene selection methods,
so that the research in this discipline is becoming one of the
hotspots in bioinformatics.

Currently, there are two categories of the methods of
obtaining feature genes for cancer classification based on gene
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expression data, namely, feature transformation methods and
feature selection methods. By definition, feature transfor-
mation refers to a way of transforming the original feature
attributes into a new set of features that represent the original
features to the greatest extent but reduce the dimension
as much as possible in order to achieve the purpose of
dimension reduction. This means that the new features are
low-dimensional features with similar classification abilities.
Feature transformation methods for cancer classification by
using gene expression data include principal component
analysis (PCA) [6], kernel PCA [7], independent component
analysis (ICA) values [8], locally linear embedding (LLE) [9],
partial least squares (PLS) [10], the maximum margin crite-
rion (MMC) [11], and linear discriminant analysis (LDA) [12].
Conde et al. [13, 14] proposed a feature transform method
based on clustering. This approach uses self-organizing tree
algorithm to carry out gene clustering and calculates the
average gene expression level for each category, which is then
accepted as a new feature to establish the cancer classification
model. Kan et al. [15] employed PCA to make transformation
of the gene expression data of children small round blue
cell tumors and then used artificial neural network for
classification.

Feature transformation methods can indeed reduce the
dimension for gene expression data and can eliminate the
“curse of dimensionality” phenomenon due to large number
redundant genes so that they can help to establish effective
cancer classification models. However, the new features
obtained by feature transform property no longer have the
original biological meaning; that is, the methods destroy the
biological information of the original gene expression data,
which makes it impossible to determine the target genes
associated with the cancer. For this reason, feature gene
selection methods have attracted more attention.

The feature gene selection uses an optimization algorithm
to select a subset of the genes, which has the most classifi-
cation information, from the original gene microarray data.
The most commonly used feature gene selection methods can
be divided in to filter, wrapper, and embedded ones. Filter
algorithm is independent of the subsequent learning algo-
rithm but uses some criteria for scoring gene subsets, which
measure the contribution of the genes to classification. Such
methods generally use SNR [5], ¢ test [16], the correlation
coeflicient [17], mutual information [18], relief [19], informa-
tion gain [20], or Fisher discrimination [21]. Obviously, filter
methods have advantages such as simplicity, fast calculation,
and independence of classification algorithms. However, they
evaluate a single gene with some criteria but ignore the
correlation between genes, which resulted in a large amount
of redundant information contained in candidate genes.

Different from filter methods, wrapper methods combine
gene selection and classification method and use training
accuracy of the learning algorithm to assess the subset
of features to guide gene selection. Such methods include
the sequential random search heuristics [22], random for-
est method [23], and PKLR [24]. In the cancer feature
gene selection, a typical wrapper feature selection method
combines support vector machine (SVM) and a recursive
feature selection method [25]. In this method, support vector
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machines are used to classify the data set, then each gene is
excluded in turn, and the performance change of the SVM
after exclusion of the gene is calculated, and afterwards, the
gene with the least absolute value of the association weight
is removed from the training set until the training set is
empty. The gene sets deleted together in the last step are the
optimal subset. Li et al. [26] adopted genetic algorithm (GA)
to select feature genes of cancer. Zhang et al. [27] coupled a
binary particle swarm optimization (BPSO) and the SVM for
classification of Colon data set.

Embedded methods are extension of wrapper approaches
and undertake feature selection in the process of classifier
training, without dividing the data set into a training setand a
validation set. Typical embedded algorithms include decision
tree [28] and artificial neural networks [29].

In this work, we propose a new method, which cou-
ples a binary quantum-behaved particle swarm optimization
with SVM approach, to select feature gene subset from
cancer microarray data. In order to prove the advantages
of BQPSO/SVM, we also implement two other algorithms,
BPSO/SVM and GA/SVM. The BPSO and GA used in this
work are both the original version. These two algorithms or
improved ones were used in this case by other scholars early
in [30-32]. All these three approaches are experimentally
assessed on five well-known cancer data sets (Leukemia,
Colon, Prostate, Lung, and Lymphoma).

This paper is structured as follows. In Section 2, we review
the BQPSO algorithm, and in Section 3 the SVM technique
is described and our BQPSO/SVM method is proposed. In
Section 4, the five microarray data sets used in this work are
described. Experimental results are presented in Section 5,
including biological descriptions of several obtained genes.
Finally, the paper is concluded in Section 6.

2. Binary Encoded Quantum-Behaved Particle
Swarm Optimization (BQPSO)

PSO algorithm is a population-based evolutionary search
technique, which was firstly proposed in [33]. Social behavior
of animals such as bird flocking and fish schooling and swarm
theory is the underlying motivation for the development
of PSO. Inspired by the quantum theory, Sun et al. [34]
developed a novel variant of PSO called Quantum-behaved
Particle Swarm Optimization (QPSO), where a strategy based
on a quantum & potential well is employed to sample around
the personal best points and then introduced the mean best
position into the algorithm [35-37].

Based on our previous work in [38], in this paper, we
further proposed a discrete binary version of QPSO (BQPSO)
as a search algorithm coupling SVM for gene selection
based on cancer gene expression data. In the proposed
BQPSO, the position of the particle is represented as a binary
string. For instance, in Figure 1 X,(1011001010) is the first
particle and X,(0010010110) is the second one; they all have
two substrings (two decision variables), and the distance is
defined as the Hamming distance between two binary strings;
namely,

X, - X,| =dy (X,,X,), 1)
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FIGURE 1: Binary coding of particle’s position.

where d,(-) is the function to get Hamming distance between
X, and X,, which is the count of bits different in the two
strings; the distance is seven in Figure 1. In the BQPSO, the
dimension is defined as the number of decision variables, so
that a particle can have more than one decision variable. For
example, particle 7 is represented as X; = (X;1, X;5,---> Xip)>
and it has D decision variables, and X,; refers to the dth
substring (dth decision variable) of the position of the ith
particle. Given that the lengths of X;; and X; are /; and |/,
respectively, then we can get equation as follows:

d
1=l d=12,...,D. ©)
i=1

In the BQPSO, the mean best (mbest) position of all
particles is determined by the states of the bits of all particles’
pbest. In detail, for jth bit of the mbest, if 1 appears more
often than 0 at the jth bit of all pbest, the jth bit of mbest
will be 1; otherwise the bit will be 0. However, if 1 and
0 have the same frequency of occurrence, the jth bit of
mbest will be set randomly to be 1 or 0, with probability 0.5
for either state. The function for obtaining mbest is called
mbest = Get_mbest (pbest). The pseudocode of the function
for obtaining mbest is given in Pseudocode 1.

P, is the coordinate of local attractor for particle i. In
the continuous version of QPSO, the coordinate P,; of P,
lies between pbest;; and gbest,. In the BQPSO, the point
P, is generated through one-point or multipoint crossover
operation of pbest; and gbest like that used in genetic
algorithm (GA), and this definitely make P, lay between
pbest;; and gbest; as well. The function getting mbest in
BQPSO is called P, = Get_P (pbest;, gbest).

Update equation of the particle position in the original
QPSO is given by

1
|Xiq = Py| = o |mbest; — X;4|In (;) , u=rand(). (3)
In the BQPSO, (4) can be written again as follows:

dy (Xig» Pg) =[], (4)

where

b=(x*dH(X,»d,mbestd)*ln<l>, p=rand(). (5)
7

Because dy(-) is Hamming distance, b must be an integer,
which is the reason for the use of function [-]. New string X; is

Get_mbest(pbest)
for j = 1 to I (the length of binary string)
sum = 0;
for each particle i
sum = sum + pbest[i][j];
endfor
avg = sum/M;
ifavg > 0.5 mbest[j] = 1; endif
if avg < 0.5 mbest[ j] = 0; endif
ifavg = 0.5
if rand() < 0.5 mbest[j] = 0;
else mbest[j] =1;
endif
endif
endfor
Return mbest

PsEuDOCODE 1: Pseudocode for obtaining mbest.

obtained by the mutation of P, with the probability computed
by

p={l ©)
1, if—>1.
l

In [35], here I; is the length of substring X;;. Function
getting X, is denoted as X;; = Transf (P, P,). The transfor-
mation of Transf (P4, P,) is described in Pseudocode 2.

The BQPSO can be summarized as Get_mbest (pbest),
Get_P (pbest;, gbest), and Transf (P, P,).

3. Gene Selection and Classification by
BQPSO/SVM

3.1. The SVM Classifier. Support vector machine proposed in
[39] is a technique derived from statistical learning theory. It
is widely used to classify points by assigning them to one of
two disjoint half spaces [40, 41]. That is to say SVM carries
out mainly a 2-class classification. For linearly separable
data, SVM gets the hyperplane which maximizes the margin
between the training samples and the class boundary. For
nonlinearly separable cases, samples are mapped to a high
dimensional space. In this space, such a separating hyper-
plane can be found. The assignment is conducted by way of a
mechanism called the kernel function.

Theoretically, SVM is able to correctly classify any linearly
separable data. Consider the data with two classes, which can
be expressed as

(xpy), i=12,...,1, x€R", y e {1}, (7)
and then the hyperplane that separated the two classes of the
data is given by

(w-x)+b=0. (8)



Transf(P,, P,)
for each bit in the substring P,;
ifrand() < P,

if the state of the bit is 1

Set its state to 0;

else set its sate to 1;

endif
endif
endfor
Xig = P

Return X,

PSEUDOCODE 2: Pseudocode of the transformation.

In order to guarantee that the data can be correctly classified
and the distance between the classes is as large as possible, the
hyperplane must satisfy
yil(w-x)+b]l 21, i=12,...,1, 9)
by which the distance is obtained as 2/[|w/| so that the problem

of constructing the hyperplane is converted to the following
optimization problem:

min ¢ (w) = - Jw|* = = (v’ - w) (10)

with (9) being the constraint. By introducing the following
Lagrange function to solve problem (10):

L(w,b,a):%||w||—a(y((w'x)+b)—1), (1)

where a > 0 is known as the Lagrange coeflicient. Solving
the Lagrangian dual of the problem, one obtains a simplified
problem:

! 11
1
max Q(a) =) a;- 5 Y. Y aiayiyi (% x;)
=1 i=1 j=1
(12)
!
s.t. Zajy]:o j=12,...,1 ajZO.
=
Solving the problem in (12), we can get
* * % w1
a* =(a),a,,....a7) ,
!
w' =) ayx,
le T (13)
!
b :yi_zyjaj (Xj-xi), je€ {J | a; >0},
=1
by which the hyperplane is obtained as
(w"-x)+b" =0 (14)
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and the optimal classification function is

f(x)=sgn{(w"-x)+b"}

I
= sgn <Za;yj(xj-x,-)>+b* , x€R".
i1

(15)

3.2. The Proposed BQPSO/SVM Approach. In many bioinfor-
matics problems the number of features is significantly larger
than the number of samples. In order to improve the classi-
fication or to help to recognize interesting features in noisy
environments, tools for reducing the number of features are
indispensable. The hybrid BQPSO/SVM approach proposed
in the following contributes especially in this sense.

First of all, the data should be preprocessed. Normaliza-
tion of data must be conducted so as to eliminate the impact
of the dimensionless on the classification. Then we need to
take traditional -test on the data, order the genes by p value
ascending, and get 50 top-ranked genes from all. Afterwards,
most of the noisy data have been removed. These 50 genes
comprise the whole search space of the BQPSO algorithm for
gene selection.

For the BQPSO used in this work, the swarm sizes for
the BQPSO and BPSO were set to be 20 and the population
size for GA was also 20. Each particle has just one decision
variable, and thus the dimension of the particle is just one.
The length of the particle is 50, so every particle is a binary
string with length of 50, and 1 represents that this gene
is chosen and 0 is not. Feature gene selection and cancer
classification based on hybrid BQPSO/SVM algorithm can be
described as the procedure in Pseudocode 3.

3.3. Evaluation Function. Since a particle X; is a binary string
representing a gene subset in BQPSO/SVM, the evaluation of
each particle is executed by the SVM classifier to assess the
quality of the represented gene subset. The fitness of a particle
X; is calculated employing a leave-one-out cross validation
(LOOCV) method to calculate the accuracy of SVM trained
with this subset. In leave-one-out cross validation, one of all
samples is evaluated as test data while the others except this
one are used as training data, repeated until all samples have
been used as test data. The classification accuracy of LOOCV
is the average accuracy of n times classifying, if the data set
has n samples. The evaluation function is described in

50

— (16
feature_number (16)

fitness (X;) = « * accuracy + f3 =

where « and f are weight values and set to 0.6 and 0.4,
respectively, for the purpose of controlling that the accuracy
value takes precedence over the subset size, since high accu-
racy is preferred when leading the search process. The target
here consists of maximizing the accuracy and minimizing
the number of genes (feature_number). For convenience
(only maximum of fitness), the second factor is presented as
50/feature_number.
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Processing of data set;
Initialize the current positions and the pbest positions of all particles which are binary bits with each representing whether the
corresponding gene is selected or not;
do
Determine the mean best position among the particles by mbest = Get_mbest(pbest), select a suitable value for f3;
for i = 1 to population size M
Call the LIBSVM tool box to construct the SVM classifier and get the classification accuracy for the data;
With the classification accuracy and the number of selected genes (i.e. the number of features given by the number of bits
with value 1), evaluate the objective function value f(X;) according to Section 3.3;
Update P, and Pg, it means
if f(X;) < f(P)thenP, = X;;
and P, = argmin,, f(P), 1 <i < M;
then get a stochastic position by p; = Get_P (pbest;, gbest)
for j =1 to dimensionality N
Compute the mutation probability P,;
Generate the new substring X, by X;; = Transf(P,;, P,);
and get the new position X; by combining all new substring X, (d = 1,2,...,D)
endfor
endfor
until termination criterion is met;
Output the best solution which have been found (gbest)
Pseubpocope 3: The psudocode the BPSO/SVM.
4. The Data Sets TaBLE 1: Description for the test databases.
There are several DNA microarray data sets from published Number Nameofdata  Numberof  Numberof o), i
. . . . set examples genes
cancer gene expression studies. Five of them were used in -
this paper. They are Leukemia data set, Prostate data set, ! Leukemia 72 7129 2
Colon data set, Lung data set, and Lymphoma data set. All of 2 Prostate 102 12600 2
them were taken from the BRB-ArrayTools in [42] with URL 3 Colon 62 2000 2
http://linus.nci.nih.gov/~brb/DataArchive_New.html. More 4 Lung 181 12533 2
details of these five data sets are showed in Tables 1 and 2.
. e > 5 Lymphoma 77 7129 2
The value in parenthesis in Table 3 is the number of examples
of class 1 or class 2 involved in that data set.
TABLE 2: Description for the test databases.
Class 1 Class 2
i Numb
5. Experimental Results .and umber Name of data set (quantity) (quantity)
Performance Comparison ) Leukemia AML (25) ALL (47)
2 1 2
BQPSO/SVM approach was implemented on MATLAB, Prostate N3 (50) PC4 (52)
along with BPSO/SVM and GA/SVM. The SVM classifier > Colon N° (22) CC (40)
used in these three approaches is based on the LIBSVM 4 Lung MPM” (31) ADCA® (150)
library in [43]. For the SVM configuration, since we were 5 Lymphoma DLBCL’ (58) FL® (19)

considering the performance of the search algorithm in the
work, rather than the influence of parameters in SVM to
classification, we used the default parameters of LIBSVM.
And the default kernel function was configured as radial basis
function. The fitness function in this work is the classification
accuracy of leave-one-out cross validation (LOOCV).

All experiments were carried out using a PC with
Windows OS and a Pentium Dual-Core 2.60 GHz CPU,
with 2 G of RAM. BQPSO/SVM, BPSO/SVM, and GA/SVM
algorithms on five cancer related microarray data sets were
independent executed 25 times over each data set, in order
to have statistically meaningful conclusions as these three
algorithms are stochastic search methods.

1: normal, 2: prostate cancer, 3: normal, 4: colon cancer, 5: malignant pleural
mesothelioma, 6: adenocarcinoma, 7: diffuse large B-cell lymphoma, and 8:
follicular lymphoma.

5.1. Parameter Settings. The parameters used in BQPSO,
BPSO, and GA algorithms are shown in Table 3. These
parameters were selected after several test evaluations of
each algorithm and data set instance until reaching the best
configuration in terms of the overall quality of solutions.

5.2. Discussion and Analysis. Depending on the results of
the experiments, we made analysis of results focusing on



TaBLE 3: BQPSO, BPSO, and GA parameters for gene subset selec-
tion and classification.

BQPSO
Swarm size 20
Iteration 100
Dimension of particle 1
B 1
BPSO
Swarm size 20
Iteration 100
Maximum of velocity 6
(w, 1, c2) (0.5,2,2)
GA

Swarm size 20
Iteration 100
Probability of crossover 0.9
Probability of mutation 0.04

the performance and robustness, as well as the quality of
the obtained solutions providing a biological description
of most significant ones. We conducted the experiments
for BPSO/SVM and GA/SVM in order to demonstrate the
advantage of the proposed BQPSO/SVM without any other
factors affecting, since in our work all these three algorithms
are operated in exactly the same hardware and software
environment and with the same data sets and parameters.

5.2.1. Performance Analysis. Next, we compare BQPSO/SVM
with BPSO/SVM and GA/SVM. Since these three algorithms
are running in the same environment, parameters, and data
sets, the results are absolutely comparable. Table 4 lists the
highest LOOCV accuracy in 25 independent executions of
each method for each data set. The mean columns contain
the average of the LOOCV accuracy obtained from 25
independent executions.

The performance comparison shows that, compared to
BPSO/SVM and GA/SVM, BQPSO/SVM has an obvious
advantage. In terms of the correct rate, the search capability
of BQPSO/SVM is stronger than the other two competitors.

The purpose of feature selection in our work is to find
small subsets with high classification accuracy. In Figure 2,
the number of genes is the mean size of subsets from 25
executions. Obviously, the proposed BQPSO/SVM provided
smaller subsets of genes than the other two methods.

5.2.2. Algorithm Robustness. Besides the quality of the algo-
rithm, its ability to generate similar or identical results when
executed several times is also important. One of the most
important norms in assessing any proposed algorithm is
robustness. It is particularly important for metaheuristics
which are employed in this work. The standard deviation
(std. dev.) in Table 5 denotes the standard deviation of
accuracy from 25 independent executions. As it can be seen
from the standard deviation, the robustness of the proposed
algorithm is significantly better than GA/SVM. Compared

Computational and Mathematical Methods in Medicine

30 T T T T T

25 b

20 + B

15} .

Number of genes

10 | 4

Prostate

Leukemia

Colon Lung  Lymphoma

Datasets

B BQPSO/SVM
] BPSO/SVM

I GA/SVM

FIGURE 2: The average number of genes selected by BQPSO/SVM,
BPSO/SVM, and GA/SVM, respectively.

with BPSO/SVM, our proposed algorithm obtained smaller
standard deviation with Prostate data set and Colon data
set but found much better solutions which led to a larger
standard deviation. Overall, from Table 5, it is shown that
BQPSO/SVM has an obvious advantage over the other two
approaches in terms of robustness.

5.2.3. Brief Biological Analysis of Selected Genes. Finally, the
best subsets of genes were found for each data set. We add up
all subsets having the highest accuracy and list the selected
genes. For Colon data set, the top 5 genes with the highest
selection frequency of each microarray data are presented in
Table 6.

(i) Among the genes listed in Table 5, two of them were
also selected by [44]. The first gene is uroguanylin
precursor Z50753. It was shown that a reduction
of uroguanylin might be an indication of colon
tumors in [45, 46] which reported that treatment with
uroguanylin has a positive therapeutic significance to
the reduction in precancerous colon ploys.

(ii) The second selected gene of colon data set is R87126
(myosin heavy chain, nonmuscle). The isoform B
of R87126 serves as a tumor suppressor and is well
known as a component of the cytoskeletal network
[47].

6. Conclusion

In this paper, a hybrid technique for gene selection and
classification of high dimensional DNA Microarray data
was presented and compared. This technique is based on a
metaheuristic algorithm BQPSO used for feature selection
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TaBLE 4: Comparison of accuracy with the proposed algorithm, BPSO/SVM, and GA/SVM.
BQPSO/SVM BPSO/SVM GA/SVM
Data set
Best Mean Best Mean Best Mean
Leukemia 100 100 100 100 100 99.61
Prostate 100 99.25 99.02 99.02 98.04 96.00
Colon 93.55 92.52 91.94 91.94 91.94 88.65
Lung 100 99.96 100 99.96 100 99.87
Lymphoma 100 99.79 100 99.74 98.70 98.18
TaBLE 5: Comparison in terms of statistical results of BQPSO/SVM, BPSO/SVM, and GA/SVM.
Data set BQPSO/SVM BPSO/SVM GA/SVM
Best Std. dev. Best Std. dev. Best Std. dev.
Leukemia 100 0 100 0 100 0.64
Prostate 100 0.43 99.02 0 98.04 1.20
Colon 93.55 0.79 91.94 0 91.94 1.89
Lung 100 0.15 100 0.15 100 0.24
Lymphoma 100 0.49 100 0.53 98.70 0.75
TABLE 6: Top 5 genes with the highest selection frequency of colon data set.
Data set Accession number Gene description
750753 H. sapiens mRNA for GCAP-II/uroguanylin precursor
R87126 Myosin heavy chain, nonmuscle (Gallus gallus)
Colon X63629 H. sapiens mRNA for p cadherin
M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6
X53586 Human mRNA for integrin alpha 6

using the SVM classifier to identify potentially good gene
subsets and is compared with the BPSO and GA. In addition,
genes selected are validated by an accurate leave-one-out
cross validation method to improve the actual classification.

All three approaches were experimentally assessed on five
well-known cancer data sets. Results of 100% classification
rate and less than average 11 genes are obtained in most of
our executions. The use of preprocessing method has shown
a great influence on the performance of proposed algorithm,
since it introduces an early set of acceptable solutions in
their evolution process. Continuing the line of this work,
we are interested in optimization of BQPSO/SVM in order
to discover new and better subsets of genes using specific
Microarray data sets.
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