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Modulation of immune activation using immunotherapy has attracted considerable

attention for many years as a potential therapeutic intervention for several

inflammation-associated neurodegenerative diseases. However, the efficacy of

single-target immunotherapy intervention has shown limited or no efficacy in alleviating

disease burden and restoring functional capacity. Marked immune system activation

and neuroinflammation are important features and prodromal signs in polyQ repeat

disorders and α-synucleinopathies. This review describes the current status and

future directions of immunotherapies in proteinopathy-induced neurodegeneration

with emphasis on preclinical and clinical efficacies of several anti-inflammatory

compounds and antibody-based therapies for the treatment of Huntington’s disease

and α-synucleinopathies. The review concludes with how disease modification and

functional restoration could be achieved by using targeted multimodality therapy to

target multiple factors.

Keywords: Huntington’s disease, α-synucleinopathies, immune activation, immunotherapy, combination therapy

HIGHLIGHTS

- Modulation of immune activation in Huntington’s disease (HD) and α-synucleinopathies using
immune-based therapies appears promising.

- Several immune-based therapies failed to meet the clinical trial primary endpoint.
- Development of multimodality therapy that target neuroinflammation and other neurocircuitry
disruptions might be warranted.

INTRODUCTION

Nearly all major neurodegenerative diseases are proteinopathic in origin. Neurodegenerative
proteinopathies are characterized by abnormal deposition of pathogenic protein aggregates
in the form of inclusion bodies. Hereditary polyglutamine (polyQ) triplet disorders and
α-synucleinopathies are classical examples of neurodegenerative proteinopathies marked by the
accumulation of specific pathogenic protein aggregates in specific brain regions. Hereditary polyQ
triplet disorders are rare, inherited forms of neurodegenerative diseases caused by the abnormal
expansion of CAG trinucleotides repeats encoding a polyQ tract in the coding regions of specific
genes within the genome. The consequences of the polyQ repeat expansions appear to be at
the protein level, resulting from toxic gain, or change-of function mutations (1). Currently,
nine disorders fall under this category of neurological diseases, including Huntington’s disease
(HD), spinobulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA),
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and spinocerebellar ataxias (SCA1, SCA2, SCA3, SCA6, SCA7,
and SCA17) (2–4). Among the hereditary polyQ triplet disorders,
HD appears to be the most representative. HD evolves from
an abnormal expansion of polyQ repeats in the huntingtin
(Htt) gene. The resultant mutant Htt protein (mHtt) forms
ubiquitously expressed intracellular aggregates throughout the
body, particularly in the brain where it is cytotoxic to specific
neurons in the striatum and cortex, causing neurotoxicity
and devastating neurodegeneration. The pathological features
of HD are summarized in Table 1. α-Synucleinopathies are
common progressive neurodegenerative diseases caused by the
abnormal formation of αsynuclein (α-Syn) and its aggregation
within neuronal or glial cells (18). α-Syn related diseases
include Parkinson’s disease (PD), dementia with Lewy bodies
(DLB), and multiple system atrophy (MSA). α-Syn abnormal
deposition, which forms β-sheet enriched amyloid fibrils is
a neuropathological hallmark of α-synucleinopathies (18).
While these diseases share the same pathological protein, the
pathological phenotypes from distinct α-synucleinopathies are
quite different among patients (Table 1).

A common pathological signature of neurodegenerative
proteinopathies is chronic immune activation, encompassing
innate and adaptive immune responses (Figure 1). Over the past
decade, a plethora of studies has demonstrated a remarkable
connection between pathogenic misfolded protein aggregates
and immune activation in HD and α-synucleinopathies
(Tables 2, 3).

Mutant Htt is abundantly expressed in brain resident and
peripheral immune cells, acting as an inflammatory stimulus
for these cells (22, 23). In HD patients and several rodent
models of HD, increased microglial activation, and elevated
proinflammatory cytokines and chemokines have been shown
to correlate with disease progression (19–21, 37–39). HD
patients and several rodent models of HD show elevated plasma
cytokine and chemokine expression levels (21, 22, 25). Mouse
neuroblastoma cells expressingmutant Htt show an elevated level
of chemokines, including monocyte chemoattractant protein-
1 (MCP-1) and murine chemokine (40). NF-κB is a nuclear
transcription factor and a key regulator of the inflammatory
cascades. Activation of IκB kinases (IKK) leads to the release
of NF-κB as a result of cytoplasmic sequestration by IκB and
subsequent translocation to the nucleus. MHtt interacts with IκB,
upregulating IKK, and NF-κB gene expressions in the immune
cells of human HD and mouse models of HD (24, 41, 42).

Human α-Syn is a cytoplasmic protein with a 140 amino acid
length encoded by the SNCA gene (43). It is mainly expressed

Abbreviations: HD, Huntington’s disease; PD, Parkinson’s disease; mHtt, mutant

Htt protein; DLB, dementia with Lewy bodies; MSA, multiple system atrophy;

SCAs, spinocerebellar ataxias; α-Syn, α-synuclein; mAb, monoclonal antibody;

UHDRS-TMS, Unified Huntington’s Disease Rating Scale-Total Motor Score; IL,

interleukin; IT-15, interesting transcript 15; SCNA, α-synuclein gene; LB, Lewy

body; LN, Lewy neurite; BBB, blood-brain barrier; MMP,matrixmetalloproteinase;

TNF-α, tumor necrosis factor-alpha; IFN-γ, interferon-gamma; C1q, complement

component 1q; CXCLs, chemokine (C-X-C motif) ligand 1; iNOS, inducible nitric

oxide synthase; ROS, reactive oxygen species; RNS, reactive nitrogen species;

APC, antigen-presenting cell; Abs, antibodies; N-terminus, amino terminus;

C-terminus, carboxyl terminus; ASOs, antisense oligonucleotides; RNAi, RNA

interference; UPS, ubiquitin proteasome system.

in the presynaptic terminal in the central nervous system
(CNS), but also partly found in the peripheral nervous system
(PNS) and other tissues. Pathological α-Syn, secreted from
neurons, interacts with glial cells to promote neuroinflammatory
responses (30, 44). α-Syn activates innate and adaptive immune
responses in several rodent models of PD and PD patients, as
evidenced by pronounced neuroinflammatory changes within
the brain as well as marked elevation of immune markers in the
peripheral blood (29, 31, 32, 34, 45, 46).

In recent years, there is accumulating evidence that
prionlike propagation of pathogenic proteins from cell-to-
cell accounts for the progression of pathology in HD and
α-synucleinopathies. These prion-like spreading and seeding
capacities of pathogenic mHtt and a-Syn (either neuron-to
neuron or neuron-to-glia) occur via several mechanisms,
including exosomal transfer, synaptic transmission, and glial
phagocytosis (47–54). Cell-to-cell transfer of pathogenic
proteins disturbs neuroimmune network, leading to enhanced
immune response and inflammation, as in these incurable
neurodegenerative proteinopathies. Based on the notion that
pathogenic protein aggregates lead to perturbed neuroimmune
homeostatic network and consequent chronic immune
activation, therapeutic strategies that aim to suppress immune
activation or pathogenic proteins during neurodegenerative
processes remain one of the popular treatment paradigms in
several neurodegenerative disorders.

Over the years, several immunotherapeutic modalities for
immunosuppression (using anti-inflammatory/antibody-based
therapies), boosting the host’s own adaptive immune response
against specific pathogenic protein (via active vaccination)
and/or antibody-mediated neutralization of specific pathogenic
protein (passive vaccination) have been developed for HD
and α-synucleinopathy. However, despite the remarkable recent
progress, there remain intriguing concerns about the efficacy of
these treatment modalities in human clinical trials.

In this article, we review several immunotherapeutic strategies
that have been developed to suppress immune activation (using
a variety of anti-inflammatory and antibody-based therapies) or
eliminate pathogenic protein aggregates (via active and passive
immunization) in preclinical rodent studies and human clinical
trials for HD and α-synucleinopathies. We also discuss some of
the pitfalls of single immunotherapy and place emphasis on the
potential benefits of combination therapies or multi-target drugs
in achieving successful clinical trials.

IMMUNOMODULATORY DRUGS FOR HD

Several preclinical and clinical trials of potential
immunomodulatory drugs have been investigated in HD,
such as laquinimod, anti-SEMA4D monoclonal antibody, and
TNF-α inhibitors (Table 4).

Laquinimod
Laquinimod is an orally active and well-tolerated
immunomodulatory small molecule developed primarily to
target inflammation and neurodegeneration. The efficacy
of laquinimod has been evaluated for several clinical
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TABLE 1 | Clinical features of HD and α-synucleinopathies.

Disorder Mutated

gene

Pathogenic

protein

Neuropathology and CNS region

affected

Clinical manifestations References

Inherited PolyQ repeat disorder

HD IT-15 (HD

gene)

mHtt Neuronal intranuclear inclusions of

mHtt in the striatum and cortex

Chorea, dystonia, bradykinesia, motor incoordination, psychiatric

symptoms, cognitive decline, weight loss, skeletal muscle atrophy,

sleep disorder, autonomic disturbance

(5–7)

α-Synucleinopathies

PD SNCA α-Syn LBs and LNs in the substantia nigra

pars compacta dopaminergic

neurons

Asymmetric bradykinesia, rigidity, unilateral resting tremor, cognitive

deficits, rapid eye movement sleep disorders, pain, sensory deficits,

GI motility disturbance, sialorrhea, and or- thostatism

(8–11)

DLB SNCA α-Syn LBs LBs and LNs in the cortex and

limbic system

Parkinsonism, early cognitive deficits (dementia), depression, sleep

difficulties, attention deficit, and visual hallucination

(12, 13)

MSA SNCA α-Syn GCI (Glial cytoplasmic inclusions) in

the oligodendrocytes

Parkinsonism, dysautonomia, and motor dysfunction, cerebellar ataxia (14–17)

HD, Huntington’s disease; PD, Parkinson’s disease; DLB, dementia with Lewy bodies; MSA, multiple system atrophy; IT-15, interesting transcript 15; α-Syn, α-synuclein; SNCA,

α-synuclein gene; LB, Lewy body; LN, Lewy neurite.

FIGURE 1 | Proteinopathy-driven neuroinflammation. Pathogenic misfolded protein aggregates interrupt CNS immune homeostasis. Activated microglia release

pro-inflammatory cytokines, chemokines, complement factors, nitric oxide, free radicals, and proteases that in turns mediate brain inflammation and consequent

neuronal damage. Pro-inflammatory mediators such as MMP damages BBB integrity leading to an infiltration of peripheral immune cells (activated T-cells) into the

brain which consequently activates microglia, astrocytes, and, neurons to release additional inflammatory molecules, thereby augmenting neuroinflammation and

neurodegeneration. BBB, blood-brain barrier; MMP, matrix metalloproteinase; IL, interleukin; TNF-α, tumor necrosis factor-alpha; IFN-γ, interferon-gamma; C1q,

complement component 1q; CXCLs, chemokine (C-X-C motif) ligand 1; iNOS, inducible nitric oxide synthase; ROS, reactive oxygen species; RNS, reactive nitrogen

species.
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TABLE 2 | Important clinical and experimental findings on chronic immune activation in HD.

Study (Reference) Study purpose Relevant findings

Early and progressive accumulation of

reactive micro-glia in the HD brain (19)

Investigation of localization of microglia in control

and HD brain by immunohisto-chemistry

• Presence of activated microglia in the neostriatum, cortex, and

globus pallidus, and the adjoining white matter of the HD brain

• Reactive microglia contacted mHtt inclusion containing

pyramidal neurons

Microglial activation correlates with severity

in HD: a clinical and PET study (20)

In vivo evaluation of microglia activation at different

stages of HD using PET imaging with microglia

activation marker ([11C](R)-PK11195 PET) and

D2R-bind-ing marker ([11C]raclopride PET)

• Significant increase in striatal [11C](R)-PK11195 binding in the

prefrontal cortex, cingulate cortex and striatum.

• Striatal [11C](R)-PK11195 level correlate with dis-ease severity

assessed by the UHDRS motor score

A novel pathogenic pathway of immune

activation detect-able before clinical onset

in HD (21)

Examination of the relationship between peripheral

immune activation and CNS pathology in HD

• Significant increase in plasma levels of IL-6, IL-8, IL-4, IL-10, and

TNF-α in HD mouse models and patients

• Increased IL-6, IL-8 and TNF-α in the HD CSF and postmortem

HD striatal tissue

• Remarkable correlation between plasma TNF-α levels and

UHDRS chorea scores, motor scores, and total functional

capacity

• Monocytes, macrophages, and microglia from HD mouse

models and patients express mHtt and dis-played functional

over-activity when stimulated with LPS and IFN-γ

Mutant Htt promotes autonomous

microglia activation via myeloid

lineage-deter-mining factors (22)

Investigate whether mHtt expression alters microglia

function in a cell-autonomous fashion using

genome-wide approaches

• Expression of mHtt in microglia promoted cell autonomous

pro-inflammatory transcriptional activation of the myeloid

lineage-determining factors PU.1 and C/EBPs

• mHtt-expressing microglia trigger neuronal apoptosis ex-vivo

and in-vivo

Mutant Htt fragmentation in immune cells

tracks HD progression (23)

Quantification of total Htt and mHtt in HD peripheral

immune cells by TR-FRET immunoassay

• Increase mHtt expression levels in monocytes, T cells, and B cells

HD patients

• Monocyte and T cell mHtt levels were significantly associated

with disease burden scores and caudate atrophy rates in

HD patients

A critical role of astrocyte-mediated

nuclear factor-kappa-B-dependent

inflammation in HD (24)

Investigation of mechanism of astrocytic

inflammation in HD

• Enhanced activation of NFκB-p65 activity in the astrocytes of HD

patients and mouse models

• Blockage of IKK ameliorates astrocyte-mediated

NFκB-dependent inflammatory response and neuro-toxicity in

HD R6/2 mouse model

HTT-lowering reverses Huntington’s

disease immune dysfunction caused by

NFkappaB pathway dysregulation (25)

Identification of mechanism of dysfunction in primary

human HD monocytes and macrophages ex-vivo

• Human HD myeloid cells produce excessive inflammatory

cytokines as a result of the cell intrinsic effects of mutant

huntingtin expression via NFκB signaling pathway

In vivo neutralization of the protagonist role

of macro-phages during the chronic

inflammatory stage of HD (26)

Assessment of HD mouse monocyte, macrophage,

and other immune cells from blood, brain and/or

spleen during early symptomatic and late stage HD

• Elevated plasma levels of IL-6, IL-10, and TNF-α

• Increased striatal IL-12 and TNF-α mRNA transcripts

• Elevated splenocyte IL-10, IL-12, and IL-17 mRNA transcripts

C/EBPs, CCAAT-enhancer-binding proteins; PET, positron emission tomography; TR-FRET, time-resolved fluorescence energy transfer; D2R, dopamine D2 receptor; HD, Huntington’s

disease; Htt, Huntingtin; UHDRS, unified Huntington’s disease rating scale; NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells; IL, interleukin; TNF-α, tumor necrosis

factor-alpha; IFN-γ, interferon gamma.

disorders including relapsing-remitting multiple sclerosis
(RRMS), Guillain-Barré syndrome, Crohn’s disease, lupus, and
Huntington’s disease (HD). Although the precise mechanism of
action of laquinimod is unclear, evidence shows that it exerts
both anti-inflammatory effects by driving Th (T helper cell)
polarization from Th1-activating to Th2-activating cytokine
production (69, 70) and as neuroprotective effects by promoting
brain-derived neurotrophic factor (BDNF) production (71, 72).
Gurevich et al. showed that laquinimod modulates antigen
presentation-related genes and associated inflammatory
molecules from peripheral blood mononuclear cells (PBMC) of
RRMS patients (73). Dobson et al. demonstrated that laquinimod
significantly dampened the release of hyper-reactive cytokines
from stimulated premanifest andmanifest HD patientmonocytes
(74). In YAC128 HD mice, laquinimod shows neuroprotective

effects, rescuing corticostriatal neurodegeneration, white matter
demyelination, and behavioral deficits (75, 76). Laquinimod
ameliorates DNA-damage induced activation of caspase-6 by
reducing Bax expression in primary neuronal cultures (77).
Laquinimod provides a mild ameliorative effect on motor
function deficit and striatal neuropathology in R6/2 HD
mice (78). Recently, the efficacy of laquinimod (0.5 and 1.0
mg/d) in slowing down the progression of HD was evaluated
in 352 HD patients using the Unified Huntington’s Disease
Rating Scale-Total Motor Score (UHDRS-TMS). In this study,
laquinimod fails to meet its primary clinical endpoint of change
(no significant difference in the primary efficacy outcome) for
functional capacity in HD patients as assessed by UHDRS-TMS,
from baseline, after 12 months of treatment. However, the
secondary clinical endpoint of structural change was achieved,
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TABLE 3 | Important clinical and experimental findings on chronic immune activation in α-synucleinopathies.

Study (Reference) Study purpose Relevant findings

Microglial activation and dopamine

terminal loss in early PD (27)

In vivo investigation of changes in microglial activity

associated with changes in the presynaptic

dopamine trans-porter density in the PD brain using

PET imaging with microglia activation marker

([11C](R)-PK11195-PET) and dopamine transporter

marker ([11C]CFT-PET)

• Increased midbrain [11C](R)-PK11195-PET-BP

• Midbrain [11C](R)-PK11195-PET activity correlated inversely with

[11C]CFT-BP in the putamen

• Midbrain [11C](R)-PK11195-PET activity correlated with the

motor severity assessed by the Unified Parkinson’s Disease

Rating Scale (UPDRS)

In vivo imaging of microglial activation with

[11C](R)-PK11195 PET in idiopathic PD

(28)

In vivo evaluation of brain distribution of activated

microglia in idiopathic PD

using ([11C](R)-PK11195-PET)

• Widespread microglia activation is associated with pathological

processes in PD but did not correlate with clinical severity or

putamen [18F]-dopa uptake

Peripheral cytokines profile in PD (29) Investigation of levels of production and expression

of cytokines and chemokines by

PD patients-PBMCs

• Significant increase in basal and LPS-induced levels of

MCP-1/CCL3, RANTES/CCL5, MIP-1α, IL-8, IFNγ, IL-1β

and TNFα

Direct transfer of α-Syn from neuron to

astroglia causes inflammatory responses

in synucleinopathies (30)

Investigation of mechanism of glia inter-action and

glial α-Syn pathology in α-Syn transgenic mice

• α-Syn released from neuronal cells are endocytosed by

astrocytes through and form glial inclusions that triggers

pro-inflammatory functionally polarized phenotype of astrocytes

α-Syn fibrils recruit peripheral immune cells

in the rat brain prior to neurodegeneration

(31)

In vivo assessment of MHCII-expression and

neuroinflammation profiles in rat model of

α-Syn-mediated neurodegeneration

• α-Syn fibrils promote microglial activation with peripheral

immune cell infiltration in the SNpc

α-Syn fibrils rapidly induce a persistent MHCII response derived

from both microglia, monocytes and macrophages

Peripheral monocyte entry is required for

α-Syn induced inflammation and

neurodegeneration in a model of PD (32)

Investigation of peripheral monocytes in mouse

model of α-Syn-mediated neurodegeneration

• Overexpression of α-Syn induces robust infiltration of pro-

inflammatory CCR2-positive peripheral monocytes into the

substantia nigra

• Genetic deletion of CCR2 prevents α-Syn induced monocyte

entry, attenuates MHCII expression, and block

subsequent neurodegeneration

Early microglial activation and peripheral

inflammation in DLB (33)

In vivo assessment of central and peripheral

inflammatory changes in DLB patients using PET

imaging with micro-glia activation

marker ([11C](R)-PK11195-PET)

• Elevated microglia activation in several brain regions associated

with cognitive functions

• Microglial activation strongly correlates with cognitive score in

DLB patients

• Raised peripheral inflammatory cytokines

The peripheral inflammatory response to

α-Syn and endotoxin in PD (34)

Investigation of cell-extrinsic factors in systemic

immune activation by using α-Syn monomers and

fibrils, as well as bacterial toxins, to stimulate both

PD and control PBMCs

• α-Syn monomers or fibrils resulted in a robust cytokine

response in both PD and control PBMCs

Increased immune activation by pathologic

α-Syn in PD (35)

Investigation of immune response of primary human

monocytes and a micro-glial cell line to pathologic

forms of α-Syn

• Pathogenic α-Syn activates peripheral blood monocytes and

microglial BV2 cell line leading to in-creased IL-6 release

• Extracellular vesicles (EVs) from PD patient plasma induces a

stronger activation peripheral blood monocyte than plasma EVs

from healthy patients

Oligodendroglial α-synucleinopathy-driven

neuroinflammation in MSA (36)

Analysis of temporal patterns of neuroinflammation

in postmortem MSA-P brain and

MBP29-hα-Syn mice

• Marked inflammatory myeloid response in corpus callosum and

the striatum

• Increased astrogliosis

• Elevated CCL2, CCL7, and CXCL10 mRNA transcripts in

α-Syn-overexpressing primary oligodendrocytes and

MBP29-hα-Syn mice

DLB, dementia with Lewy bodies; EVs, extracellular vesicles; PD, Parkinson’s disease; MHCII, major histocompatibility complex class II; PET, positron emission tomography; D2R,

dopamine D2 receptor; LPS, lipopolyschaccarides; BP, binding potential; PBMCs, peripheral blood mononuclear cells; MSA, multiple system atrophy; MBP, myelin basic protein;

MBP29-hα-Syn mice, transgenic mice overexpressing human α-Syn under the control of an oligodendrocyte-specific MBP promoter; MCP-1, monocyte chemoattractant protein-1;

MIP-1α/CCL3, macrophage inflammatory protein 1-alpha/Chemokine (C-C motif) ligand 3; RANTES/CCL5, regulated on activation, normal T cell expressed and secreted/chemokine

(C-C motif) ligand 5; IL, interleukin; TNF-α, tumor necrosis factor-alpha; IFN-γ, interferon-gamma; SNpc, substantia nigra pars compacta.

as revealed by a reduction of caudate atrophy (LEGATO-HD,
ClinicalTrials.gov identifier NCT02215616).

These clinical findings raise the intriguing question of why
the beneficial effect of laquinimod on caudate volume atrophy
fails to impact on functional capacity (TMS and other clinical
outcomes) in HD. One would expect a relevant correlation
between MRI-detected structural brain changes and motor
performance assessed by TMS. Overall, these findings indicate

that reduction in motor function is not simply a footprint of
regional brain volume abnormalities (striatal atrophy) but global
structural brain network changes.

Anti-semaphorin 4D
Semaphorin 4D (SEMA4D), otherwise known as CD100,
is chemorepulsive axonal guidance and immunoregulatory
transmembrane signaling molecule. It signals via three receptor
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TABLE 4 | Clinical trial immunomodulatory agents and immunotherapies for HD and α-synucleinopathies.

Drug and trial ID Mechanisms of action Trial phase/findings/status References

Huntington’s disease

Laquinimod

(NCT02215616)

Anti-inflammatory

Neuroprotection

Phase II safety and efficacy trial: Primary outcome not met but the

secondary outcome of reduction of caudate atrophy was achieved

Status: Completed

(55)

Anti-SEMA4D monoclonal

antibody

(VX15/2503-N-131)

(NCT02481674)

CD100 antigen inhibitor

Anti-inflammatory

Phase II: Safety, tolerability, pharmacokinetics, and pharmacodynamics, and

efficacy trial

Status: Ongoing till May 2020

(56)

Minocycline

(NCT00029874)

(NCT00277355)

Anti-inflammatory

Caspase inhibition

Phase I/II/III: Well tolerated and safe. Phase III efficacy trial: Worsen disease

progression as measured by a significant decline in total functional capacity,

leading to trial futility.

Status: Completed

(57, 58)

Parkinson’s disease and multiple system atrophy

PD01A and PD03A

(NCT01568099)

(NCT02618941) (NCT02267434)

Active immunization against

α-Syn

Phase IA: Well tolerated and safe in healthy

and early PD participants

Status: Completed

Phase IB follow-up Study: Well tolerated and safe. Significant increase of

titers against PD01A, induction of PD01A-specific antibodies in CSF, and

reduction of oligomeric and fibrillary α-Syn in plasma and CSF. Similarly,

PD03A was well tolerated and showed a clear immune response against

the peptide itself and aSyn targeted epitope

Status: Completed

(59–61)

PD01A and PD03A

(NCT02270489)

Active immunization against

α-Syn

Parallel Phase I safety and efficacy trial in early MSA: Both drugs were safe,

well-tolerated with clear immune response against the peptide itself and

αSyn targeted epitope. PD03A, in contrast, showed no observable immune

response compared to the placebo

Status: Completed

(62)

MEDI1341

(NCT03272165)

Passive immunization

against α-Syn

Phase I: Safety, tolerability, pharmacokinetics, and pharmacodynamics in

healthy volunteers

Status: Recruiting

(63)

PRX002

(NCT02095171)

(NCT03100149)

Passive immunization

against α-Syn

Phase I: Well tolerated and safe

Status: Completed

(64, 65)

BIIB054

(NCT02459886)

(NCT03716570)

Passive immunization

against α-Syn

Phase1: Well tolerated and safe in healthy participants and early PD patients

Status: Completed

Phase I: Safety, tolerability, pharmacokinetics, and pharmacodynamics of

BIIB054 in Japanese participants with PD are currently in progress

Status: Recruiting

(66)

(67)

Sargramostim

(NCT01882010)

Immune modulator Phase1: Well tolerated and safe in healthy participants and PD patients.

Suppressed markers of immune activation in blood and improved cortical

motor activity

Status: Completed

(68)

subtypes, Plexin-B1 (PLXNB1), Plexin-B2 (PLXNB2), and CD72.
PLXNB1 represents the high-affinity receptor of SEMA4D and
is expressed in neurons, oligodendrocytes, endothelial cells, as
well as some tumor cells (79–82). In the CNS, SEMA4D interacts
with PLXNB1 in neuronal cells via Rho-GTPases-RhoA and R-
Ras GTPase-activating protein activities, inducing axonal growth
cone collapse (83–85). In the immune system, SEMA4D-CD72
interactions promote both B and dendritic cell activation, leading
to T cell priming (86, 87).

Previous studies in rodents have demonstrated the
efficacy of SEMA4D activity blockage in several disorders,
including neurodegenerative diseases. Anti-Sema4D blocking
antibody ameliorates neuroinflammation and development of

experimental autoimmune encephalomyelitis (EAE) in mice
(88). Similarly, PLXNB1 deficient mice are resistant to the
development of EAE (88). Antibody neutralization of SEMA4D
ameliorates neuropathological deficits and improves some of the
behavioral symptoms in YAC128 HD transgenic mice (89).

Altogether, these findings support the immunomodulatory
properties of SEMA4D in translational rodent models of
inflammation-associated neurodegenerative diseases, including
HD. Whether SEMA4D inhibition, however, will be beneficial
in human HD is yet unknown. In 2015, Vaccinex Inc. in
collaboration with the Huntington study group and the
University of Rochester’s clinical trials coordination center
started the first clinical trial to investigate the safety, tolerability,
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and efficacy of Pepinemab, a humanized antiSEMA4D
neutralizing monoclonal antibody (VX15/2503) as a potential
treatment for late prodromal and early manifest HD patients,
with specific focus on neuroimmunomodulation as well as delay
of the onset and progression of HD. This study is currently
ongoing with expected completion in May 2020.

Anti-TNF-α Therapy
TNF-α is a multifunctional cytokine associated with cellular
proliferation, differentiation, inflammation, immune responses,
and apoptosis (90). TNF-α exists in 2 forms: a transmembrane
stable homotrimeric form (tm-TNF-α), that is involved
in immune functions by activating TNFR2, and a soluble
homotrimeric form (sol-TNF-α), which mediates chronic
inflammation by interacting with TNFR1, a death domain-
containing protein (91–94). Tm-TNF-α is cleaved on the cell
surface by a TNF-α-converting enzyme to yield the sol-TNF-α.
The complex interaction between the death receptor (TNFR1)
and death receptor ligands [sol-TNF-α or lymphotoxin (LT)-α]
activates apoptotic signaling pathway through the help of
adaptor proteins, such as Fas-associated protein with death
domain, TNFR-associated death domain protein, and the TNFR-
associated factor-1 (95). TNFR1 signaling complex recruits and
dimerizes initiator caspase (caspase 8) which in turn, initiates
apoptosis by cleaving and activating executioner caspases
(caspase-3,-6, and-7) (96). Sol-TNF-α has been implicated as
a hallmark of acute and chronic neuroinflammation and a key
regulator of inflammatory responses in many neurodegenerative
disorders, including MS, PD, AD, and HD. An elevated level
of TNF-α in serum, cerebrospinal fluid (CSF), and brain tissue
are associated with the pathophysiology of HD (21, 97) and
a molecule that inhibits TNF-α signaling was shown to be
beneficial in an HD rodent model (98). DN-TNF-α (XPro1595)
is an inactive engineered human TNF-α variant that inactivates
the native homotrimer sol-TNF-α via a subunit exchange
mechanism, thus blocking TNF bioactivity (99). Hsiao et al.
demonstrated that intracerebroventricular (ICV) infusion of
DN-TNF-α modulates neuroinflammation, mHtt aggregate
burden, caspase activation, and motor function deficit in
R6/2 HD transgenic mice (98). It is worth noting that in
comparison to ICV infusion, systemic injection of DN-TNF-α
shows lesser efficacy on motor function in R6/2 mice. However,
the clinical efficacy of this molecule in human HD warrants
investigation. A most recent follow-up study by Pido-Lopez
et al. demonstrated that systemic injection of etanercept, a
TNFα inhibiting drug, dampens the plasma level of TNFα and
other peripheral circulating proinflammatory cytokines such as
IL1β and IL6 in preclinical HD R6/2 transgenic mice. Striatal
TNFα and IL-6 expression levels, however, remain unaffected by
etanercept treatment. In the same study, while treatment with
etanercept partially reduces brain atrophy, it fails to ameliorate
HD related functional and cognitive deficits in R6/2 mice (100).
Lack of improvement in motor and cognitive impairment after
etanercept treatment in R6/2 mice may be due to poor/low CNS
distribution as etanercept is known to be BBB impenetrable
(101). Therefore, further studies on central delivery of etanercept
in HD preclinical mouse models might be warranted to

validate etanercept efficacy. Minocycline, a second-generation
tetracycline antibiotic, is another small molecule inhibitor of
TNF-α signaling which decreases TNF-α synthesis, microgliosis,
and TNF-α-induced caspase activation and apoptotic cell death
(102). Minocycline has been shown to be protective in several
neurological disorders, including PD, HD, amyotrophic lateral
sclerosis, multiple sclerosis, stroke, and spinal cord injury (103).
The impact of minocycline in the progression of HD symptoms
has been previously assessed in various preclinical HD transgenic
mice and HD patients. Preclinical evaluation of minocycline in
HD raised many conflicting findings. Chen et al. and Stack et al.
demonstrated that minocycline and combined minocycline and
Coenzyme-Q10 therapy, respectively, delays disease progression
and cell death in R6/2 HD mouse model (104, 105). Intriguingly,
however, Smith et al. reported conflicting data, in which oral
minocycline treatment in R6/2 mice shows no beneficial effects
on behavioral abnormalities as well as mHtt aggregate load (106).
The findings of Smith et al. were supported by several other
studies in which minocycline showed a lack of efficacy in slowing
the progressive functional decline in several HD mouse models
(107–109). Also, in a phase III efficacy study (IND 60943),
minocycline failed to show efficacy in HD patients (DOMINO
Huntington study group, 2010). Taking together, these findings
show that targeting peripheral circulating sol-TNFα helps to
resolve neuroinflammation, but also suggest that suppressing
neuroinflammatory process alone would be insufficient to restore
functional capacity in HD.

IMMUNOTHERAPIES FOR MHTT

Active Immunization Against mHtt
Few studies have examined the beneficial effects of active
vaccination in rodent models of HD, emphasizing the safety,
immunogenicity, and efficacy of some vaccine immunogens.
Ramsingh et al. examined the safety and immunogenicity of
three non-overlapping Htt exon 1 peptides (AA1-17, AA4960,
and AA74-88) in two different preclinical rodent models of
HD (110). While the three peptides were safe, only AA1-17
induces stronger immunogenic response against Htt-targeted
epitope in HD mutant mice. Vaccination using a combination
of the three peptides showed stronger immunogenic response
in both HD mutant and control mice. Notably, differential
expression of immune-related genes, indicated by up-regulation
of innate immune responses and downregulation of memory T
cell responses were observed in immunized mutant HD mice
(110). Additionally, DNA plasmid vaccination against mHtt
ameliorates the diabetic phenotype in HD R6/2 transgenic mice
(111). Studies of active immunization against mHtt remain
obscure and warrant further follow-up preclinical studies to
explicate immunogenicity, safety, and efficacy in different HD
preclinical models.

Passive Immunotherapy via Targeted
mHtt-specific Intrabodies
Intrabodies are engineered single-chain variable fragments
antibodies (scFv) expressed inside cells and directed to different
subcellular compartments to bind different epitopes on a target
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FIGURE 2 | Basic principles of active and passive immunizations for mutant protein. In active immunization, a recombinant protein or immunogenic short peptide is

administered to generate host immune response via plasma B-cells production of antigen specific-Abs that bind and eliminate their cognate targets (misfolded mutant

protein). In passive immunization, exogenous recombinantly generated target specific-Abs or Ab fragments such as ScFv is administered to bind and neutralize their

cognate target proteins within the body or cellular compartment. APC, antigen-presenting cell; Abs, antibodies; N-terminus, amino terminus; C-terminus, carboxyl

terminus; ScFv, single-chain variable fragment antibody (intrabody).

protein (Figure 2) (112). They act as effector molecules with a
capacity to neutralize or sequester specific proteins in a particular
cellular compartment. ScFv intrabody consists of variable heavy
chain (VH) and variable light-chain (VL) domains joined by a
flexible polypeptide linker (112). Several studies have analyzed
the therapeutic potential of several recombinant anti-Htt-
directed intrabodies to specifically counteract the downstream
intracellular mHtt pathologic cascades in cell culture and
preclinical rodent models of HD. The intrastriatal fusion of
recombinant adeno-associated virus (rAAV)-expressing anti-
N-terminal Htt-exon 1-scFv-C4 intrabody results in delay
accumulation of mutant Htt in HD R6/1 transgenic mice (113,
114). Similarly, enhancement of intrabody’s efficacy via fusion of
the C-terminal PEST region of mouse ornithine decarboxylase
(MODC) to scFv-C4 significantly reduces mHtt aggregation
and toxicity compared to scFv-C4 alone in a striatal cell line
expressing exon 1 of mHtt with 72 glutamine repeats (113).

ScFv intrabodies against N terminus and proline-rich (PRR)
domains of Htt (VL12.3 and Happ1, respectively) reduce mHtt-
induced toxicity and aggregation in an in vitro and corticostriatal
brain slice models of HD (115). Concordantly, rAAV-expressing
Happ1 ameliorates the neuropathology and prolongs survival
in four different HD transgenic mice (116). Transduction
with rAAV-expressing INT41, intrabody specific for the PRR
domain of Htt, significantly reduces mHtt aggregate loads
and ameliorates cognitive decline in HD R6/2 transgenic mice
(117). Recombinant AAV-expressed scFv-EM-48 suppresses
mHtt accumulation and ameliorates neuronal dysfunction in
R6/2 and N171-82Q transgenic mice (118).

Together, the findings support the therapeutic relevance of
passive immunization via targeted mHtt-specific intrabodies
in preclinical HD models. However, the translational prospect
in terms of safety, tolerability, and efficacy in human HD
remains undetermined.
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Immunomodulatory Drugs for
α-synucleinopathies
Recent studies have identified many potent immunomodulatory
agents, including sargramostim and azathioprine (Table 4).
Suppressing the peripheral immune response might offer an
effective disease-modifying strategy for PD patients.

Sargramostim
Sargramostim, otherwise known as leukine, is a recombinant
human granulocyte macrophage colony-stimulating factor
(GM-CSF). GM-CSF is a potent immune modulator known
to promotes regulatory T cells (Treg) activities and dampen
pro-inflammatory T effector (Teff) responses, thereby protecting
against inflammation-mediated neurodegeneration. The
homeostatic balance between circulating T cell subsets is
impaired in several rodent models of PD and PD patients (119).
In fact, T cells from PD patients recognize α-Syn peptides as
antigenic epitopes (120). In a randomized, placebo-controlled
double-blind phase 1 trial in PD patients and non-Parkinsonian
subjects, treatment with sargramostim was feasible and
reasonably well-tolerated (68). More so, sargramostim improves
magnetoencephalography-recorded cortical motor activities
and immunomodulatory activities of Tregs (68). However, the
therapeutic potential of sargramostim warrants a larger cohort
and further confirmatory studies.

Azathioprine
Azathioprine is an inosine monophosphate dehydrogenase
(IMDH) inhibitor with an immunosuppressive function.
Azathioprine treatment is associated with a lower risk of PD
(121). Azathioprine inhibits IMDH which leads to the blockage
of DNA synthesis and consequent suppression of circulating
T-cell activity. Since T cells from PD patients recognize α-Syn
peptides as antigenic epitopes, the suppressive activity of T-
cells might dampen peripheral propagation of α-Syn. Just like
sargramostim, the therapeutic potential of azathioprine as an
immunosuppressant for PD is promising but warrants a larger
cohort and further clinical studies. Also, whether the long-term
use of azathioprine, like other immunosuppressants, such as
corticosteroids, will engender serious potential morbidity such
as cardiovascular disease, metabolic dysfunction, osteoporosis,
remains unknown.

Immunotherapies for α-Syn Pathology
A vast number of clinical trial potential α-Syn immunotherapies
have been investigated in α-synucleinopathies, including
active and passive immunization against α-Syn and
immunomodulatory drugs (Figure 2 and Table 4).

Active Immunization Against α-Syn
The potency of active immunization targeting α-Syn has been
examined in a Lewy Body (LB) disease mouse model. In this
study, transgenic mice overexpressing human wildtype α-Syn
under control of the platelet-derived growth factor-β promoter
was used. These mice present α-Syn aggregation in neurons of
the cortex, hippocampus, and olfactory bulb (122). When mice
were immunized with recombinant human α-Syn, high-affinity

α-Syn antibodies directed to its C-terminus were produced.
The antibody-treated mice exhibited a reduction of α-Syn
accumulation in neuronal cell bodies and synapses, leading
to amelioration of neurodegeneration. Importantly, in both
adjuvant-treated and human α-Syn-vaccinated animals, there
was a mild neuroinflammatory response as demonstrated by
the microglial marker (Iba1) and the astroglial marker [glial
fibrillary acidic protein (GFAP)]. However, no differences in Iba1
and GFAP markers were detected in both groups, suggesting
that microglia might not be involved in the clearance of
αSyn. Notably, antibodies produced by immunized mice were
targeted to the C-terminal region of α-Syn with higher affinity.
Consequentially, short epitopes of α-Syn were developed for
inducing α-Syn-targeting antibodies.

Ghochikyan et al. generated three peptide-based epitope
vaccines composed of α-Syn-derived short peptides fused with a
T helper epitope from tetanus toxin (P30) (123). Immunization
of mice with these vaccines generated high titers of anti-α-Syn
that can bind to LBs in brain tissues from DLB patients.

Dendritic cells (DCs) play an important role in initiating
primary immune responses, through the antigen presentation to
T cells (124). DC-based vaccination appears to be one of the cell-
based therapeutic strategies to elicit an immune response using
human α-Syn-sensitized DCs. Based on this strategy, Ugen et
al. developed fragments and full-length human α-Syn protein-
sensitized bone marrow-derived DCs to generate vaccine for
PD (125). Sensitized DCs-injected transgenic mice expressing
human A53T variant α-Syn showed significant improvement of
locomotor function without an inflammatory response.

Nevertheless, it would be important to perform further studies
in detail for the mechanisms before moving the above strategies
to clinical trials.

Short Peptides-AFFITOPEs® (AFF1)
AFFITOPEs R©AFF1 is a C-terminal α-Syn mimicking small
molecule and peptide developed by the Austrian pharmaceutical
company AFFiRiS AG. This immunogenic peptide is too short
to cause α-Syn-specific T cell and autoimmune response. Active
immunization with AFF1 resulted in decreased accumulation
of α-Syn oligomers and reduced degeneration of tyrosine
hydroxylase (TH) positive fibers in the caudo-putamen regions
in PDGF-and mThy1 promoter controlled α-Syn transgenic mice
for PD and DLB, respectively (122).

Furthermore, AFF1 vaccination increased the clearance
of α-Syn via microglial activation and the production of
anti-inflammatory cytokines such as IL-1Ra, IL-2, and IL-
27. In a mouse model of MSA, AFF1 treatment diminished
the spreading of α-Syn from oligodendrocytes to astroglial
cells and alleviated demyelination and neurodegeneration in
the neocortex, striatum, and corpus callosum (126). More
importantly, repeated immunization led to the recovery of motor
function, learning, and memory. It is suggested that clearance of
α-Syn involved activation of microglia and reduced spreading of
α-Syn to astroglial cells leads to improvement of locomotor- and
cognitive function. Phase 1 testing is currently in preparation for
the following two AFFITOPE R© vaccines that target α-Syn using
MSA as a model for α-synucleinopathies.
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PD01A and PD03A
Based on the beneficial effects in preclinical research, including
animal experiments, AFF1 progressed to human clinical
trials as AFFITOPEs R©PD01A and PD03A, synthetic peptides
against αSyn. PD01A treatment in early-stage PD patients
showed local and systemic tolerance without any severe
or unexpected reactions. In another study, a different
synthetic epitope of α-Syn, PD03A was tested. This trial
was a randomized, placebo-controlled, parallel-group, patient-
blind, two-center study, assessing tolerability, and safety
of repeated subcutaneous administration of two different
doses of PD03A to patients with early PD. Both doses of
PD03A were locally and systemically well-tolerated with no
unexpected effect.

A parallel phase 1 clinical trial (NCT02270489) evaluated
a high-dose of PD01A and PD03A in 30 MSA patients over
36 weeks. PD01A and PD03A were well-tolerated in early
MSA patients. Interestingly, PD03A showed a clear dose-
dependent immune response against the peptide itself and
cross-reactivity against the α-Syn targeted epitope over time
while PD03A showed no significant immune response compared
to placebo.

Although the clinical studies were not set up or powered to
properly estimate the efficacy, PD01A is intended to investigate
the efficacy in PD patients in a phase II trial in the second half
of 2020.

Passive Immunization Against α-Syn
Passive immunization for PD is performed by using a
monoclonal antibody targeting α-Syn. The reason for choosing
passive immunization rather than active immunization is to
reduce the dose and avoid the potential side effects. Passive
immunization has the potential to target and induce the clearance
of toxic seeds of α-Syn, including aggregated and fibrillary forms
in neuronal populations and the propagation (Figure 2).

There are two main targets for monoclonal antibodies for
αSyn in C-terminal and N-terminal regions. C-terminal α-
Syn is implicated to play an important role in the pathogenic
properties in PD (127, 128). A mouse monoclonal antibody
against the C-terminus of α-Syn (9E4) (epitope aa 118–
126) significantly decreased the C-terminally truncated α-Syn
aggregates in axons and synaptic terminals and improved motor
and cognitive deficits in PDGF-α-Syn transgenic mice (129).
Another laboratory showed similar results of motor behavioral
improvement and reduction in α-Syn following treatment with
C-terminal antibody AB274 (epitope aa 120–140, mIgG2a) in the
same transgenicmice (130). Interestingly, the uptake of Ab274/α-
Syn complex by microglia was observed, suggesting that the
degradation of α-Syn may be primarily by microglia.

Three other antibodies, 1H7 (epitope aa 91–99), 5C1,
and 5D12 (epitope aa 118–126) were also tested in Thy1
promoter-controlled human α-Syn transgenic mice (131). All
these antibodies showed some beneficial effects on PD motor
behavior deficits and neuropathology Several N-terminal-
directed antibodies against α-Syn were also developed and tested
in various rodent models of PD. Treatment with N-terminal
anti-α-Syn antibody (Syn303) (epitope aa 1–5) ameliorated

the spread of α-Syn aggregates and the loss of dopaminergic
neurons, as well as improved locomotor functions in intrastriatal
α-Syn pre-formed fibrils (PFF)-injected mice (132). Also, N-
terminal antibody (AB1) (epitope aa 16–35) treatment in an
AAV-α-Syn rat model of PD resulted in moderate motoric
improvement with the concomitant rescue of the substantia
nigra dopaminergic neurons as well as modulation of microglial
activation (133). Due to the pathogenicity of α-Syn in its
aggregated conformational states, the use of antibodies with
special properties for targeting oligomers and fibrils have been
suggested and documented. Immunization with a monoclonal
antibody that targeted oligomeric/prefibrillary forms of α-Syn
(mAb47) mitigates the accumulation of oligomeric αSyn in the
brain stem and improved motor behavioral performance (134).
Recently, Kallab et al. showed three antibodies (Syn-F1, Syn-
O1, and Syn-O4) that specifically target oligomeric α-Syn and
damped motor behavior deficit and neuroinflammation (135).

Overall, passive immunization using a targeted α-Syn
antibody is quite promising for modifying disease pathology in
rodent models of PD. These findings have been advanced into
human clinical trials, evaluating the safety and tolerability in
healthy volunteers.

PRX002
The first candidate of passive immunization for PD patients
was PRX002, a humanized version of the 9E4 antibody,
developed by Prothena Biosciences. PRX002 administration
in several doses showed good tolerability, favorable safety,
and pharmacokinetic profiles with no immunogenicity in PD
patients (64). Serum level of free α-Syn was significantly reduced
following PRX002 administration, whereas total α-Syn increased,
dose-dependently, because of the expected change in kinetics
following the binding of the antibody. More recently, a trial
of multiple ascending doses of PRX002 was performed in
patients with idiopathic PD (65). In this randomized clinical
trial, single and multiple ascending doses of PRX002 were
generally safe and well-tolerated and resulted in robust binding
of peripheral αSyn. Also, PRX002 cerebrospinal fluid levels
increased in a dose-dependent manner following treatment, with
concentrations that may be expected to engage extracellular
aggregated α-Syn in the brain. In 2017, a phase II multinational
study of PRX002/RO7046015 in newly diagnosed PD patients
was initiated in collaboration with F. Hoffmann-La Roche AG
(PASADENA Study, ClinicalTrials.gov identifier NCT03100149).

BIIB054
BIIB054 developed by Biogen Inc. (rights to BIIB054 were
acquired from Neuroimmune AG) is the second antibody going
into a clinical trial. BIIB054 is a fully human IgG1 monoclonal
antibody directed at the N-terminus of α-Syn and is highly
selective for the aggregated forms of α-Syn with 800-fold higher
apparent affinity for fibrillary vs. monomeric α-Syn (136). In
a randomized phase I clinical trial, BIIB054 showed favorable
safety, tolerability, and pharmacokinetic profiles in volunteers
and PD participants. All PD participants showed almost complete
saturation of the BIIB054/α-Syn complex formation, indicating
that it binds much less of its monomeric form. Currently,
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BIIB054 is being studied in the ongoing phase II trial (SPARK
study, ClinicalTrials.gov identifier NCT03318523).

MEDI1341
MEDI1341 is a potent α-Syn C-terminal specific synthetic
human monoclonal antibody co-developed by AstraZeneca plc
and Takeda Pharmaceutical Company Ltd. It binds human,
cynomolgus monkey and rat α-Syn monomers and aggregates.
Recent preclinical study shows that MEDI1341 blocks cell-
to-cell spread of pathogenic α-Syn in an in vitro human
SH-SY5Y-donor cells pretreated with pre-sonicated human
preformed α-Syn fibrils (137). Also, systemic administration of
MEDI1341 to rat and monkeys achieves high brain penetration
and suppresses extracellular α-Syn in the CNS as evidenced
by significant reduction in the CSF and brain interstitial fluid
α-Syn levels (137). Of interest, passive immunization with
either MEDI1341 or its engineered effector null mutant version
MEDI1341-D265A mitigates hippocampal and neocortical
α-Syn expression as well as transhippocampal tracts/axons
spreading of α-Syn in mice injected with lentiviral vector
expressing human-α-Syn (137). Evaluation of MEDI1341
for safety, tolerability, pharmacokinetics, and efficacy
is currently in human clinical testing (ClinicalTrials.gov
identifier NCT03272165).

FUTURE PERSPECTIVES

Despite the advancement in the development of immune
based therapies for HD and α-synucleinopathies, alleviation
of disease progression has not been fully achieved. Most of
the immunotherapies and anti-inflammatory agents currently
used to treat a variety of neurodegenerative diseases have little
to no disease-alleviating properties, which accounts for their
failures in clinical trials. It appears that the pitfalls of these
compounds are in the multiple pathogenic cascades associated
with these neurodegenerative diseases. Intuitively, the human
brain is a very complex system and sometimes the structural
measures do not necessarily predict functional capacity (i.e.,
correspond to function). In other words, one cannot account for
functional and cognitive recoveries by looking at the structural
changes alone, particularly when damage is not restricted
to a single brain region, as is the case of proteinopathy-
induced neurodegenerative diseases. Targeting the immune
system might be insufficient to restore functional capacity in
HD and α-synucleinopathies. Also, since neurodegenerative
diseases show complexity, combination therapies or multi-
target drugs targeting several dysregulated mechanistic pathways
might be required to achieve a significant functional recovery
and halt or delay disease progression (Figure 3). Combination
therapy is a multi-modality therapeutic approach targeting
multiple components of biological regulatory circuits in order
to achieve stronger efficacy in terms of addictive or even
synergistic effects (138, 139). According to a mathematic
model, combination therapies that target distinct pathways
might produce a stronger, long-lasting treatment efficacy for
a disease than individual treatments (140, 141). By identifying
candidate drugs that target distinct pathways and administering

them in combination may offer long-lasting beneficial effects
for neurodegenerative proteinopathies. Taking a lesson from
cancer immunotherapy, amalgamation of anticancer drugs
that target key pathways in a characteristically synergistic or
addictive manner proffers enhanced efficacy and efficiency
compared to the monotherapy approach (142). In preclinical and
clinical studies in which either cancer monotherapy targeting
program cell death protein 1 (PD-1) or costimulatory receptor,
glucocorticoid-induced tumor necrosis factor receptor-related
protein (GITR) showed limited efficacy in mouse cancer
models (143, 144), combination therapy achieved synergistic
effects, leading to stronger T-cells activation and enhanced
tumor control in mouse cancer models (145–147). Also, the
efficacy of the anti-SEMA4D antibody as an immunomodulatory
therapy in tumors was enhanced by combination with other
immunotherapies, including anti–CTLA-4, anti–PD-1, and
cyclophosphamide (81, 82).

Although therapeutic targets against α-Syn are beneficial in
cellular and rodent models of PD (130, 135), their translational
efficacy in human clinical trials still poses a major challenge as
underlying mechanisms are not fully understood.

Relatedly, anti-inflammatory agents currently used to treat
a variety of neurodegenerative diseases demonstrated efficacy
in various rodent preclinical models of HD; however, disease
alleviating efficacy has rarely been achieved in clinical trials
(55, 57).

Dysfunction of protein quality control systems such as
autophagy, the ubiquitin-proteasome system, and chaperones
have been reported in HD and α-synucleinopathies (148, 149)
Enhancement of mHtt and α-Syn degradation through the
above systems or some enzymes, neurosin (kallikrein 6)
(150) may support the clearance of pathological α-Syn. After
neural damage, several neurotrophic factors such as brain-
derived neurotrophic factor (BDNF), ciliary neurotrophic
factor (CNTF), glial cell line-derived neurotrophic factor
(GDNF), cerebral dopamine neurotrophic factor (CDNF),
and vascular endothelial growth factor (VEGF), which
provide neuroprotective and neurorestorative effects via
anti-inflammatory, anti-apoptotic, re-myelination, and
axon regeneration properties, are significantly altered
(151). VEGF has shown apparent neuroprotective effects
in rodent preclinical models of PD, which is accompanied
by an improvement in motor symptoms (152). Moreover,
the use of VEGF in combination with other neurotrophic
factors has shown a synergistic effect in 6-hydroxydopamine
(6OHDA) partially lesioned rats (153). Additionally, Valera
et al. demonstrated the stronger efficacy of combination
of αSyn-targeted passive immunotherapy (CD5-D5) and
anti-inflammatory treatment (lenalidomide) over each single
treatment in MBP-α-Syn transgenic mice (154), further
strengthening the therapeutic potential of strategic combination
of treatments in neurodegenerative proteinopathies.
Metabolic dysfunction such as type II diabetes mellitus
has been associated with HD and PD. The mechanisms
by which metabolic dysfunction induces exacerbation of
neurodegenerative diseases are still not clear. Intuitively,
neurodegenerative diseases and type II diabetes mellitus show

Frontiers in Immunology | www.frontiersin.org 11 February 2020 | Volume 11 | Article 337

https://www.ClinicalTrials.gov
https://www.ClinicalTrials.gov
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Fatoba et al. HD and α-Synucleinopathies Immunotherapies

FIGURE 3 | Schematic of the targeted immune-based therapies with other possible neuroprotective and neurorestorative strategies. Protein aggregation,

neuroinflammation, oxidative stress, metabolic and mitochondrial deficits, insulin signaling impairment, and neurotrophic factors dysregulation are complex

components of the pathologic cascade in several neurodegenerative diseases, including HD and PD. Immunotherapy against pathogenic protein can suppress

mutated protein aggregation. Activation of protein quality control machinery, such as chaperones, autophagy, and UPS facilitates the clearance of misfolded proteins.

Other misfolded protein-lowering therapy includes ASOs and RNAi. Anti-inflammatory agents help to ameliorate neuroinflammation by dampening the release of

proinflammatory molecules. Selective blockage of leukocytes infiltration into the CNS can also be achieved by targeted immunomodulatory therapy. Impairment of

insulin signaling contributes to metabolic dysfunction and anti-insulin resistant therapy may ameliorate metabolic dysfunction and confer a neuroprotective effect.

Neurotrophic factors protect and repair damaged neurons. ASOs, antisense oligonucleotides; RNAi, RNA interference; UPS, ubiquitin proteasome system.

similar pathologies, including mitochondrial impairment,
oxidative stress, and chronic inflammation. Interestingly,
insulin signaling and related molecule pathways were disturbed
in neurodegenerative diseases and type II diabetes mellitus
(155). Insulin signaling is known to be essential for neuron
survival (156–158).

Based on these findings, targeted multi-modality therapy
could serve as a potential treatment strategy for polyQ
diseases and α-synucleinopathies, where several potential
immunotherapies have failed as disease-slowing treatments.
The potential efficacy of these novel drugs might be
enhanced through a combined therapy with other potential
targeted drugs, such as mutant protein lowering agents
(antisense oligonucleotide, RNAi, anti-α-Syn), chaperones,
neurotrophic factors, anti-insulin resistance therapy, and
antioxidants. Remarkably, early diagnosis and prompt
treatment intervention during premanifest disease stage are
crucial for successful combination treatment regimens in
clinical trials.

SUMMARY AND CONCLUSION

Neuroinflammation is a major contributing factor in several
neurological disorders, validating the use of immunotherapies
and anti-inflammatory agents, such as anti-inflammatory
cytokine biologics, as a therapeutic option to alleviate disease
burden. In this review, we summarized findings evaluating
the beneficial effects of immunotherapies in HD and α-
synucleinopathies. Immunotherapies and anti-inflammatory
agents have rarely achieved robust effectiveness in alleviating
HD and α-synucleinopathies in human clinical trials. Evaluating
the combined treatment strategy of immunotherapy with
multiple target neurorestorative candidate drugs to target
different processes that complement each other or the same
process at different levels of pathogenesis for additive or
synergistic effects, could probably show better efficacy in
slowing down disease progression. While targeted multi-
modality therapy is promising in terms of greater clinical
efficacy, it is limited by its potential side effects and
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toxicity. Therefore, as with all monotherapy development,
it is important to understand the molecular mechanisms,
possible drug-drug interaction, and tolerability of side effects
(safety) of each mono-drug and combination therapy. Also,
optimizing the dose of drugs in combination, by using a
lower dose, might help to reduce the risk of toxicity and
side effects.

The development of multimodality therapy that targets
inflammation-mediated progression and neurocircuitry
disruptions might be warranted to alleviate disease
burden as well as to improve the duration and quality
of life of patients suffering from proteinopathy-induced

neurodegeneration such as HD, SCAs, PD, DLB,b
and MSA.
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