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INTRODUCTION

Alzheimer’s disease (AD) is a major global health burden, 
with doubled world-wide prevalence in 26 years due to increase 
in aging population.1 Despite numerous efforts to unravel the 
exact mechanism of the disease, effective treatment and pre-
vention options remain elusive.2 Instead of the single view of 
amyloid cascade hypothesis in understanding AD, many re-
searchers are beginning to advocate ‘multifactorial hypothesis,’ 
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calling for the need to consider multiple targets when develop-
ing prevention or treatment strategies for AD.3 In this regard, 
individual life style factors, environmental stress and resultant 
‘allostatic load’ has been suggested as a major influencing fac-
tors in the disease trajectory of AD.4 In line with this stance, re-
cent major trials reported significant benefits of lifestyle inter-
ventions in those with high risk of AD.5

Among many lifestyle and nonpharmacological interven-
tions frequently discussed,6 physical exercise is increasingly ac-
centuated as a potential therapeutic strategy for AD,7 with its 
beneficial effects on mitochondrial function, brain plasticity, 
neurogenesis and cerebral blood flow.7,8 One randomized con-
trolled trial conducted to evaluate the effects of moderate-to 
high intensity aerobic exercise on mild AD patients demon-
strated significantly reduced neuropsychiatric symptoms and 
cognition.9 Another randomized study on mild to moderate AD 
patients reported rather a contradicting result, demonstrating 
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that a 4 month structured, moderate to high intensity aerobic 
exercise did not influence cognition, quality of life, or caregiver 
burden.10 According to recent systematic reviews, the impact 
of physical exercise on AD is inconclusive, due to lack of large 
sample sizes, methodological disparities across studies and 
lack of prospective designs.11,12 Moreover, studies on preclini-
cal AD population remain relatively scarce. 

Neuroimaging studies are also too scarce to demonstrate the 
impact of physical exercise on AD trajectory. There have been 
evidences of increased cortical thickness and attenuated in-
fluence of amyloid on cognition in older adults who have high-
er cardiorespiratory fitness, but sample sizes were small.13,14 
There were no brain volume changes of AD patients after a 
16-week aerobic exercise with duration of 60 minutes.15 Mean-
while, 12-week moderate intensity walking in mild cognitive 
impairment (MCI) patients was significantly associated with 
increased cortical thickness. However, the study lacked a mod-
est sample size and information on amyloid deposition.16 An-
other study reported similar results, with 12-week multimodal 
physical exercise program only proven to be effective for MCI 
patients but not in AD patients.17 Contradicting results on AD 
and MCI patients may be due to the differential impact of ex-
ercise in the different stages of AD trajectory. 

In this study, we aimed demonstrate the impact of physical 
exercise on the cortical thickness and subcortical volume of 
preclinical AD patients, who are cognitively normal but with 
amyloid deposition. We hypothesized that cortical thickness 
and subcortical volumes of preclinical dementia patients with 
physical exercise will be reduced when compared with their 
counterparts. 

METHODS 

Subjects
Sixty-three preclinical AD subjects were included in this 

study. They were recruited from the normal control volun-
teers of the Catholic Dementia Brain Imaging Database, which 
holds brain scans of outpatients and inpatients at the Depart-
ment of Geriatric Psychiatry, the Saint Vincent’s Hospital, the 
Catholic University of Korea from 2010 to 2016. The inclusion 
criteria of the Exercise group were as follows: 1) subjects aged 
≥60 years; 2) Mini-Mental Status Examination score ≥27; 3) 
Clinical Dementia Rating=0;18 4) amyloid retention corresponds 
to global mean standard value uptake ratio (SUVR) ≥1.4. 5) Do-
ing moderate intensity aerobic exercise (e.g., mountain climb-
ing, dancing, and swimming) more than one hour per day, 5 
days per weeks.19 Most of the inclusion criteria of the Non-Ex-
ercise group were the same as the Exercise group [1)–4)], ex-
cept for the criteria that the Non-Exercise group had a history 
of doing walking less than 10 min or no exercise per day, 5 days 

per weeks were included.19 The cognitive functions of the sub-
jects were evaluated with the Korean version of Consortium 
to Establish a Registry for Alzheimer’s Disease (CERAD-K),20 
which assess the following cognitive domains: verbal fluency, 
15-item Boston naming test (BNT), the Korean version of Mini 
Mental Status Examination (MMSE-K),21 constructional prax-
is (CP), word list memory (WLM), word list recall (WLR), word 
list recognition (WLRc), constructional recall (CR). The study 
was conducted in accordance with the ethical and safety guide-
lines set forth by the local Institutional Review Board of the 
Catholic University of Korea and written informed consent 
was obtained from all study subjects. 

PET acquisition
FBB [(F-18) florbetaben] was produced and FBB-PET data 

were collected and analyzed as previously described.22 Each 
individual participant’s MRI was utilized for co-registration 
and defining the ROI and for correcting partial volume effects 
from expanding cerebrospinal spaces accompanying cerebral 
atrophy.23,24 Analysis of the FBB PET data utilized a standard-
ized uptake value ratio (SUVR) 90 min post-injection, using 
the cerebellar cortex region of interest as the reference. Global 
Aβ burden was expressed as the average SUVR of the mean 
for the following 5 cortical ROIs: frontal, superior parietal, lat-
eral temporal, and anterior and posterior cingulate cortex/pre-
cuneus as described in previous study.24 

The FBB PET data were acquired within 4 weeks of clinical 
screening and cognitive function test. We used a cut-off for 
‘high’ or ‘low’ neocortical SUVR of 1.4, consistent with cut-off 
values used in previous FBB-PET study.25

  
MRI acquisition

Imaging data were collected at the Department of Radiol-
ogy, St Vincent’s Hospital, The Catholic University of Korea, 
using a 3T Siemens Verio machine and eight channel Siemens 
head coil (Siemens Medical Solutions, Erlangen, Germany). 
The parameters used for the T1-weighted volumetric magne-
tization-prepared rapid gradient echo scan sequences were 
TE=2.5 ms, TR=1,900 ms, inversion time=900 ms, FOV=250 
mm, matrix=256×256, and voxel size=1.0×1.0×1.0 mm.3 

Data analysis
For cortical reconstruction and volumetric segmentation of 

the whole brain, Freesurfer image analysis suite (version 6.0, 
http://surfer.nmr.mgh.harvard.edu), which is documented and 
freely available online, was used. The technical details of these 
procedures have been described in previous publications.26,27 
Briefly, the processing stream includes a Talairach transform 
of each subject’s native brain, removal of the non-brain tissue, 
and segmentation of the gray matter/white matter (GM/WM) 
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tissue. The cortical surface of each hemisphere was inflated 
to an average spherical surface to locate both the pial surface 
and the GM/WM boundary. The entire cortex of each subject 
was visually inspected, and any topological defects were cor-
rected manually, blind to the subject’s identity. The cortical 
thickness was computed as the shortest distance between the 
pial surface and the GM/WM boundary at each point across 
the cortical mantle. The global mean cortical thickness for each 
subject was computed by averaging the cortical thickness at 
each vertex, right and left hemispheres separately, and was used 
in the statistical analyses. The regional thickness value at each 
vertex for each subject was mapped to the surface of an average 
brain template allowing visualization of data across the entire 
cortical surface (described at http://surfer. nmr.mgh.harvard.
edu/fswiki/FsAverage). In addition, the entire cerebral cortex 
was parcellated into 34 regions,28,29 and a variety of surface-based 
data, including maps of cortical volume and surface area as well 
as curvature and sulcal depth, were created. Data were resam-
pled for all subjects onto a common spherical coordinate sys-
tem.30 The cortical map of each subject was smoothed with a 
Gaussian kernel of 10-mm full width at half-maximum for the 
entire cortex analyses. The subcortical volumes were obtained 
from the automated procedure for volumetric measures of the 
brain structures implemented in Freesurfer. In all, 27 volumet-
ric measures were investigated and extracted seven subcorti-
cal structures (white matter, caudate, thalamus, pallidum, pu-
tamen, hippocampus, and amygdala) from each hemisphere. 

Statistical analysis
Statistical analyses for demographic data were performed 

with the Statistical Package for Social Sciences software (SPSS, 
version 20.0, IBM Corp., Armonk, NY, USA). Assumptions for 
normality were tested for all continuous variables. Normality 
was tested using the Kolmogorov-Smirnov test. All variables 
were normally distributed. The independent t-test and the χ2 
test were used to assess potential differences between the Ex-
ercise groups and Non exercise groups for all demographic 
variables. All statistical analyses had a two-tailed a level of <0.05 
for defining statistical significance. The general linear model 
(GLM) was implemented at each vertex in the whole brain to 
identify the brain regions in which the Exercise groups showed 
significant differences in cortical thickness relative to Non ex-
ercise group, using the FreeSurfer’s mri_glmfit (described at 
http://surfer.nmr.mgh.harvard. edu/fswiki/mri_glmfit). The All 
analyses were performed for the right and left hemispheres 
separately. The threshold was set at p<0.05 [false discovery 
rate (FDR)] to resolve the problem of multiple comparisons. 
The seven subcortical structure volumes (i.e., total white mat-
ter volumes, thalamus, caudate nucleus, putamen, pallidum, 
hippocampus, and amygdala) were imported into the SPSS 

20.0 software for statistical analyses (IBM Corp.). To assess the 
main effects of diagnosis on the volume of subcortical struc-
tures, we used analysis of covariance (ANCOVA) with TIV, 
education, gender, and age as nuisance variables.

RESULTS

Demographic and clinical characteristics of the study par-
ticipants are summarized in Table 1. There was no significant 
difference in age, education, gender and CDR scores between 
Exercise group and Non-Exercise group. Among the cogni-
tive domains of CERAD-K, there were significant differences 
in WLM, WLR, WRLc, and CR scores between the two groups, 
with Non Exercise group concordantly displaying lower scores. 

When compared with Exercise group, Non-Exercise group 

Table 1. Demographic and clinical characteristics of the study 
participants

Exercise group 
(N=33)

Non Exercise 
group (N=30)

p value

Age (years±SD) 70.1±8.1 70.2±7.9 NS
Education (years±SD) 11.2±4.8 10.4±5.1 NS
Sex (M:F) 12:21 13:17 NS
CDR (SD) 0 0
SUVR (SD) NS

ACC 1.48±0.12 1.42±0.21 NS
FRC 1.34±0.13 1.32±0.12 NS
PAR 1.12±0.08 1.24±0.10 NS
LT 1.40±0.11 1.34±0.10 NS
PRC 1.44±0.12 1.43±0.12 NS
PCC 1.62±0.15 1.64±0.11 NS
Mean 1.50±0.12 1.48±0.10 NS

CERAD-K battery (SD)
VF 13.4±3.9 11.8±4.1 NS
BNT 10.9±2.7 10.0±2.7 NS
MMSE 27.9±2.7 27.2±2.3 NS
WLM 16.9±4.3 13.7±4.7 0.004
CP 10.2±1.1 10.4±1.1 NS
WLR 4.5±2.2 2.3±2.4 <0.001
WLRc 8.0±2.2 5.9±2.7 <0.001
CR 5.3±3.3 2.6±2.2 <0.001

SD: standard deviation, NS: not significant, CDR: Clinical Demen-
tia Rating, SUVR: standard value uptake ratio, ACC: anterior cin-
gulate, FRC: frontal cortex, PAR: parietal cortex, LT: lateral tempo-
ral cortex, PRC: precuneus, PCC: posterior cingulate, CERAD-K: 
the Korean version of Consortium to Establish a Registry for Al-
zheimer’s disease, VF: verbal fluency; BNT: 15-item Boston Nam-
ing Test, MMSE: Mini Mental Status Examination, WLM: word 
list memory, CP: constructional praxis, WLR: word list recall, 
WLRc: word list recognition, CR: constructional recall
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demonstrated significantly reduced cortical thickness in left 
parstriangularis, rostral middle frontal, entorhinal, superior 
frontal, lingual, superior parietal, lateral occipital, inferior pa-
rietal gyrus, temporal pole, precuneus, insula, and fusiform gy-
rus (Table 2, Figure 1). Moreover, reduced cortical thickness in 
right precuneus, superiorparietal, lateral orbitofrontal, rostral 
middle frontal, medial orbitofrontal, superior frontal, lingual, 
middle temporal gyrus, insula, supramarginal, parahippocam-
pal, paracentral gyrus was noted in Non-Exercise group (Ta-
ble 2, Figure 1).

As for subcortical volumes, reduced subcortical volumes 
were noted in left thalamus, putamen, pallidum, hippocam-
pus, amygdala in Non-Exercise group when compared with 
Exercise group (Table 3). Volumes of right thalamus, caudate, 
putamen, pallidum, hippocampus, amygdala were also reduced 
in Non-Exercise group (Table 3).

DISCUSSION

To the best of our knowledge, this is the first study to explore 
the effects of physical exercise on cortical thickness of preclin-
ical AD patients. According to our results, WLM, WLR, WRLc 
and CR scores were reduced in Non-Exercise group. Moreover, 
cortical thickness, subcortical volumes of certain brain regions 
were reduced in Non-Exercise group when compared with Ex-
ercise group. 

Reasons for the disparities in the CERAD-K scores between 
the two groups may be attributable to the benevolent effects 
of moderate-to high intensity exercise in daily life. Our results 
are in line with previous results, where there was a dose-re-
sponse relationship between the amount of physical activity 
and cognitive function among the elderly.31 Moreover, across 
the lifespan, subjects who reported that they have been phys-

Table 2. Voxel wise group comparison results where a significant cortical thinning was observed in Non-Exercise group relative to Exercise 
group (FDR corrected, p<0.05)

Region Cluster size (mm2) Number of vertex T max
Talairach coordinates

X Y Z
Left

Parstriangularis 184.75 264 5.836 -48.2 33.3 1.5
Rostral middle frontal 192.58 346 5.714 -41.0 31.1 19.4
Entorhinal 162.01 348 4.565 -32.2 -9.8 -31.8
Superior frontal 112.62 183 4.041 -10.4 29.8 30.7
Lingual 101.41 215 3.875 -26.2 -45.6 -6.2
Superior parietal 29.77 80 3.741 -27.6 -60.8 44.1
Lateral occipital 44.07 80 3.721 -42.2 -68.1 6.5
Inferior parietal 59.10 102 3.707 -39.6 -79.3 15.2
Temporal pole 77.58 91 3.559 -38.4 8.7 -36.9
Precuneus 125.61 236 3.537 -18.2 -71.4 30.4
Insula 34.88 101 3.512 -37.4 -1.1 -14.4
Fusiform 34.75 61 3.501 -32.7 -36.6 -21.6

Right
Precuneus 58.37 164 5.254 7.2 -51.5 62.7
Superiorparietal 82.11 134 4.622 18.7 -78.4 41.6
Lateral orbitofrontal 290.44 573 4.406 37.2 28.2 -16.6
Rostral middle frontal 412.33 575 4.224 30.6 49.5 2.5
Medial orbitofrontal 151.07 271 4.189 12.6 43.9 -4.6
Superior frontal 62.55 123 3.925 10.4 29.3 33.7
Lingual 67.47 166 3.636 23.3 -53.1 -2.2
Middle temporal 34.27 56 3.623 54.4 -17.3 -24.2
Insula 22.02 82 3.605 32.7 -24.8 19.1
Supramarginal 33.98 70 3.456 55.4 -37.0 19.1
Parahippocampal 21.11 72 3.328 21.6 -14.8 -27.8
Paracentral 47.66 131 3.279 13.9 -24.6 46.3

FDR: false discovery rate
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ically active both in the early adulthood and mid-to-late adult-
hood were at lower risk of subjective cognitive decline.32 An-
other study on the sample from the national survey reported 
that in those with family history of AD, subjective reports of 
higher physical activity was associated with greater cognitive 
function.33 Even higher ‘perceived’ physical activity in subjective 
reports were associated with increased cognitive ability.34 Mean-
while, Non-Exercise group in our study demonstrated lower 
scores in WLM, WLR, WRLc, and CR scores of the CERAD-K 
battery, which are closely related to the episodic memory as-
sessment. They are domains where AD patients typically score 
less than their counterparts. Our results could imply that ef-
fects of exercise directly influence cognitive domains that are 
typically attacked by AD. Biological mechanisms explaining 
how exercise beneficially affects cognitive function are scarce. 
Many predict that exercise-induced elevations in physical func-

tion in turn results in cognitive function.35 This is thought to 
be mediated by increased serum levels of brain-derived neuro-
tropic factors (BDNF), insulin-like growth factor type-1 (IGF-1) 
and vascular endothelial growth factors (VEGF) often noted 
after physical exercise.36

The aforementioned increased markers of neurogenesis may 
explain the disparities in the cortical thickness between Exer-
cise and Non-Exercise group in our study. Indeed, one study 
on healthy elders found that BDNF elevation was higher after 
physical exercise when compared with those measured after 
cognitive training.37 Another explanation for the different re-
sults of cortical thickness between the two groups is the pro-
tective effects of exercise on neurovascular function. Exercise 
significantly improved blood brain barrier integrity in elderly 
women,38 and exercise significantly increased endothelial func-
tion and cerebral blood flow, which can prevent neuronal hy-
poxia and degeneration.39,40 Meanwhile, many of the regions 
that showed reduced cortical thickness in Non-Exercise group 
are components of default mode network (DMN), encompass-
ing posterior cingulate cortex, precuneus, medial prefrontal 
cortex, mesial and inferior temporal cortex and inferior pari-
etal cortex.41 It is significant that important hubs of DMN, bi-
lateral precuneus were all affected in None-Exercise group. It 
is in with a previous study where increased functional connec-
tivity of DMN was observed in MCI patients after 12-week aer-
obic exercise.42 DMN is a well-known for its vulnerability to 
disruption due to incipient AD pathology, and our results im-
ply the preventive effects of physical exercise may be exerted 
through maintaining structural components of DMN in pre-
clinical AD patients. 

As for the results on subcortical volumes of the two groups, 
non-exercise group demonstrated reduced volumes of thala-
mus, caudate, putamen, pallidum, hippocampus, amygdala. 
Thalamic volume loss was proposed to be an early indicator 
of poorer cognitive performance in amnestic MCI patients in 
one study,43 and early involvement of thalamus and striatum 
were noted in familial AD patients.44 Moreover, subcortical vol-
ume loss increased the risk of conversion from MCI to AD.45 
Subcortical structures are proposed to be involved in the early 
stages of AD trajectory. In this regard, how exercise impacts 
those in the incipient stage of AD trajectory is of critical issue, 
but relevant studies are still scarce. A Japanese study on healthy 
elders demonstrated a meaningful result, with larger volumes 
of left hippocampus and bilateral nucleus accumbens in those 
exposed to frequent exercise habits.46 Our study results are in 
line with the aforementioned result, and disparities in the sub-
cortical volumes of the two groups in our study suggest the 
beneficial effects of exercise not only impact cortical structures, 
but also core subcortical structures in preclinical AD patients. 

There are several limitations that must be taken into con-

Table 3. Group analysis results of subcortical volumes

Region 
(mm3±SD)

Exercise group 
(N=33)

Non-exercise 
group 

(N=30)
p value

Left
Thalamus 6,697±666 6,286±421 0.004
Caudate 3,242±450 3,129±463 0.301
Putamen 4,221±445 3,910±503 0.007
Pallidum 1,884±197 1,768±202 0.016
Hippocampus 3,635±367 2,972±346 <0.001
Amygdala 1,389 ±182 1,139±152 <0.001

Right
Thalamus 6,669±665 6,230±415 0.002
Caudate 3,275±496 3,108±361 0.117
Putamen 4,328±541 4,012±387 0.007
Pallidum 1,816±208 1,769±199 0.332
Hippocampus 3,826±463 3,227±468 <0.001
Amygdala 1,573±224 1,322±206 <0.001

SD: standard deviation

-5.32

L R

5.32

Figure 1. Statistical maps corrected for age, education, and gen-
der showing increased cortical thickness in the Exercise group 
relative to the Non-exercise group (p<0.05 FDR corrected). FDR: 
false discovery rate.
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sideration. First, subjects were recruited from a single center, 
which limits generalizability of results. Second, sample sizes 
were small. Third, assessment of quantity and intensity of exer-
cise were solely based on patients’ report, which is subject to re-
call bias. Fourth, the study was a retrospective, cross-sectional 
design. Fourth, information on apolipoprotein E (APOE) gen-
otype was not provided, which limits more detailed interpre-
tation of interactive effect of APOE and exercise on patients at 
high risk of AD. 

There have been numerous interventional studies trying to 
explore the effects of exercise on cognition.47-50 However, many 
are inconclusive due to heterogeneity of the study design and 
methods. Future studies should consider well-controlled and 
stringent selection of study population, structured, uniform 
exercise protocol and adequate sample sizes to achieve more 
conclusive findings on the relationship between exercise and 
AD.35 Moreover, additional neuroimaging studies will be con-
ducive to understanding the actual effect of exercise in patients 
at high risk of AD. 
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