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Nickel isotopic evidence for late-stage accretion
of Mercury-like differentiated planetary embryos
Shui-Jiong Wang 1✉, Wenzhong Wang2,3,4, Jian-Ming Zhu 1, Zhongqing Wu2,4, Jingao Liu 1, Guilin Han1,

Fang-Zhen Teng5, Shichun Huang 6, Hongjie Wu1, Yujian Wang1, Guangliang Wu1 & Weihan Li1

Earth’s habitability is closely tied to its late-stage accretion, during which impactors delivered

the majority of life-essential volatiles. However, the nature of these final building blocks

remains poorly constrained. Nickel (Ni) can be a useful tracer in characterizing this accretion

as most Ni in the bulk silicate Earth (BSE) comes from the late-stage impactors. Here, we

apply Ni stable isotope analysis to a large number of meteorites and terrestrial rocks, and find

that the BSE has a lighter Ni isotopic composition compared to chondrites. Using first-

principles calculations based on density functional theory, we show that core-mantle dif-

ferentiation cannot produce the observed light Ni isotopic composition of the BSE. Rather, the

sub-chondritic Ni isotopic signature was established during Earth’s late-stage accretion,

probably through the Moon-forming giant impact. We propose that a highly reduced sulfide-

rich, Mercury-like body, whose mantle is characterized by light Ni isotopic composition,

collided with and merged into the proto-Earth during the Moon-forming giant impact, pro-

ducing the sub-chondritic Ni isotopic signature of the BSE, while delivering sulfur and

probably other volatiles to the Earth.
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The Earth experienced a protracted accretion history over
several tens up to 100 million years, which proceeded by
the collision of numerous planetesimals and planetary

embryos1,2. A fundamental assumption was that the Earth’s
building blocks as a whole were compositionally similar to
undifferentiated chondritic meteorites. Researchers have looked
among different classes of chondrites for the closest representa-
tive of the accreting materials that formed Earth3–6. However,
emerging evidence points to a mismatch in many crucial ele-
mental and isotopic ratios between chondritic meteorites and the
accessible Earth, arguing for the possible accretion of additional
materials that are chemically and isotopically different from
extant meteorite collections7–11. Constraining the nature of these
building blocks of Earth is important, because they not only
provide fundamental information on terrestrial planet formation,
but also help understand how the Earth evolved into its current
habitable status.

The late accretion stages, including the Moon-forming giant
impact and the late veneer event, likely account for only <10% of
Earth’s total mass12, but they represent a critical step for Earth to
build its life-essential volatile budgets13–20. Dynamical models of
Earth’s growth suggest that the late accretion stages were highly
heterogeneous, consisting of a mixture of materials from two
genetically distinct reservoirs in the Solar nebula20,21. One end-
member may originate from the inner Solar system and contain a
reduced, non-carbonaceous component that is probably
‘missing’ in known meteorites11,20–24. The other may be oxidized,
carbonaceous chondrite-like material from the outer Solar sys-
tem17,19–21,25. When these materials were added to Earth is still
debated19–27. The carbonaceous chondrite-like materials are
commonly thought to be the source of major volatiles in
Earth28,29. Recent high pressure–temperature experiments on
metal alloy-silicate partitioning of volatiles (e.g., carbon, sulfur,
and nitrogen), however, suggest that Earth’s volatile abundance
patterns could have been largely established by impact of a sulfur-
rich, differentiated planetary body with minimal contributions
from carbonaceous chondrite-like materials15,16. Due to the lack
of proper meteorite proxies, the nature of late-stage impactors
remains poorly known.

Nickel isotopic compositions of meteorites and terrestrial rocks
may hold important clues. Nickel in the bulk silicate Earth (BSE)
was mostly derived from late-stage impactors, as that from earlier
stages was largely segregated into the core due to its moderately
siderophile nature23. Models predict that ~95% of Ni in the BSE
was derived from the last ~35% of mass that accreted to
Earth23,30. Nickel is non-volatile and partitions compatibly into
the mantle dominant phase – olivine – following accre-
tion, so that the BSE can potentially capture the Ni isotopic sig-
nature of late-stage accreting materials.

Nickel isotopic variations in meteorites have been well docu-
mented as shown in Fig. 1. Mass-independent nucleosynthetic Ni
isotope anomalies arise from the heterogeneous distribution of
presolar matters in the Solar protoplanetary disk, and thus trace
the provenance of Earth’s building blocks. The nucleosynthetic
anomalies are present in carbonaceous and ordinary chondrites,
with enstatite chondrites largely within error of the BSE23,31–35,
supporting the general idea that the late-stage accreting materials
mainly originated from an enstatite-like source region in the
inner Solar system23. Iron meteorites display similar anomalies,
together with different groups of chondrites, forming a dichot-
omy between carbonaceous and non-carbonaceous meteorites as
found in many other isotope systems (e.g., Mo, Cr, Ru, Ti)36.
Mass-dependent isotopic variations stem from physico-chemical
processes in the Solar nebula and on the planetary parent bodies.
Nickel isotopic compositions of enstatite, ordinary, and most
carbonaceous chondrites exhibit a common value, expressed as

δ60/58Ni (the 60Ni/58Ni ratio in parts per thousand, relative to the
SRM986 standard; δ60/58Ni= (60/58Nisample / 60/58NiSRM986− 1) ×
1000), with an average of +0.23 ± 0.11‰ (2 SD, n= 34)32,37–40.
The small isotopic variation observed in the carbonaceous chon-
drites most likely reflects the heterogeneous distribution of an iso-
topically light sulfide component41,42, supported by the roughly
negative correlation between δ60/58Ni and sulfur content (Fig. 1). It
is not surprising that iron meteorites have δ60/58Ni values within the
‘chondritic’ range (Fig. 1), because they represent fragments of the
disrupted cores of planetary bodies, and dominate the Ni budget.

The Ni isotopic composition of present BSE is poorly
constrained. An earlier report of a few ultramafic rocks yielded
δ60/58Ni values indistinguishable from the chondritic average,
and they concluded that the BSE has a chondritic Ni isotopic
composition39. This conclusion is questioned in a recent study
combining new and reported peridotite samples40, which sug-
gested that the BSE has a δ60/58Ni ~0.1‰ lower than the
chondrite average, a difference that was attributed to Earth’s
core formation40,43. Central to this debate is the limited Ni
isotope data for terrestrial silicate rocks and scant information
on Ni isotope fractionation during igneous and core–mantle
differentiations.

Here, we show that the BSE has a sub-chondritic Ni isotopic
composition by applying Ni isotope analysis to meteorites and
terrestrial rocks. Our first-principles calculations further suggest
that the light Ni isotopic signature of the BSE is not a result of

Fig. 1 A summary of mass-independent and mass-dependent Ni isotopic
variations in meteorites. The ε62Ni (ε62Ni= (62/58Nisample/ 62/58NiSRM986

− 1) × 106 after internal normalization to 61Ni/58Ni), are from
literature31–33,35,36, and the δ60Ni of chondrites and iron meteorites are
from this study and literature37–41,70. The carbonaceous chondrites
(CC), enstatite chondrites (EC), and ordinary chondrites (OC) have
average δ60Ni values of 0.23 ± 0.14‰ (2 SD), 0.22 ± 0.02‰ (2 SD) and
0.24 ± 0.02‰ (2 SD), respectively. A roughly negative correlation
between δ60Ni and sulfur abundance is observed in carbonaceous
chondrites (upper panel), which may be caused by the presence of
various abundances of sulfides with δ60Ni values as low as −1‰41,42.
The gray areas represent the dichotomy between carbonaceous and
non-carbonaceous meteorites36. The sulfur abundances are from ref. 71.
Meteorite data from this study and literature are presented in
Supplementary Table 2. Error bars represent 2 SD.
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core–mantle differentiation. Rather, the signature was established
during Earth’s late-stage accretion, via impact and accretion of a
highly reduced, Mercury-like impactor that likely originated from
the innermost Solar system.

Results and discussion
Non-chondritic Ni isotopic composition of the bulk silicate
Earth. Our new high-precision, inter-laboratory analyses on 60
terrestrial silicate rocks demonstrate that the present BSE is
unambiguously sub-chondritic. Fertile peridotites, whose major
element compositions are closest to the Primitive Mantle (e.g.,
Mg#= 89.6 ± 1.0; Al2O3= 3.52 ± 0.60 wt.%)44, have δ60/58Ni
values clustering tightly around +0.10 ± 0.07‰ (2 SD; n= 13,
Fig. 2 and Supplementary Fig. 2). Peridotites overprinted by
mantle metasomatism have Ni isotopic compositions shifted
towards either heavier or lighter, but only to a limited degree
(Supplementary Note 1). The melting products of mantle have
similar or lighter Ni isotopic compositions compared to perido-
tites (Fig. 2). Komatiites formed by high-degree mantle melting
(>45%) record an isotopic signature similar to the fertile peri-
dotites (+0.13 ± 0.09‰, 2 SD, n= 15; Fig. 2). Oceanic basalts
(OIBs and MORBs), which are produced by relatively low-degree
melting (<25%), have Ni isotopic compositions slightly lighter
than peridotites (Fig. 2; Student’s t -test; p < 0.001), with an
average δ60/58Ni value of 0.03 ± 0.16‰ (2 SD, n= 15). Eclogites,
formed from metamorphism of basalts, display a similar average

δ60/58Ni value of 0.02 ± 0.06‰ (2 SD, n= 7; Fig. 2). Whether the
difference between oceanic basalts and peridotites implies possi-
ble Ni isotope fractionation during partial melting or results from
the limited dataset of oceanic basalts deserves further investiga-
tions. Nevertheless, the present BSE, as best represented by fertile
peridotites reported in this study and literature40, has δ60/58Ni of
+0.11 ± 0.06‰, lower than the chondritic average, +0.23 ±
0.11‰ (Student’s t -test, p « 0.001; Supplementary Note 1).

First-principles calculations on Ni isotope fractionation during
core formation. The sub-chondritic Ni isotopic composition of
the BSE could have resulted from two possible processes: isotope
fractionation associated with Earth’s differentiation, or the
accretion of non-chondritic materials.

The former hypothesis is examined using first-principles
calculations on Ni isotope fractionation factors (103lnα of 60Ni/
58Ni) among Earth’s major Ni-bearing phases: olivine, wadsleyite,
ringwoodite, bridgmanite, and Fe–Ni alloy. Limited differences in
103lnα are found between olivine and wadsleyite/ringwoodite in
the mantle transition zone and bridgmanite in the lower mantle
(e.g., 103lnα < 0.05‰ at 1500 K and <0.03‰ at 2000 K; Fig. 3a),
which excludes the possibility of a hidden reservoir enriched in
heavy Ni isotopes in the mantle. This lends credence to the use of
accessible mantle and mantle-derived samples as representative of
the present BSE Ni isotopic signature. Nickel isotope fractiona-
tion between Fe–Ni alloys and silicates (e.g., bridgmanite) under
core-formation conditions is also negligible (P= 25–130 GPa;
Fig. 3b and Supplementary Note 2). Notably, incorporation of
sulfur into the Fe–Ni alloy slightly reduces the force constant of
Ni, leading to the enrichment of light Ni isotopes in Fe–Ni alloys
relative to the silicates (Fig. 3b).

To directly assess the equilibrium Ni isotope fractionation
between silicate and metallic melts during core–mantle differ-
entiation, we performed first-principles molecular dynamic
simulations on melt phases of Fe92Ni5S3 and Mg30NiSi32O96

based on the density functional theory. The 103lnα between
Fe92Ni5S3 and Mg30NiSi32O96 melts is −0.011‰ at ~38 GPa and
3500 K (Fig. 3b; Supplementary Note 2), further confirming the
conclusion based on crystals that core–mantle differentiation
does not significantly fractionate Ni isotopes.

Two experimental studies investigated equilibrium Ni isotope
fractionation between metal and silicate mineral or melt at low
pressures (≤1.3 GPa) and temperatures (≤1623 K)45,46. Both
studies predict limited Ni isotope fractionation under core-
formation temperatures (<0.01‰ in terms of δ60/58Ni at T > 3000
K), a result that is consistent with our first-principles calculations
at higher pressures, implying negligible pressure effect on
silicate–metal Ni isotope fractionation. If the bulk Earth (BE)
has a chondritic Ni isotopic composition, mass balance calcula-
tions using high-pressure metal–silicate Ni elemental partition
coefficients47 and isotope fractionation factors obtained from our
first-principles calculation demonstrate that core–mantle differ-
entiation cannot explain the sub-chondritic Ni isotopic composi-
tion of the BSE (Fig. 3c).

Other possible events including evaporative loss, collision
erosion, and core–mantle chemical diffusion can also be
discounted as causes for the sub-chondritic Ni isotopic signature
of BSE40. Evaporative loss of Ni is unlikely given the relatively
refractory nature of Ni. In addition, kinetic isotope fractionation
associated with evaporation would lead to a heavy BSE Ni
isotopic composition, opposite to observations (Fig. 2). Colli-
sional erosion during Earth’s formation preferentially removed
early formed basaltic crust48. The terrestrial oceanic basalts have
an average δ60/58Ni (0.03 ± 0.16‰; 2 SD) slightly lower than
the BSE value, and thus collisional erosion cannot explain the

Fig. 2 Mass-dependent Ni isotopic variations of terrestrial silicate rocks
and chondrites from this study. The bands represent the average value for
each sample category with 2 SD. The δ60/58Ni of five chondrite samples fall
within the chondritic average defined by all published data (0.23 ± 0.11‰).
The fertile and non-metasomatized peridotites with chemical compositions
most close to the BSE44 have homogeneous Ni isotopic compositions, while
those experienced secondary modification have relatively large variations.
Therefore, only fertile, non-metasomatized peridotites are used for the
average calculation (0.10 ± 0.07‰). Data for chondrites are presented in
Supplementary Table 2; Data for peridotites, komatiites, oceanic basalts,
and eclogites are presented in Supplementary Tables 4–6. Error bars
represent 2 SD.
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sub-chondritic Ni isotopic composition of BSE. The presence of a
Ni chemical gradient between Earth’s core and mantle may
induce diffusive isotope fractionation, due to the faster diffusivity
of light isotopes relative to heavy ones. A one-dimensional
diffusion model shows that core–mantle chemical diffusion
produces ~0.1‰ variation in the silicate part but is restricted to
the lowermost two kilometers of the mantle on a time scale of 10
million years (Supplementary Note 3).

The nature of late-stage accreting materials and its implica-
tions. Therefore, the Earth’s mantle must have accreted sub-
chondritic materials during its growth. In the early stages, metal
and silicate melts equilibrate completely in the magma ocean49, so
that the proto-BSE likely has a low Ni concentration and a
chondritic Ni isotopic composition. Because of the moderately
siderophile nature of Ni23 and a possible disequilibrium scenario
for the late-stage accretion49,50, the BSE’s sub-chondritic Ni iso-
topic signature was likely established in the late stages. The late
veneer following the main growth stage added the last <0.5% of
mass to Earth and contributed <5% of the Ni budget of the BSE18.
Hence, it is unlikely to be the event that produced the sub-
chondritic Ni isotopic composition of BSE. To account for the
observed Ni isotopic value of the present BSE, the late-veneer
material accreted to the BSE would have to have had extremely
low δ60/58Ni of around −2.5‰ (Supplementary Fig. 8), a value
that has not been found in any natural rocks, and would be
inconsistent with the Ni isotopic composition of an average
carbonaceous chondrite-like material for the late veneer17,19,24,25.
The last significant stage of Earth’s accretion was the Moon-
forming giant impact, contributing >20% of Ni budget of
the BSE49. The Ni isotopic composition of the BSE could
have been strongly influenced by the Moon-forming impac-
tor18,23. Assuming a chondritic Ni isotopic composition for the
proto-BSE as discussed above, mass balance calculation suggests
that materials accreted to the proto-BSE have δ60/58Ni values
as low as −0.35‰ (Supplementary Fig. 8). Accordingly, the

Moon-forming impactor is unlikely to have a composition
represented by chondrites.

Instead, we hypothesize that the sub-chondritic Ni isotopic
composition of the BSE resulted from the impact and accretion of
the sulfide-rich mantle of a highly reduced, differentiated
planetary body. It has long been recognized that accretion of
planetary embryos that were already differentiated into cores and
mantles contributed significantly to the growth of Earth51–53. The
Moon-forming impactor has been suggested to be a sulfur-rich,
differentiated planetary body15,16,27; but uncertainties remain as
to whether it is a highly reduced, Mercury-like impactor23,24,27, or
a relatively more oxidized body20,21,26. Mercury is the most
reduced planet in the inner Solar system and has an abnormally
high abundance of sulfides in its mantle54–56, whereas oxidized
planetary embryos have sulfur segregated into their cores57. This
is because sulfur is highly siderophile at high oxygen fugacity
(fO2) and partitions into the metallic core, but becomes lithophile
and enters into the silicate melt as sulfide species under low fO2

(e.g., five units below the iron-wüstite buffer; IW-5)58,59.
Magmatic sulfides are the only major Ni-bearing phases that
are isotopically much lighter than silicates (δ60/58Nisulfide down to
−1‰)41. Rocks with high sulfide/silicate ratios have light Ni
isotopic compositions, which is most evident in magmatic Ni-
sulfide deposits where the bulk δ60/58Ni values are negatively
correlated with the sulfur content41,42. Therefore, when small
planetary embryos (the proto-impactor) were formed in a sulfur-
rich early Solar nebula and differentiated into core and mantle
under highly reduced environment similar to the Mercury (mean
IW-5.4)58, the mantle would be sulfur-rich and have a light Ni
isotopic composition (Fig. 4). By contrast, in the large proto-
Earth, core–mantle differentiation proceeded under much higher
pressure and likely more oxidizing condition (>IW-3; Fig. 4)60, in
which sulfur behaves as a siderophile element61,62, leading to a
sulfur-poor mantle. In this case, limited silicate–metal Ni isotope
fractionation is expected (see discussion above), and thus the
proto-Earth mantle likely has a chondritic Ni isotopic

Fig. 3 Equilibrium fractionation factors from first-principles calculations and the modeled Ni isotope fractionation during core–mantle differentiation.
a Equilibrium fractionation factors (103lnα) between olivine, wadsleyite, ringwoodite, and bridgmanite. b Equilibrium fractionation factors between Fe–Ni
(S) alloy and bridgmanite, and between FeNiS melt (Fe92Ni5S3) and silicate melt (Mg30NiSi32O96). c δ60NiBSE vs. distribution coefficient of Ni between
metal and silicate (DNi

metal–silicate). If the bulk Earth (BE) has a chondritic Ni isotopic composition, the BSE δ60Ni after core formation can be evaluated using
the Rayleigh fractionation equation: δ60NiBSE− δ60NiBE=Δ60Nimetal–silicate × lnfBSE, where fBSE is the fraction of Ni in the BSE. The fBSE can be calculated
using the mass balance model: fBSE=Mmantle/(Mmantle+D ×Mcore). The masses of the mantle and the core are 0.675 and 0.325, respectively. Given that
the DNi

metal–silicate is likely <4547, core segregation induced Ni isotope difference between metal and silicate cannot account for the light Ni isotopic
composition of the BSE. ol olivine, wads wadsleyite, rw ringwoodite, bdg bridgmanite, FeNi Fe–Ni alloy, FeNiS S bearing Fe–Ni alloy or melt.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20525-1

4 NATURE COMMUNICATIONS |          (2021) 12:294 | https://doi.org/10.1038/s41467-020-20525-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


composition. During the Moon-forming impact, the impactor’s
core merged directly into the proto-Earth’s core due to its limited
emulsification, while the remaining parts of the impactor were
incorporated into the Earth’s mantle49,50. The Mercury-like
impactor’s sulfur-rich mantle would have been completely
dissolved in the planet-wide, more oxidizing terrestrial magma
ocean63, and produced the sub-chondritic Ni isotopic signature of
Earth’s mantle (Fig. 4).

Our findings imply that, instead of an outer Solar system
origin20,21, the Moon-forming impactor may represent a ‘missing’
Earth’s building component originated from a highly reduced
reservoir in the inner Solar system. While the absence of
nucleosynthetic Ni isotopic anomalies in enstatite chondrites is
consistent with an inner Solar system provenance for the Moon-
forming impactor23, the sub-chondritic mass-dependent Ni
isotopic composition of the BSE further points towards a
sulfide-rich, Mercury-like impactor, likely from closer to the
Sun. This is in accordance with variations in nucleosynthetic
isotope anomalies of other elements in meteorites, suggesting that
the Earth possesses the most s-process enriched materials from
the inner Solar system11,22,24,64. A most recent study found s-
process enriched ruthenium (Ru) isotopic signatures in Eoarch-
ean rocks, supporting the idea that the pre-late veneer Earth
incorporated building materials from the innermost region of the
Solar system, most likely through the Moon-forming giant
impact24. The impactor might be sulfur-rich, such that the highly
siderophile Ru was partially retained in the mantle without being
completely extracted to the core. Later addition of a carbonaceous
chondrite-like late veneer with s-process Ru deficits from the

outer Solar system ultimately built up the modern mantle Ru
isotopic composition24. The proposed late-stage accretion of the
highly reduced, Mercury-like planetary body may not only
explain the broad geochemical similarity between Earth and
Moon27, but also account for the volatile abundance patterns in
the BSE16. Our study highlights the importance of inner planets,
e.g., Mercury and Venus, in searching for the Earth’s ‘missing’
building blocks that are not present in extant meteorite
collections. Future studies on achondrites from the inner Solar
system and samples from Venus and Mercury as well as
experimental work will shed more light on these issues.

Methods
Nickel isotope analyses. We undertook an inter-laboratory comparison of geo-
logical reference materials using different analytical protocols in two labs: Indiana
University (IU) and China University of Geosciences, Beijing (CUGB). Despite
different double spike solutions and different column chemistry methods, the
results of standards from two labs agree with each other within analytical uncer-
tainty (Supplementary Table 1). A comparison of our data with published values is
shown in Supplementary Fig. 1.

Ni isotope analyses at IU:. Sample powders were digested in a mixture of distilled
HF+HNO3+HCl. After complete dissolution, aliquots of sample solutions
containing 1.5 μg Ni were spiked with a 61Ni –62Ni double spike to reach an
optimal spike–sample ratio of 64:36. The mixtures were refluxed on a hotplate to
ensure sample–spike equilibration before column chemistry. Separation of Ni from
the matrices was achieved using a three-stage, cation exchange chromatography
procedure using Bio-Rad 200–400 mesh AG 50W-X8 resin. Briefly, the first col-
umn applies mixture of 20% 10M HCl and 80% acetone to separate Ni from Fe,
Mn, and Cr. The second column uses 15% 10M HCl and 85% acetic acid to
separate Ni from elements such as Mg, Al, Ca, and Ti, and the last column further
purifies Ni using 0.9 M HNO3 to remove Na and K. The Ni isotopic ratios were
measured using Nu Plasma II MC-ICPMS at Indiana University.

Ni isotope analyses at CUGB:. Sample powders were dissolved and spiked follow the
same protocol at IU, but with a different 61Ni–62Ni spike solution to obtain optimal
ratio of 62Nispike/58Nisample= 1.3. The spike–sample solution was then passed
through four-stage column chemistry. The step 1 column uses AG 50W-X8 and
AG 1-X8 resins to separate Ni from Fe and Ca. Step 2 column uses AG 50W-X8
resin to separate Ni from Mg, Ti, and Al in a media of 0.15M HNO3 and 4M HF.
A third column uses 0.5 M HCl containing 95% acetone to remove Mn; and the last
column further separates Ni from the residual matrix using 0.5 M HCl+ 95%
acetone+ 0.1 M DMG. The Ni isotopic ratios were determined on Nu Plasma III
MC-ICPMS at the Laboratory of Surficial Environmental Geochemistry, Institute
of Earth Sciences, China University of Geosciences (Beijing).

First-principles calculations. Ab initio calculations were performed using the
software “Quantum Espresso”65, which is based on the density functional theory
(DFT), plane wave, and pseudopotentials. The generalized gradient approximation
(GGA) was adopted to describe the exchange-correlation functional. The pseu-
dopotential for magnesium was generated using von Barth and Car’s methods with
a cutoff radius 2.5 Bohr. The electron configurations are 3s23p0, 3s13p1,
3s13p0.53d0.5, 3s13p0.5, and 3s13d1 with decreasing weights of 1.5, 0.6, 0.3, 0.3, and
0.2, respectively. The pseudopotentials for nickel, silicon, and oxygen were gen-
erated by the method in Troullier and Martins66. The cutoff radius are 1.45 Bohr
with the electron configuration of 2s22p4 for oxygen and 1.47 Bohr with the
electron configuration of 3s23p43d0 for silicon. The cutoff radius for nickel is 2.1
Bohr with the electron configuration of 4s23d84p0. The pseudopotential for Fe was
generated using the Vanderbilt method67 with a valence configuration of
3s23p63d6.54s14p0 and a cutoff radius of 2.0 Bohr for Fe.

We first optimized all crystal structures of Ni-bearing minerals using the
variable cell shape molecular dynamics method68 with different k-point grids
dependent on the sizes of unit cells (Supplementary Table 7). The energy cutoff for
plane wave and charge density are set to 70 Ry and 700 Ry, respectively. The
residual forces converge within 10−4 Ry/Bohr. After the relaxed structures were
obtained, we then calculated vibrational frequencies using the finite displacement
method as implemented in the open-source code PHONOPY69. Consequently, the
reduced partition function ratios β of 60Ni/58Ni for all phases can be calculated

from the equation: βA ¼ Qh
Ql

¼ Q3N
i
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uil
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1
2uih

1�e�uih
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In order to directly estimate the equilibrium Ni isotope fractionation between
silicate and metallic melts, we conducted first-principles molecular dynamics
(FPMD) simulations on Mg30Ni2Si32O96 and Fe92Ni5S3 melts based on the DFT
using the Vienna ab initio simulation package (VASP). The GGA was adopted for
the exchange-correlation functional and the projector-augmented-wave (PAW)
pseudopotentials were used. The energy cutoff for the plane wave was 600 eV. The
Brillouin zone summations over the electronic states were performed at gamma

Fig. 4 Cartoon showing the merger of a highly reduced, Mercury-like
planetary body with the relatively more oxidizing proto-Earth, and
schematic evolution of Ni isotopic composition of the BSE. a The small,
proto-impactor from the highly reduced innermost region of the Solar
system differentiated into a core, a sulfur-rich mantle, and likely a sulfide
layer at the mantle–core boundary, because sulfur behaves more lithophile
at low fO2 and pressure58,59,61,62. The impactor’s mantle likely had a sub-
chondritic Ni isotopic composition due to the enrichment of sulfides.
Differentiation on the large, proto-Earth partitioned sulfur dominantly into
the core because sulfur is more siderophile at relatively high fO2 and
pressure58,59,61,62. Therefore, the mantle of the proto-Earth had a Ni
isotopic composition close to the chondritic value. b The Moon-forming
giant impact would have completely melted the Earth, forming a planet-
wide, more oxidizing magma ocean with high solubility of sulfur60. The
sulfides in the impactor’s mantle were dissolved in the terrestrial magma
ocean, producing a sub-chondritic Ni isotopic composition for the Earth’s
mantle. c The late veneer following the main growth stage added
carbonaceous chondrite-like materials to the Earth with limited effects on
the Ni isotopic systematics of the BSE as discussed in the text.
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point. The FPMD simulations were performed in the NVT thermodynamic
ensemble with a fixed temperature of 3000 K and the Nosé thermostat was used.
The time step was set to be 1 fs, and the total running time is up to 60 ps. The initial
liquid configurations were prepared by conducting simulations on the structures at
6000 K. The cell parameter of the cubic box is 11.15 Å for Mg30Ni2Si32O96 silicate
melt and 10.05 Å for Fe92Ni5S3 melt. The simulated statistical pressures of
Mg30Ni2Si32O96 and Fe92Ni5S3 are 37.6 GPa and 38.5 GPa at 3000 K
(Supplementary Fig. 5), respectively. After equilibration, we extracted 66 snapshots
from the FPMD trajectory every 200 steps and only optimized the atomic positions
of Ni with fixed cubic boxes. This strategy makes the Ni atoms in each snapshot are
at the local equilibrium positions. Then we estimated the force constant matrix of
Ni atoms in all snapshots using the small displacement method based on the
harmonic approximation. The force constants <F > of the Ni atom in
Mg30Ni2Si32O96 and Fe92Ni5S3 melts are the cumulative averages in the time
domain. According to the high-temperature approximation of the Urey equation, it
can be written as: β ¼ 1þ ð 1

ml
� 1

mh
Þ _2

8kB
2T2 <F>

where ml and mh are the masses of light and heavy isotopes, respectively. The
equilibrium Ni isotope fractionation between Mg30Ni2Si32O96 and Fe92Ni5S3 melts
can be derived from the <F> difference between these two melts. The resulting <F>
of Ni in Mg30Ni2Si32O96 and Fe92Ni5S3 melts at ~38 GPa are 272.1 ± 7.5 and 214.4
± 2.8 N/m (Supplementary Fig. 6), respectively. Therefore, the 103lnα between
Mg30Ni2Si32O96 and Fe92Ni5S3 melts is 0.016 ± 0.003 ‰ at 3000 K and 0.011 ±
0.002 ‰ at 3500 K.

Data availability
All data in this study are included in the supplementary information files and are
available from the corresponding author.

Received: 19 July 2020; Accepted: 30 November 2020;

References
1. Halliday, A. N. Mixing, volatile loss and compositional change during impact-

driven accretion of the Earth. Nature 427, 505–509 (2004).
2. Nimmo, F. & Kleine, T. Early differentiation and core formation: processes

and timescales. in The Early Earth: Accretion and Differentiation (eds Badro, J.
& Walter, M.) 83-102 (John Wiley & Sons, 2015).

3. Fitoussi, C. & Bourdon, B. J. S. Silicon isotope evidence against an enstatite
chondrite Earth. Science 335, 1477–1480 (2012).

4. Clayton, R. N., Mayeda, T. K. & Rubin, A. E. Oxygen isotopic compositions of
enstatite chondrites and aubrites. J. Geophys. Res. 89, C245-C249 (1984).

5. Javoy, M. et al. The chemical composition of the Earth: enstatite chondrite
models. Earth Planet. Sci. Lett. 293, 259–268 (2010).

6. Allègre, C. J., Poirier, J.-P., Humler, E. & Hofmann, A. W. The chemical
composition of the Earth. Earth Planet. Sci. Lett. 134, 515–526 (1995).

7. Burkhardt, C. et al. A nucleosynthetic origin for the Earth’s anomalous 142 Nd
composition. Nature 537, 394 (2016).

8. Campbell, I. H. & O’Neill, H. S. C. J. N. Evidence against a chondritic Earth.
Nature 483, 553 (2012).

9. Drake, M. J. & Righter, K. Determining the composition of the Earth. Nature
416, 39 (2002).

10. Nielsen, S. G., Prytulak, J., Wood, B. J. & Halliday, A. N. Vanadium isotopic
difference between the silicate Earth and meteorites. Earth Planet. Sci. Lett.
389, 167–175 (2014).

11. Render, J., Fischer-Gödde, M., Burkhardt, C. & Kleine, T. The cosmic
molybdenum-neodymium isotope correlation and the building material of the
Earth. Geochem. Perspect. Lett. 3, 170–178 (2017).

12. Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the
end of the Earth’s formation. Nature 412, 708–712 (2001).

13. Albarede, F. Volatile accretion history of the terrestrial planets and dynamic
implications. Nature 461, 1227–1233 (2009).

14. Schönbächler, M., Carlson, R., Horan, M., Mock, T. & Hauri, E.
Heterogeneous accretion and the moderately volatile element budget of Earth.
Science 328, 884–887 (2010).

15. Grewal, D. S., Dasgupta, R., Sun, C., Tsuno, K. & Costin, G. Delivery of
carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Sci. Adv. 5,
eaau3669 (2019).

16. Li, Y., Dasgupta, R., Tsuno, K., Monteleone, B. & Shimizu, N. Carbon and
sulfur budget of the silicate Earth explained by accretion of differentiated
planetary embryos. Nat. Geosci. 9, 781 (2016).

17. Wang, Z. & Becker, H. Ratios of S, Se and Te in the silicate Earth require a
volatile-rich late veneer. Nature 499, 328–331 (2013).

18. Walker, R. J. et al. In search of late-stage planetary building blocks. Chem.
Geol. 411, 125–142 (2015).

19. Braukmüller, N., Wombacher, F., Funk, C. & Münker, C. Earth’s volatile
element depletion pattern inherited from a carbonaceous chondrite-like
source. Nat. Geosci. 12, 564–568 (2019).

20. Hopp, T., Budde, G. & Kleine, T. Heterogeneous accretion of Earth inferred
from Mo-Ru isotope systematics. Earth Planet. Sci. Lett. 534, 116065 (2020).

21. Budde, G., Burkhardt, C. & Kleine, T. Molybdenum isotopic evidence for the
late accretion of outer Solar System material to Earth. Nat. Astron. 3, 736–741
(2019).

22. Fischer-Gödde, M. & Kleine, T. Ruthenium isotopic evidence for an inner
Solar System origin of the late veneer. Nature 541, 525 (2017).

23. Dauphas, N. The isotopic nature of the Earth’s accreting material through
time. Nature 541, 521 (2017).

24. Fischer-Gödde, M. et al. Ruthenium isotope vestige of Earth’s pre-late-veneer
mantle preserved in Archaean rocks. Nature 579, 240–244 (2020).

25. Varas-Reus, M. I., König, S., Yierpan, A., Lorand, J.-P. & Schoenberg, R.
Selenium isotopes as tracers of a late volatile contribution to Earth from the
outer Solar System. Nat. Geosci. 12, 779–782 (2019).

26. O’Neill, H. S. C. The origin of the Moon and the early history of the Earth—a
chemical model. Part 2: The Earth. Geochim. et Cosmochim. Acta 55,
1159–1172 (1991).

27. Wade, J. & Wood, B. J. The oxidation state and mass of the Moon-forming
impactor. Earth Planet. Sci. Lett. 442, 186–193 (2016).

28. Alexander, C. O. D. et al. The provenances of asteroids, and their
contributions to the volatile inventories of the terrestrial planets. Science 337,
721–723 (2012).

29. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble
gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012).

30. Brasser, R., Dauphas, N. & Mojzsis, S. Jupiter’s influence on the building
blocks of Mars and earth. Geophys. Res. Lett. 45, 5908–5917 (2018).

31. Regelous, M., Elliott, T. & Coath, C. D. Nickel isotope heterogeneity in the
early Solar System. Earth Planet. Sci. Lett. 272, 330–338 (2008).

32. Steele, R. C., Coath, C. D., Regelous, M., Russell, S. & Elliott, T. Neutron-poor
nickel isotope anomalies in meteorites. Astrophys. J. 758, 59 (2012).

33. Tang, H. & Dauphas, N. 60Fe–60Ni chronology of core formation in Mars.
Earth Planet. Sci. Lett. 390, 264–274 (2014).

34. Burkhardt, C. et al. In search of the Earth‐forming reservoir: mineralogical,
chemical, and isotopic characterizations of the ungrouped achondrite NWA
5363/NWA 5400 and selected chondrites. Meteorit. Planet. Sci. 52, 807–826
(2017).

35. Tang, H. & Dauphas, N. Abundance, distribution, and origin of 60Fe in the
solar protoplanetary disk. Earth Planet. Sci. Lett. 359, 248–263 (2012).

36. Nanne, J. A., Nimmo, F., Cuzzi, J. N. & Kleine, T. Origin of the non-
carbonaceous–carbonaceous meteorite dichotomy. Earth Planet. Sci. Lett. 511,
44–54 (2019).

37. Cameron, V., Vance, D., Archer, C. & House, C. H. A biomarker based on the
stable isotopes of nickel. Proc. Natl Acad. Sci. 106, 10944–10948 (2009).

38. Chernonozhkin, S. M., Goderis, S., Costas-Rodríguez, M., Claeys, P. &
Vanhaecke, F. Effect of parent body evolution on equilibrium and kinetic
isotope fractionation: a combined Ni and Fe isotope study of iron and stony-
iron meteorites. Geochim. et Cosmochim. Acta 186, 168–188 (2016).

39. Gall, L., Williams, H. M., Halliday, A. N. & Kerr, A. C. Nickel isotopic
composition of the mantle. Geochim. et Cosmochim. Acta 199, 196–209 (2017).

40. Klaver, M., Ionov, D. A., Takazawa, E. & Elliott, T. The non-chondritic Ni
isotope composition of Earth’s mantle. Geochim. et Cosmochim. Acta 268,
405–421 (2020).

41. Gueguen, B., Rouxel, O., Ponzevera, E., Bekker, A. & Fouquet, Y. Nickel
isotope variations in terrestrial silicate rocks and geological reference materials
measured by MC‐ICP‐MS. Geostand. Geoanalytical Res. 37, 297–317 (2013).

42. Hofmann, A. et al. Comparing orthomagmatic and hydrothermal mineralization
models for komatiite-hosted nickel deposits in Zimbabwe using multiple-sulfur,
iron, and nickel isotope data. Miner. Depos. 49, 75–100 (2014).

43. Elliott, T. & Steele, R. C. The isotope geochemistry of Ni. Rev. Miner.
Geochem. 82, 511–542 (2017).

44. Lyubetskaya, T. & Korenaga, J. Chemical composition of Earth’s primitive
mantle and its variance: 1. Method and results. J. Geophys. Res. 112, B3 (2007).

45. Guignard, J. et al. Nickel isotope fractionation during metal-silicate
differentiation of planetesimals: experimental petrology and ab initio
calculations. Geochim. et Cosmochim. Acta 269, 238–256 (2020).

46. Lazar, C., Young, E. D. & Manning, C. E. Experimental determination of
equilibrium nickel isotope fractionation between metal and silicate from 500 °
C to 950 °C. Geochim. et Cosmochim. Acta 86, 276–295 (2012).

47. Righter, K. Prediction of metal–silicate partition coefficients for siderophile
elements: an update and assessment of PT conditions for metal–silicate
equilibrium during accretion of the Earth. Earth Planet. Sci. Lett. 304, 158–167
(2011).

48. O’Neill, H. S. C. & Palme, H. Collisional erosion and the non-chondritic
composition of the terrestrial planets. Philosophical transactions of the royal
society A: mathematical. Phys. Eng. Sci. 366, 4205–4238 (2008).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20525-1

6 NATURE COMMUNICATIONS |          (2021) 12:294 | https://doi.org/10.1038/s41467-020-20525-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


49. Rubie, D. C. et al. Heterogeneous accretion, composition and core–mantle
differentiation of the Earth. Earth Planet. Sci. Lett. 301, 31–42 (2011).

50. Rudge, J. F., Kleine, T. & Bourdon, B. Broad bounds on Earth’s accretion and
core formation constrained by geochemical models. Nat. Geosci. 3, 439 (2010).

51. Taylor, S. & Norman, M. Accretion of differentiated planetesimals to the
Earth. in Origin of the Earth (eds Newsom, H. & Jones, J.) 29–43 (Oxford
Univ. Press, New York, 1990).

52. Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S. N. & Walsh, K. J.
Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012).

53. Fitoussi, C., Bourdon, B. & Wang, X. The building blocks of Earth and Mars: a
close genetic link. Earth Planet. Sci. Lett. 434, 151–160 (2016).

54. McCubbin, F. M., Riner, M. A., Vander Kaaden, K. E. & Burkemper, L. K. Is
Mercury a volatile‐rich planet? Geophys. Res. Lett. 39, 9 (2012).

55. Manthilake, G. et al. Thermal conductivity of FeS and its implications for
Mercury’s long‐sustaining magnetic field. J. Geophys. Res. 124, 2359–2368 (2019).

56. Sprague, A. L., Hunten, D. M. & Lodders, K. Sulfur at Mercury, elemental at
the poles and sulfides in the regolith. Icarus 118, 211–215 (1995).

57. Cartier, C. & Wood, B. J. The role of reducing conditions in building Mercury.
Elements 15, 39–45 (2019).

58. Namur, O., Charlier, B., Holtz, F., Cartier, C. & McCammon, C. Sulfur
solubility in reduced mafic silicate melts: implications for the speciation and
distribution of sulfur on Mercury. Earth Planet. Sci. Lett. 448, 102–114 (2016).

59. Kilburn, M. & Wood, B. Metal–silicate partitioning and the incompatibility of
S and Si during core formation. Earth Planet. Sci. Lett. 152, 139–148 (1997).

60. Wood, B. J., Walter, M. J. & Wade, J. J. N. Accretion of the Earth and
segregation of its core. Nature 441, 825 (2006).

61. Boujibar, A. et al. Metal–silicate partitioning of sulphur, new experimental and
thermodynamic constraints on planetary accretion. Earth Planet. Sci. Lett.
391, 42–54 (2014).

62. Rose-Weston, L., Brenan, J. M., Fei, Y., Secco, R. A. & Frost, D. J. Effect of
pressure, temperature, and oxygen fugacity on the metal-silicate partitioning
of Te, Se, and S: implications for earth differentiation. Geochim. et Cosmochim.
Acta 73, 4598–4615 (2009).

63. Rubie, D. C. et al. Highly siderophile elements were stripped from Earth’s
mantle by iron sulfide segregation. Science 353, 1141–1144 (2016).

64. Ek, M., Hunt, A. C., Lugaro, M. & Schönbächler, M. The origin of s-process
isotope heterogeneity in the solar protoplanetary disk. Nat. Astron. 4, 273–281
(2020).

65. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source
software project for quantum simulations of materials. J. Phys. 21, 395502 (2009).

66. Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave
calculations. II. Operators fast iterative diagonalization. Phys. Rev. B 43, 8861
(1991).

67. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized
eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).

68. Wentzcovitch, R. M. Invariant molecular-dynamics approach to structural
phase transitions. Phys. Rev. B 44, 2358 (1991).

69. Togo, A. & Tanaka, I. First principles phonon calculations in materials
science. Scr. Mater. 108, 1–5 (2015).

70. Steele, R. C., Elliott, T., Coath, C. D. & Regelous, M. Confirmation of mass-
independent Ni isotopic variability in iron meteorites. Geochim. et
Cosmochim. Acta 75, 7906–7925 (2011).

71. Braukmueller, N., Wombacher, F., Hezel, D. C., Escoube, R. & Muenker, C.
The chemical composition of carbonaceous chondrites: implications for
volatile element depletion, complementarity and alteration. Geochim. et
Cosmochim. Acta 239, 17–48 (2018).

Acknowledgements
We deeply thank Laura Wasylenki for accessing the analytical facilities at Indiana
University. We thank Edward Ripley for providing the komatiite samples, Jan Render,
Patrick Frings, Michael Henehan and Yaoling Niu for constructive discussion.
Funding: S.J.W. was funded by the National Key R&D Program of China
(2019YFA0708404), the National Nature Science Foundation of China (41973010),
the 111 Project of the Ministry of Science and Technology, China (BP0719021), and
the Fok Ying-Tong Education Foundation of China. Z.Q.W. and W.Z.W. were funded
by National Nature Science Foundation of China (41925017 and 41721002), and the
Strategic Priority Research Program (B) of the Chinese Academy of Sciences (grant
XDB18000000). S.C.H. was supported by NSF EAR-1942042. The computations were
conducted partly in the Supercomputing Center of the University of Science and
Technology of China.

Author contributions
S.J.W. and W.Z.W. contributed equally to this work. S.J.W. conceived and designed the
project, interpreted the data, and drafted the manuscript. W.Z.W performed the theo-
retical simulations. J.M.Z and S.J.W performed the experimental data analyses. Z.Q.W.,
J.G.L., G.L.H., F.Z.T., S.C.H., H.J.W., Y.J.W., G.L.W., and W.H.L participated in the
discussion of the experimental results. All the authors contributed to the overall scientific
interpretation and edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-20525-1.

Correspondence and requests for materials should be addressed to S.-J.W.

Peer review information Nature Communications thanks Mario Fischer-Gödde, Yuan Li
and the other, anonymous reviewer for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20525-1 ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:294 | https://doi.org/10.1038/s41467-020-20525-1 | www.nature.com/naturecommunications 7

https://doi.org/10.1038/s41467-020-20525-1
https://doi.org/10.1038/s41467-020-20525-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Nickel isotopic evidence for late-stage accretion of�Mercury-like differentiated planetary embryos
	Results and discussion
	Non-chondritic Ni isotopic composition of the bulk silicate Earth
	First-principles calculations on Ni isotope fractionation during core formation
	The nature of late-stage accreting materials and its implications

	Methods
	Nickel isotope analyses
	Ni isotope analyses at IU:
	Ni isotope analyses at CUGB:
	First-principles calculations

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




