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Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by
impairments in social reciprocity and communication, restrictive interests, and repetitive
behaviors. Most cases of ASD arise from a confluence of genetic susceptibility and
environmental risk factors, whose interactions can be studied through epigenetic
mechanisms such as DNA methylation. While various parental factors are known to
increase risk for ASD, several studies have indicated that grandparental and great-
grandparental factors may also contribute. In animal studies, gestational exposure to certain
environmental factors, such as insecticides, medications, and social stress, increases risk for
altered behavioral phenotypes in multiple subsequent generations. Changes in DNA
methylation, gene expression, and chromatin accessibility often accompany these altered
behavioral phenotypes, with changes often appearing in genes that are important for
neurodevelopment or have been previously implicated in ASD. One hypothesized
mechanism for these phenotypic and methylation changes includes the transmission of
DNA methylation marks at individual chromosomal loci from parent to offspring and beyond,
called multigenerational epigenetic inheritance. Alternatively, intermediate metabolic phenotypes
in the parental generation may confer risk from the original grandparental exposure to risk for
ASD in grandchildren, mediated by DNA methylation. While hypothesized mechanisms require
further research, the potential for multigenerational epigenetics assessments of ASD risk has
implications for precision medicine as the field attempts to address the variable etiology and
clinical signs of ASD by incorporating genetic, environmental, and lifestyle factors. In this review,
we discuss the promise of multigenerational DNA methylation investigations in understanding
the complex etiology of ASD.
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1 INTRODUCTION

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders that are characterized
by deficits in social reciprocity and communication, restricted interests, and repetitive behavior. The
prevalence of ASD has been steadily increasing over the past several decades, now affecting
approximately one in 54 children in the United States (Maenner 2020). Most cases of ASD arise
from a confluence of genetic predisposition, environmental factors, and gene-environment
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interactions (Bourgeron 2015), with the latter two potentially
contributing to the apparent increase in prevalence in recent
decades (Grether et al., 2009; King and Bearman 2009).

The Developmental Origins of Health and disease (DOHaD)
hypothesis posits that environmental insults experienced during
early development may impact the health of individuals later in
life, as well as future generations. This framework fits the
epidemiological and experimental findings that a wide range
of environmental factors experienced in utero can affect risk
for ASD. Prenatal risk factors with particularly strong evidence
include advanced parental age, maternal medication use, and
gestational diabetes (reviewed in Gardener et al., 2009; Karimi
et al., 2017; Modabbernia et al., 2017), while folic acid may
function as a protective factor (Levine et al., 2018). Due to the
unequal exposure to risk factors and access to protective factors,
this may generate an undue burden on underserved populations.

Further, the findings of several studies have indicated that
certain environmental exposures may impact the health of
individuals for multiple generations following the initial insult
(reviewed in Breton et al., 2021). Human and animal studies are
beginning to examine multigenerational risk factors for ASD,
defined here as any factors that are non-genetic but may include
demographic/social factors, chemical exposures, medications,
and medical conditions in the generations prior to the
individual diagnosed with ASD. The study of these potential
multigenerational factors is warranted given the increase in ASD
prevalence over the past several decades, which predominantly
affects grandchildren of a population exposed to a surge of
unregulated chemical pollutants in the mid 20th century
(reviewed in Naidu et al., 2021).

Additionally, the field is working to identify potential
mechanisms for transmission of risk through multiple
generations. One of the most promising potential mechanisms
is DNA methylation, an epigenetic mark that is hypothesized to
be a mechanistic link between genetic and environmental risk
(Law and Holland 2019), as well as a potential biomarker for ASD
(Kimura et al., 2019; Zhu et al., 2019; Mordaunt et al., 2020;
García-Ortiz et al., 2021; Garrido et al., 2021). Relatively few
studies have examined DNA methylation in conjunction with
grandparental or great-grandparental factors, despite the
promising findings of existing multigenerational studies. This
review describes the evidence for multigenerational risk for ASD
in humans and animal models and explores the potential of DNA
methylation for monitoring and/or counteracting
multigenerational risk.

1.1 Autism Spectrum Disorder
ASD has no known single cause but numerous genetic and
environmental factors that may individually contribute risk,
and/or interact with one another. Estimates of heritability
range widely, from 38% (Hallmayer et al., 2011) to 50%
(Sandin et al., 2014), and upwards to 91% (meta-analysis by
Tick et al., 2016). Most inherited genetic risk is predicted to arise
from common variants (Gaugler et al., 2014) that have small
effect sizes but are predicted to act in combination and have been
associated with other outcomes such as schizophrenia,
depression, and educational attainment (Grove et al., 2019).

Rare de novo copy number and single nucleotide variants have
been identified from exome sequencing of ASD and parent trios;
these also overlap with variants associated with schizophrenia
and intellectual disability (Iossifov et al., 2014). The genetic
landscape of ASD has proven to be complex with hundreds of
variants that may contribute to risk; however, to date no single
gene or group of genes can predict or diagnose all cases of ASD.

Though ASD research has historically focused on genetic
contributions to risk, newer studies have increasingly
investigated environmental factors that may affect risk for
ASD (reviewed in Bölte et al., 2019; Yoon et al., 2020). In line
with the DOHaD hypothesis, studies have largely focused on
prenatal and maternal factors, including demographics (e.g.
parental age) (Reichenberg et al., 2006; King et al., 2009; Puleo
et al., 2012); meta-analysis by Sandin et al. (2012), Taylor et al.
(2019), maternal metabolic health (e.g. obesity and diabetes) (Li
et al., 2016;Wang et al., 2019), chemical exposures (e.g. pesticides,
air pollution, cigarette smoke) (Mitchell et al., 2012; meta-analysis
by Jung et al., 2017; Granillo et al., 2019; meta-analysis by Chun
et al., 2020), obstetric events (e.g. hypoxia) (Mann et al., 2010;
Walker et al., 2015), and maternal medications (e.g. valproic acid)
(Wiggs et al., 2020). Additionally, potential protective factors for
ASD have been identified, including maternal folic acid (Levine
et al., 2018) and dietary fat intake (Lyall et al., 2013). Prenatal and
maternal factors have been thoroughly reviewed in previous
publications (Gardener et al., 2009; Lyall et al., 2014; Wang
et al., 2017; Hisle-Gorman et al., 2018; Katz et al., 2021).

1.2 DNA Methylation
The DOHaD hypothesis posits that the effects of early
environmental exposures on health later in life may be
mediated by epigenetic marks such as DNA methylation,
which refers to the addition of a methyl group to carbon five
on the pyrimidine ring of cytosine, forming 5-methylctyosine
(5mC). In humans, DNA methylation occurs predominantly at
CpG sites where the cytosine nucleotide on both strands is
methylated, forming a symmetrical pattern. Approximately
70–80% of all cytosines in CpG nucleotides in the human
genome are methylated (Kundaje et al., 2015), though this
varies by cell type and location in the genome. Following
development, global methylation levels remain nearly constant
throughout the lifetime, though individual CpGs may change
methylation status during further cellular differentiation
(reviewed in Suelves et al., 2016), in response to extracellular
signals (reviewed in Moore, Le, and Fan 2013), or in response to
rhythmic cycles of diurnal metabolism (reviewed in Powell and
LaSalle 2015). In contrast to gene expression which reflects the
current state of cells, DNA methylation may reflect gene
expression in other tissues (Gunasekara et al., 2019), in utero
experiences, and past historical exposures of prior generations.

Multiple recent studies have identified a clear DNA
methylation signature that can distinguish ASD from control
DNA samples in multiple tissues, including sperm (Garrido et al.,
2021), adult blood (Kimura et al., 2019), pediatric blood (García-
Ortiz et al., 2021), umbilical cord blood (Mordaunt et al., 2020),
and placenta (Zhu et al., 2019). While these studies fall short of
being able to accurately predict ASD from differential
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methylation patterns, they do identify convergent genes such as
MECP2 (Nagarajan et al., 2006; Liyanage et al., 2019; Lu et al.,
2020) and GABRB3 (Wong et al., 2014). Research has yet to
elucidate the mechanistic relationship between DNAmethylation
and ASD etiology or clinical variability but has shown a clear
correlation between ASD diagnosis and altered patterns of DNA
methylation across the genome.

2 MULTIGENERATIONAL RISK FOR ASD

In addition to the prenatal and maternal factors discussed above,
recent human and animal studies have shown support for
multigenerational risk for ASD. In this review, the term
‘multigenerational’ encompasses ‘intergenerational’ factors, which
affect generations that are directly exposed to an environmental
insult (whether as an adult, fetus, or gamete), and ‘transgenerational’
factors, which affect later generations who were not directly exposed
(Figure 1) (reviewed in Heard and Martienssen 2014; Tuscher and
Day 2019). If the directly exposed individual (F0) is not pregnant
(non-gestational exposure), then the F1 generation has exposure from
the gametes, so the F2 is the first generation not directly exposed.
However, if the exposure occurs during pregnancy (gestational
exposure) the first non-exposed generation is F3 since the fetus
(F1) and their gametes (F2) are directly exposed to the insult. For a
molecularmechanism to be transgenerational, it must produce effects
in generations that were not directly exposed. While human studies
have been primarily limited to intergenerational factors, several
animal studies have examined potential transgenerational factors,
as discussed in the next sections.

2.1 Intergenerational Risk Factors
Below is a discussion of potential risk factors for ASD that have
been identified from three-generation human studies, with
animal studies often supporting the findings. Behavioral
changes in animals are used as a proxy for
neurodevelopmental diagnoses in humans, though the
measured phenotypes range across studies. Major categories of
identified intergenerational risk factors are advanced age,
medication use, chemical exposure, and social stress; both
maternal and paternal lineages are implicated, though each
shows distinct patterns.

2.1.1 Age
Advanced parental and grandparental age, particularly in the
paternal line, has been one of the factors most strongly associated
with ASD. For example, risk for ASD is increased if the
individual’s grandfather fathered children at an advanced age
(Frans et al., 2013; Gao et al., 2020). This finding is independent of
the parent’s age at the grandchild’s birth, suggesting that risk for
ASD may develop over generations. In mice, advanced age of the
F0 male during breeding led to increased ultrasound vocalization
activity, decreased sociability, increased grooming activity, and
increased anxiety-like responses in both the F1 and F2
generations (Sampino et al., 2014).

2.1.2 Medication Use
Certain medications, particularly when taken during pregnancy,
may increase risk for ASD. For example, maternal grandmother
use of diethylstylbestrol (DES), a synthetic form of estrogen,
during pregnancy is associated with an increased risk of ADHD

FIGURE 1 |Multigenerational effects following gestational and non-gestational exposures. Multigenerational includes intergenerational effects from direct exposure
to an environmental result and transgenerational effects from indirect exposure (i.e. the generations beyond the directly-exposed generations).
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in male and female grandchildren (Kioumourtzoglou et al., 2018).
A case-study of one family found that children and grandchildren
from DES-free pregnancies did not develop psychiatric disorders,
while those from DES-exposed pregnancies (from the same
mother/grandmother) were highly likely to develop psychiatric
disorders, including ASD (Soyer-Gobillard et al., 2021).

2.1.3 Chemical Exposure
Chemical exposures can range widely, from cigarette smoke to
pesticides, and many may have effects on neurodevelopment
(reviewed in Fujiwara et al., 2016). For instance, maternal
grandmother smoking is associated with granddaughters
having adverse scores in Social Communication and Repetitive
Behavior measures, which are predictive phenotypes of ASD
(Golding et al., 2017). Interestingly, this finding holds true
only if the mother did not smoke during pregnancy. In mice,
nicotine exposure induced attention-deficit/hyperactivity
disorder (ADHD)-like behavior such as greater hyperactivity
and risk-taking behavior in both the F1 and F2 generations
(Buck et al., 2019). ADHD is a common co-occurrence of
ASD (van der Meer et al., 2012; Russell et al., 2014) and the
two diagnoses share overlapping phenotypes (Ronald et al., 2014).

Several insecticides have been identified as potential risk
factors for ASD; permethrin, a widely used insecticide and
known carcinogen, has been shown to impact the behavior of
several generations following exposure. Exposure of F0 zebrafish
to permethrin during early development through 28 days post-
fertilization affects F0 fertility and decreases activity of F1-F2
larvae (Blanc et al., 2020). Further, permethrin exposure is
correlated with levels of lysophosphatidycholine, which is an
important lipid for neurodevelopment.

2.1.4 Social Stress
Social-ecological factors, such as race, disability, insurance status,
family financial burden, residence in a metropolitan area, and
exposure to violence, have been associated with ASD prevalence
in communities (Brisendine 2017). These studies are an
important addition to experiments examining toxicological
and biological factors, given the unequal burden of social
stress on families and communities, and the continuation of
many social factors through several generations. Social stressor
experiments in rats can mimic those experienced by humans,
such as family conflict and depressed maternal care. Chronic
social stress administered during F0 lactation impaired the
maternal care of both F0 and F1 dams. Further, both male
and female F2 offspring from this model showed decreased
social behavior, as well as increased juvenile oxytocin
(females), decreased adult prolactin (females), and decreased
corticosterone (males and females) (Babb et al., 2014).

2.2 Transgenerational ASD Phenotypes and
Gene Regulatory Changes
Building upon intergenerational findings, many animal studies
have examined transgenerational phenotypes, or those that
extend beyond the directly exposed generations. Several such
studies have also reported gene regulatory changes such as

differential DNA methylation, gene expression, and chromatin
accessibility. Given epigenetic marks’ regulatory roles in gene
expression (Jones 2012; Anastasiadi et al., 2018) and chromatin
accessibility (Zhong et al., 2021), transcription level and
chromatin changes may implicate DNA methylation as a
potential mechanism conferring the effects of an
environmental insult. While it is currently unclear whether
changes in DNA methylation are causally related to
multigenerational phenotypes, the studies discussed here show
that increased investigation is worthwhile. Below are findings of
studies that evaluate behavioral phenotypes as well as changes in
DNA methylation, gene expression, and/or chromatin
accessibility in at least three generations following a gestational
exposure in an animal model.

2.2.1 DNA Methylation
Synthetic glucocorticoids are a medication administered to
pregnant people at risk of delivering preterm, and have been
shown to affect offspring neurocognitive and behavioral function
and alter the fetal epigenome (Crudo et al., 2013). When F0
pregnant guinea pigs were exposed to glucocorticoids, response to
stress and stress-associated behaviors were altered in the F1-F3
generations through both maternal and paternal lineages, though
the effects diminished through generations (Moisiadis et al.,
2017). These behavioral changes correlated with changes in
hippocampal gene expression and DNA methylation,
particularly in RNApol II binding regions of small non-coding
RNA genes (Constantinof et al., 2019). Methylation changes that
correlated with gene expression changes were enriched for
enhancer regions, while methylation changes at individual
CpGs were enriched for promoter regions of small non-coding
RNAs (Constantinof et al., 2019). Interestingly, the F3 generation
showed the highest number of differentially expressed genes and
differentially methylated regions between exposed versus non-
exposed guinea pigs, followed by the F1 generation and lastly by
the F2 generation (Constantinof et al., 2019). This indicates that
transcriptional changes in the hippocampus may increase across
generations following glucocorticoid exposure.

2.2.2 Gene Expression
Valproic acid is a medication used to treat bipolar disorder and
seizures and is a well-known risk factor for ASD in the offspring if
taken while pregnant (Christensen et al., 2013;Wiggs et al., 2020).
In mice studies of gestational valproic acid exposure, ASD-like
phenotypes persisted through three generations following the
exposure (Choi et al., 2016; Tartaglione et al., 2019).
Transgenerational phenotypes included decreased sociability
and increased marble burying (Choi et al., 2016), delayed
righting reflex, increased motor activity, and reduced
ultrasonic vocalizations (Tartaglione et al., 2019). Interestingly,
the effects were stronger in the maternal lineage in Choi et al., but
stronger in the paternal lineage in Tartaglione et al. Because
different mouse strains were used in these studies (ICR versus
CD-1), these differences may suggest a gene by environment
interaction. Accompanying the altered phenotypes, mice in the
valproic acid-exposed lineages showed increased expression of
genes previously implicated in ASD pathology, such as excitatory
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postsynaptic proteins PSD-95 and Pax6 (Choi et al., 2016).
Increased expression of endogenous retroviruses was also
observed (Tartaglione et al., 2019), potentially because
throughout history endogenous retroviruses have inserted into
the human genome following infection (reviewed in Grandi and
Tramontano 2018), which is a known risk factor for ASD if
experienced during pregnancy (Lee et al., 2015; Zerbo et al.,
2015).

Maternal infection during pregnancy activates the immune
response and generates inflammation, a process that may alter
central nervous system development and give rise to
neurodevelopmental disorders (reviewed in Han et al., 2021;
Brown et al., 2014). These effects have been suggested to be
mediated by epigenetic factors (reviewed in Bergdolt and
Dunaevsky 2019), and may also have implications for ASD-
related behaviors past the F1 generation. Using a mouse
model of prenatal immune activation with viral mimetic poly
(I:C), Weber-Stadlbauer et al. showed reduced sociability and
increased cued fear expression in three generations following
exposure, via paternal lineage. Interestingly, the F2 and F3
offspring of immune-challenged ancestors showed increased
behavioral despair, but this phenotype was not present in the
F1 generation, again showing that novel phenotypes can appear
multiple generations following exposure. Similarly, many genes
were differentially expressed in the amygdalar complex of
treatment versus control animals, with some changes being
common across generations and some being generation-
specific. 1,132 genes were differentially expressed in both F1
and F2 offspring, with enrichment for the DARPP-32 pathway,
which has been previously associated with neuropsychiatric
disorders (Kunii et al., 2014).

Bisphenol A (BPA) is an organic synthetic compound that
exerts weak estrogenic activities and is associated with increased
ASD risk (Stein et al., 2015; Hansen et al., 2021). ASD is
diagnosed in males much more frequently than in females, at
about a 4:1 ratio, and it has been posited that BPA exposure could
play a role in ASD sex differences (Thongkorn et al., 2019). In
mouse studies of gestational BPA exposure, delivered through
chow, ASD-like phenotypes of reduced social recognition and
activity persisted through three generations following the
exposure (Wolstenholme et al., 2019). In F3 mice from the
BPA lineage, expression levels of Shank1 were significantly
different from controls in both the hypothalamus and lateral
septum at embryonic stage, day-of-birth, and juvenile stage.
Interestingly, the direction of change was not consistent across
time points (Wolstenholme et al., 2019). Shank1 encodes a
postsynaptic scaffolding protein, and mutations in this gene
have been identified in individuals with ASD (reviewed in
Monteiro and Feng 2017). In another study, differentially
methylated regions were identified in the sperm of lineages of
rats exposed to BPA, as well as DEET and TCDD (Manikkam
et al., 2012), though behavioral phenotypes were not measured.

2.2.3 Chromatin Accessibility
Anesthetics have also been associated with neurobehavioral
abnormalities following prenatal exposure (reviewed in
Andropoulos 2018), particularly if the exposure occurs early in

pregnancy (Cui et al., 2021). In a transgenerational mouse study
modeling human anesthesia, gestational exposure to sevoflurane
led to anxiety and impairments in social interaction in the
following three generations through the paternal lineage
(Wang et al., 2021). While 38% of F1 showed these behavioral
impairments, 44–47% of the F2 and F3 mice displayed them,
again suggesting amplification across generations. To assess
transcription factor distribution in the sperm genome of
sevoflurane-treated versus control lines, the authors performed
ATAC-sequencing, a method that analyzes chromatin
accessibility using a Tn5 transposase that “tagments” open
chromatin regions. ATAC-seq analysis of the F1 and F2 sperm
showed 69 differentially accessible sites that are shared across the
two generations of treated versus control lines. Differentially
accessible sites in F1 sperm were enriched for genes involved
in diseases of the nervous system and mental disorders and
overlapped with ASD candidate genes such as Arid1b, Ntrk2,
and Stmn2 (Wang et al., 2021). The authors suggested that
changes in chromatin accessibility and transcription factor
binding may prevent DNA re-methylation during
reprogramming of the epiblast, leading to downstream changes
in gene expression (Kremsky and Corces 2020;Wang et al., 2021).
This mechanistic possibility is explored further in the next
section.

2.2.4 Summary of Transgenerational Findings
Taken together, these studies show that DNA methylation, gene
expression, and chromatin accessibility are often dysregulated in
concert with altered behavioral phenotypes following a
transgenerational exposure. Like the findings from
intergenerational human studies, the maternal and paternal
lineages in the transgenerational animal studies appeared to
have different effects. Further, in several studies, the direction
of change was not consistent across generations, and was often
amplified in F3 compared to F1 and F2, indicating a potentially
complex mechanism of transgenerational effects.

3 POTENTIAL MECHANISMS FOR
MULTIGENERATIONAL RISK FOR ASD

While multigenerational changes in phenotype as well as DNA
methylation, gene expression, and chromatin accessibility
following an environmental insult have been well documented,
the mechanisms to explain such results are less well established.
Current evidence for multigenerational epigenetic inheritance is
reviewed below, as well as literature pointing towards a potential
alternative mechanism.

3.1 Multigenerational Epigenetic
Inheritance
The most studied epigenetic mechanism for disease risk being
transferred through generations is the maintenance of DNA
methylation at some chromosomal loci that escape the normal
erasure and reestablishment in the germline; this is termed
multigenerational epigenetic inheritance (MEI) (or
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transgenerational epigenetic inheritance (TEI) if the mechanism
extends to non-exposed generations). Though there is significant
evidence for MEI in plants (Hauser et al., 2011), yeast and
nematodes (Fabrizio et al., 2019) and zebrafish (Cavalieri and
Spinelli 2017), there is not currently substantial evidence for MEI
in mammals.

MEI is often thought to be unlikely because DNA methylation
patterns are generally not maintained through meiotic divisions.
During development, DNA methylation is erased and
reestablished through two genome-wide demethylation events:
1) after fertilization of the zygote and 2) during the formation of
primordial germ cells, which are direct precursors to gametes
(reviewed in Zeng and Chen 2019). These erasures allow for
totipotency while reestablishment of DNA methylation marks
commits cells to a fate. However, DNAmethylation of the mouse,
pig, and human germlines has been shown to exhibit incomplete
erasure, (Kearns et al., 2000; Sutherland et al., 2000; Tang et al.,
2015; Guo et al., 2017; Gómez-Redondo et al., 2021), with
primordial germ cells retaining approximately 10% of their
methylation marks (Seisenberger et al., 2012) while the inner
cell mass of the blastocyst retains approximately 20% (L. Wang
et al., 2014). This incomplete erasure indicates that some
methylation marks are passed through the germline.

The most pronounced example of incomplete erasure occurs
with imprinted genes, whereby DNA methylation marks prevent
the expression of one parental allele, while the other parental
allele is expressed. DNA methylation marks of imprinted genes
are established in the germline of parents and retained through
somatic cell divisions of the offspring. While some imprinted
genes may have no biological relevance, others are necessary for
proper development (reviewed in Tucci et al., 2019).
Inappropriate imprinting may lead to neurodevelopmental
disorders such as Angelman Syndrome and Prader-Willi
Syndrome (reviewed in Butler 2020; Kalsner and Chamberlain
2015), which may also be caused by genetic defects such as
uniparental disomy or chromosomal deletions.

Non-imprinted regions have also been shown to escape DNA
methylation reprogramming (Tang et al., 2015). Mouse studies
have shown that intracisternal A particles (IAPs) (Lane et al.,
2003; Guibert et al., 2012), and LTR-ERV1 retroelements
(Guibert et al., 2012) as well as other repetitive elements
(Hajkova et al., 2002) escape reprogramming in primordial
germ cells, while some retrotransposons escape
reprogramming at the preimplantation embryo step (reviewed
in (Zeng and Chen 2019). Interestingly, non-repetitive loci that
escape reprogramming are enriched for genes involved in
neurodevelopment and metabolism (Tang et al., 2015).

Regions may also experience MEI due to protection by bound
transcription factors, as hypothesized by Kremsky and Corces
2020. One study found that 78% of CpGs maintain their
methylation status following two rounds of reprogramming
(Kremsky and Corces 2020). This faithful maintenance may be
explained by transcription factors that bind CpG sites and
prevent de-methylation and re-methylation, while unbound
sites undergo reprogramming. Differential transcription factor
binding may be explained by changes in chromatin accessibility
(Wang et al., 2021). This possibility ties together the mechanisms

of DNA methylation and chromatin accessibility to affect gene
expression and potentially neurodevelopmental phenotypes.

In total, these studies raise the possibility of transmission of
methylation marks at some loci through generations. This
mechanism may help explain the ASD-related
multigenerational phenotypes that follow environmental
exposures, though further research is required.

3.2 Alternative Mechanism for
Multigenerational Effects: Intermediate
Phenotypes in F1
While MEI could be mechanistically involved with the
transgenerational transmission of some phenotypes, alternative
mechanisms are possible, particularly for intergenerational
phenotypes. For example, an intermediate phenotype in the
second generation (F1), such as metabolic dysfunction, could
mediate the relationship between a gestational exposure in the
first generation and adverse health effects, such as ASD, in the
third generation or later (Figure 2).

Neurodevelopment and metabolism are closely linked, as the
brain consumes ~20% of the body’s calories, while only
representing ~2% of body weight. Many patients diagnosed
with ASD or related disorders such as ADHD suffer from
metabolic abnormalities including obesity (Mota et al., 2020;
reviewed in; Hill et al., 2015). Metabolism is adaptive to
environmental changes, such as nutrient availability and
chemical exposures (reviewed in Koyama et al., 2020). In
humans, exposure to chemicals such as
dichlorodiphenyltrichloroethane (DDT) (La Merrill et al.,
2020) and polychlorinated biphenyls (PCBs) (S.-L. Wang
et al., 2008; Philibert et al., 2009; Langer et al., 2014) increases
risk for metabolic disorders such as obesity and diabetes, and
DNA methylation patterns and dysregulated gene pathways are
predicted to mediate this risk (Ghosh et al., 2014). In turn,
metabolic dysfunction, including obesity, during pregnancy
has been associated with increased risk of ASD in the
offspring (Li et al., 2016); this is again predicted to be
mediated by altered DNA methylation (Lin et al., 2017).
Additionally, regions that evaded genome-wide DNA
demethylation in human primordial germ cells are enriched
for genes that are expressed in the brain and are involved in
neural development, as well as obesity-related phenotypes (Tang
et al., 2015). These findings raise the possibility that metabolic
dysfunction in the second generation could mediate
environmental exposure in the first generation and increased
risk for ASD in the third generation. This hypothesis, as well as
other potential mechanisms, would benefit from studies
specifically designed to evaluate their likelihood.

4 GAPS IN THE RESEARCH AND FUTURE
DIRECTIONS

The studies discussed in this review demonstrate that ASD and
ASD-related phenotypes may occur in multiple generations
following an environmental insult. Further, these phenotypes
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may be reflected by altered DNA methylation, as well as gene
expression and chromatin accessibility, even if these epigenetic
changes are not causal. While the papers discussed in this review
yield important findings, it is important to note the limitations of
multigenerational studies. Human studies often lack sufficient
controls and numbers of participants, as well as access to
biospecimens and metadata from multiple generations and
diverse populations. Animal studies address many of the
deficiencies of multigenerational human studies but have yet
to show causality of specific epigenetic changes with altered
phenotypes. Additionally, the difficulty of translating findings
from animal studies to humans remains a challenge, particularly
when examining diseases of complex etiology and clinical
phenotypes, such as ASD. To help fill these critical gaps we
have recently developed a systems biology approach that
integrates multiple variables of exposures, genetics,
demographics, and social determinants of health with regions
of co-methylation (Mordaunt et al., 2022).

Despite the challenges faced by multigenerational
investigations, the findings discussed in this review have
important implications for the field of precision medicine,
which seeks to integrate genetic, environmental, and lifestyle
data to customize healthcare. Precision medicine is particularly
relevant to ASD given the current paucity of diagnostic and
treatment tools, as well as the numerous genetic and
environmental risk factors (reviewed in Loth et al., 2016). In
recent years, methods have been developed to utilize epigenetic
information in clinical settings, enhancing the effectiveness of
precision medicine (BLUEPRINT consortium 2016). However,
the field could be further advanced by incorporating
multigenerational epigenetic information and phenotypes. For
instance, identifying markers of in utero and historical exposures
at birth could help identify infants at risk for ASD, enabling early

interventions that have been associated with improved outcomes
(reviewed in Masi et al., 2017). Epigenetic biomarkers may also
help identify sub-types of ASD as well as potential treatment
options (Masi et al., 2017).

There remain many gaps in the mechanistic understanding of
multigenerational phenotypes and DNA methylation. Further
studies and improved methods are needed to elucidate precise
mechanisms of action of environmental factors, gene-
environment interactions, and multigenerational effects. The
results of such studies may help to identify biomarkers and
risk factors for disease, improving diagnostic and treatment
practices as precision medicine develops.
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