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Abstract: Axonal branching is a key process in the establishment of circuit connectivity within the
nervous system. Molecular-genetic studies have shown that a specific form of axonal branching—the
bifurcation of sensory neurons at the transition zone between the peripheral and the central nervous
system—is regulated by a cyclic guanosine monophosphate (cGMP)-dependent signaling cascade
which is composed of C-type natriuretic peptide (CNP), the receptor guanylyl cyclase Npr2, and
cGMP-dependent protein kinase Iα (cGKIα). In the absence of any one of these components, neurons
in dorsal root ganglia (DRG) and cranial sensory ganglia no longer bifurcate, and instead turn
in either an ascending or a descending direction. In contrast, collateral axonal branch formation
which represents a second type of axonal branch formation is not affected by inactivation of CNP,
Npr2, or cGKI. Whereas axon bifurcation was lost in mouse mutants deficient for components of
CNP-induced cGMP formation; the absence of the cGMP-degrading enzyme phosphodiesterase 2A
had no effect on axon bifurcation. Adult mice that lack sensory axon bifurcation due to the conditional
inactivation of Npr2-mediated cGMP signaling in DRG neurons demonstrated an altered shape of
sensory axon terminal fields in the spinal cord, indicating that elaborate compensatory mechanisms
reorganize neuronal circuits in the absence of bifurcation. On a functional level, these mice showed
impaired heat sensation and nociception induced by chemical irritants, whereas responses to cold
sensation, mechanical stimulation, and motor coordination are normal. These data point to a critical
role of axon bifurcation for the processing of acute pain perception.
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1. Introduction: Axonal Pathfinding and Branching—Fundamental Processes to Establish
Neuronal Circuits

Brain function is critically dependent on the correct wiring of neurons during embryonic and
early postnatal stages. Extending axons are tipped by a growth cone; a specialized highly motile
structure that recognizes secreted and membrane or extracellular matrix bound molecular guidance
cues in its local microenvironment. These guidance factors instruct the migration of the growth cone
along the correct path to its target region. It is well accepted that the basic cellular and molecular
mechanisms underlying the directional pathfinding decisions of the growth cone are attraction and
repulsion caused by graded distributions of guidance cues. In a gradient of a guidance cue, a higher
concentration might result in a higher receptor occupancy and activation. This in turn will induce
a localized intracellular signaling cascade in the growth cone resulting in growth directed towards
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higher concentrations of the cue or away from it [1–5]. It is important to emphasize that during
growth, axons also arborize to establish contacts with different targets often located in different parts
of the nervous system. It is of note that the formation of axonal branches is a hallmark of virtually
all neurons in the brain. Axon branching enables an individual neuron to establish contacts and to
communicate with different neurons, and therefore increases the complexity of neuronal networks.
Both axon pathfinding and branching are basic processes that contribute to the initial pattern of
neuronal networks during development. In the mature brain, axon branches might also emerge
in response to injury and experience and contribute to plasticity of the nervous system. Indeed,
impairments of axonal pathfinding and abnormal branching might result in severe neurological or
neurodevelopmental disorders [6–8]. Characterization of molecular mechanisms underlying the control
of axonal pathfinding and branching is crucial for our understanding of neuronal circuit formation.

In this review article, we discuss recent progress on cyclic guanosine monophosphate (cGMP)
signaling components implicated in axon branching with a specific focus on sensory axons in the
developing spinal cord and hindbrain. In vitro studies on axon branching and growth cone behavior,
in which cGMP signaling is modulated, are only briefly mentioned here. For a more detailed description
of this field the reader is referred to the reviews listed below. These reviews try to provide an
integrated view of how axonal branching might work. However, it is important to keep in mind that
the functional in vivo significance of these largely in vitro studies for a mechanistic understanding of
axonal branching in vivo is less clear and remains to be established [9–12].

2. cGMP Signaling and Growth Cone Steering—Initial Cell Culture Studies

The ubiquitous second messenger cGMP is well known to be involved in a wide range of biological
processes [13,14]. A role for cGMP in regulating axonal extension and growth cone steering was initially
demonstrated in in vitro cultures 20 years ago by using a growth cone turning assay. In this pioneering
work, cGMP modulated growth cone responses to extracellular axon guidance cues [15]. For example,
increasing levels of cGMP converted a repulsive signal by semaphorin 3A into attractive extension
of axons of Xenopus spinal cord neurons and counteracted growth cone collapse [16]. In cell cultures,
axonal guidance molecules trigger cytosolic calcium levels in growth cones, which steers direction
of growth. Asymmetry of calcium levels is crucial for this process, where high calcium levels on
one side of the growth cone promote attraction whereas low levels on the opposite side result in
repulsion [17–20]. Cyclic adenosine monophosphate (cAMP) has also been implicated in modulating
asymmetric calcium concentrations across the growth cone via ryanodine receptors [18,21,22]. cGMP
has been found to counteract cAMP-mediated axon growth directionality by converting growth cone
attraction of netrin-1 to repulsion [21]. Therefore, cGMP as cAMP levels act as switch by modulating
calcium channel activities in growth cones to influence the direction of growth [1,23].

The intracellular signals that are elicited by attractive or repulsive axonal guidance molecules
provoke changes of the growth cone morphology which require the action of components of the
cytoskeleton and the machinery of vesicle trafficking. These processes might function independently
or might affect each other [24]. In vitro, there is evidence that exocytosis and endocytosis can
occur asymmetrically across the growth cone [25,26], suggesting that membrane trafficking can be
instructive for growth cone turning and collateral formation. In cultured dorsal root ganglia (DRG)
neurons, microtubules contacting leading edges of the plasma membrane of growth cones induced
lamellipodial protrusions by supplying vesicle-associated membrane protein 7 (VAMP7)-positive
vesicular membranes. This microtubule-directed membrane transport steers growth cone directionality,
and is stimulated by cAMP and inhibited by cGMP [24].

It is also conceivable that an increase of local exocytosis might be sufficient to trigger collateral
formation of axons, although this has not been studied in detail. Localized exocytosis might regulate
cell surface distribution of specific membrane proteins such as receptors for axonal guidance factors.
This has been demonstrated for the protein commissureless that regulates axon guidance across the
Drosophila melanogaster midline by controlling levels of the axonal guidance receptor Robo at the cell
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surface [27]. Related observations were made on cultured commissural neurons from the chicken
spinal cord in which Rab guanine nucleotide dissociation inhibitor (RabGDI) regulated cell surface
expression of Robo1 [28].

In addition to these studies on growth cone extension, a role for cGMP signaling in the formation
of neuronal circuits in vertebrates was also shown by pharmacological manipulations of the soluble
guanylyl cyclases that regulate intracellular cGMP levels in neurons [23,29–32].

3. Branching of Sensory Axons within the Spinal Cord—A Versatile System to Characterize
Intracellular Signaling Implicated in Axon Branching

Despite these fascinating and sophisticated in vitro studies on the role of cGMP signaling in
growth cones compiled above, our knowledge of cGMP signaling-related axon pathfinding and
branching during developmental stages in the nervous system of vertebrates is still fragmentary.
However, a number of recent studies that focused on axon branching have shed light on the
involvement of cGMP in neuronal circuit building in vivo. The analysis of DRG neuron axon
projections into the spinal cord was instrumental in unravelling the function of cGMP in axon
bifurcation—a specific form of axon branching. The pattern of sensory axon branching is relatively
simple and stereotyped and therefore appeared suitable for a molecular analysis to characterize
branching factors (Figure 1). In contrast, reconstructions of electron microscopic images had shown
a much more complex pattern of axonal branches of individual neurons from the rodent brain
(for example see neurons in [33,34]). It might be challenging to identify specific molecular signals
implicated in shaping the pattern of branches of these cases, assuming that a wide range of intrinsic
branch formation programs and external signals are involved in axon branching.
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and mechanoreceptive collaterals terminate in dorsal layers of the spinal cord, where further terminal 
branching takes place to establish contacts to dorsal horn neurons. Proprioceptive collaterals extend 
into ventral parts of the spinal cord including the Clarke column at lower spinal levels and further 
branch to form synapses on motor neurons or interneurons. Taken together, a relative simple pattern 
of axon branching is executed by sensory axons within the spinal cord with three major types of 
branching modes (Figure 2): (A) bifurcation at the DREZ; (B) collateral branching from stem axons; 
and (C) terminal branching of collaterals in termination zones [39,40]. Images of individual sensory 
axons when entering the spinal cord at the DREZ indicated that bifurcation is mediated by splitting 
of the growth cone. In contrast, collateral formation proceeds from the shaft of the two resulting 

Figure 1. Scheme of the path of sensory axons within the spinal cord. A single cutaneous (red) and
single proprioceptive (blue) neuron are highlighted. C, caudal; D, dorsal; R, rostral; and V, ventral.

Sensory axons enter the spinal cord at early embryonic stages at the dorsal root entry zone
(DREZ), where they split into ascending and descending arms [35–38]. These two stem axons grow
over several segments along the lateral margin of the cord. Subsequently, axon collaterals branch off
from these stem axons (also termed interstitial branching) and grow in ventral direction. Nociceptive
and mechanoreceptive collaterals terminate in dorsal layers of the spinal cord, where further terminal
branching takes place to establish contacts to dorsal horn neurons. Proprioceptive collaterals extend
into ventral parts of the spinal cord including the Clarke column at lower spinal levels and further
branch to form synapses on motor neurons or interneurons. Taken together, a relative simple pattern
of axon branching is executed by sensory axons within the spinal cord with three major types of
branching modes (Figure 2): (A) bifurcation at the DREZ; (B) collateral branching from stem axons;
and (C) terminal branching of collaterals in termination zones [39,40]. Images of individual sensory
axons when entering the spinal cord at the DREZ indicated that bifurcation is mediated by splitting of
the growth cone. In contrast, collateral formation proceeds from the shaft of the two resulting axons.
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Terminal branching might be regulated by the growth cone or occurs in close distance to the extending
growth cone and could be therefore very similar to collateral formation.
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Figure 2. Three branching modes can be deduced from sensory axons in the spinal cord: (A) bifurcation
(arrow head in green); (B) collateral formation from stem axons (arrow head in red); and (C) terminal
branching in specific layers of the spinal cord (arrow head in blue). DREZ, dorsal root entry zone;
DRG, dorsal root ganglia; DSC, dorsal spinal cord.

It is of importance to note that all sensory axons show more or less the same pattern of
branching. This repetitive pattern of arborization is of great advantage for a molecular analysis
of branching factors. Moreover, the system is easily accessible to analyze the path of axons by
1,1′-dioctadecyl-3,3,3′3′-tetramethylindocarbocyanine perchlorate (DiI) tracing [41], by antibody
staining or by genetic sparse labeling [42,43]. For example, collateral formation of sensory axons
is easily accessible for detection by selective antibody staining of cross sections of the spinal cord
(e.g., by using antibodies specific for peripherin or tropomyosin receptor kinase A (TrkA)) or by specific
mouse reporter lines (see Figure 3C,D).

4. A cGMP Signaling Cascade Regulates Axon Bifurcation but Not Collateral Formation or
Terminal Branching

The axonal system described above has enabled the characterization of a cGMP-dependent
signaling cascade essential for the bifurcation of sensory axons by applying mouse genetics.
This signaling cascade is composed of the ligand C-type natriuretic peptide (CNP), the receptor
guanylyl cyclase Npr2 (also designated GC-B or Npr-B) and the cGMP-dependent protein kinase I
(cGKI, also known as PKGI (protein kinase G))—a key effector of cGMP signaling cascades [43–48].
Two alternatively spliced isoforms of cGKI are known in vertebrates—termed α and β—from which
the α-form is expressed in DRG neurons. Upon binding, the ligand CNP activates its homodimeric
receptor Npr2 which in turn generates cGMP from guanosine-5’-triphosphate (GTP) by its C-terminal
guanylyl cyclase domain. cGMP then stimulates the serine and threonine kinase cGKI. In the
absence of any one of these components in mouse knockouts, central axons from DRG neurons
no longer bifurcate and instead either turn in a rostral or caudal direction within the spinal cord
(Figure 3A,B and Figure 4). Consideration of quantitative data suggest that all subsets of DRG neurons
are affected. Consistent with these observations is the timing and pattern of localization of CNP in
neurons and precursors of the dorsal spinal cord whereas the related ligands ANP (A-type natriuretic
peptide) or BNP (B-type natriuretic peptide) are not expressed [46,48]. Although DRG neurons are
extremely heterogeneous [49] Npr2 and cGKI are expressed in all DRG neurons but not in the dorsal
horn at early developmental stages [43–45]. A critical missing link of the Npr2-mediated cGMP
signaling pathway is the characterization of phosphorylation targets of cGKIα in sensory growth
cones that mediate axon bifurcation. Such data might provide mechanistic insights into the machinery
for bifurcation. Recently, in vitro experiments analysing collateral branching suggested that cGMP
signaling regulates microtubule dynamics [50].
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due to the presence of two Npr2-CreERT2 alleles in the Npr2 knockout no quantitative conclusions on 
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Figure 3. Branching errors of primary sensory neurons in the spinal cord. Individual axons are labeled
by a genetic sparse labeling method. (A) Two DRG axons from a Npr2 heterozygous mouse show
T-shaped branches (arrows) at the DREZ of the spinal cord. (B) In homozygous Npr2 mutants DRG
axons turn in rostral or caudal direction but do not bifurcate (arrow heads). (C,D) Collaterals are
formed in the absence of Npr2 (D) as in heterozygotes (C) shown in cross sections of the E17.5 spinal
cord using a reporter mouse line encoding red fluorescent protein which is activated by tamoxifen
injections via Npr2-CreERT2 (causes recombination estrogen ligand-binding domain). Therefore,
only Npr2-positive sensory neurons and their axons and collaterals are labeled. However, since the
recombination efficiency varies from embryo to embryo due to the variable uptake of tamoxifen and
due to the presence of two Npr2-CreERT2 alleles in the Npr2 knockout no quantitative conclusions on
the amount of collaterals can been drawn from (C,D). Staining with antibodies to peripherin or TrkA
(tropomyosin receptor kinase A) showed that in homozygous Npr2 mutants collaterals are reduced
due to the bifurcation defect [43,45,46]. Arrows point to nociceptive collaterals of deep dorsal horn
layers and arrow heads to proprioceptive collaterals. Scale bar in (A,B), 50 µm and in (C,D) 100 µm.

Subunits of the nitric oxide-sensitive guanylyl cyclases (NO-GCs)—in some in vitro experiments
involving the application of pharmacological reagents shown to be involved in growth cone
activities [23,47]—are not expressed in embryonic DRG neurons when their axons enter the spinal
cord [45]. Two isoforms of NO-GC are known which consist of one α (α1 or α2) and a β subunit (β1).
The β1-subunit is the common dimerizing subunit of both NO-GCs. If this subunit is absent in a global
mouse knockout NO-induced cGMP signaling is completely eliminated although α subunits are still
expressed [51,52]. In the β1 subunit knockout sensory axon bifurcation is normal as well as collateral
formation [46]. In addition, the intracellular cGMP level only increased immediately upon application
of CNP, but not of ANP, BNP or the NO donor DEA (2-(N,N-dethylamino)-diazenolate-2-oxide
dethylammonium salt)/NO (nitic oxide) in real-time imaging experiments with a genetically encoded
fluorescent cGMP sensor in cultivated embryonic mouse DRG neurons [53]. Taken together, it is
unlikely that NO-GCs play a role in bifurcation, collateral formation or axon extension in this neuronal
system in vivo.

Interestingly, the loss of axon bifurcation in DRG neurons in the absence of cGMP signaling
does not affect their ability to form normal collaterals in the spinal cord (Figure 3C,D). Also,
the number of collaterals per µm axon segment is not altered, however the total number of collaterals
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is reduced due to the bifurcation defect and the consequential loss of one half of the longitudinal stem
axons [43,45,46]. Additionally, based on antibody staining the superficial layers of the dorsal horn
appear to be unaffected by impaired cGMP signaling; suggesting that signaling cascades distinct from
Npr2-mediated cGMP signaling regulate collateral formation of sensory axons. These findings also
indicate that bifurcation is not a unique case of a common branching process. In fact, it is a specific
branching mode that is most likely regulated by the properties of the growth cone. External cues that
induce collaterals from the sensory stem axons in the spinal cord have not yet been identified. However,
recent progress has been made to characterize an intrinsic factor—MAP7 (Microtubule associated
protein 7)—implicated in interstitial branching. In a mouse mutant that expresses a truncated version
of MAP7, a promotion of collateral formation was described which was accompanied with an increased
pain sensitivity [54].
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Figure 4. (A) A cGMP (cyclic guanosine monophosphate)-dependent signaling cascade composed of
CNP, Npr2, and cGKI (cGMP-dependent protein kinase I) is implicated in the bifurcation of sensory
axons. In the absence of any of these components sensory axons do not bifurcate when entering
the spinal cord or the hindbrain (please compare (B,C) for the wild type and the knockout situation,
respectively). Arrow heads in green (B) point to the bifurcation of sensory axons in the wild type and
arrow heads in black (C) point to bifurcation errors in knockouts of CNP, Npr2 or cGKI. The downstream
phosphorylation targets of cGKI involved in axon bifurcation have not been defined yet. DRG, dorsal
root ganglion; DREZ, dorsal root entry zone; DSC, dorsal spinal cord; SC, spinal cord.

5. The CNP/Npr2/cGKI Signaling Cascade Induces Bifurcation of Axons from Three Types of
Neurons: DRG, Cranial Sensory Ganglia (CSG), and Mesencephalic Trigeminal Neurons (MTN)

A major question is whether the CNP/Npr2/cGKI signaling cascade is also utilized by other
projecting axons to bifurcate during development. Generation of reporter mice of CNP and Npr2
and highly specific antibodies to cGKI allowed the identification of additional axon systems that
co-express Npr2 and cGKI and the ligand CNP in the region where bifurcation takes place. These
investigations showed that cranial sensory ganglia (CSG) neurons [43] and MTNs (also abbreviated
as MesV or Me5) express Npr2 and cGKI, and bifurcate in specific regions of the hindbrain. In the
absence of Npr2, CSG axons do not bifurcate anymore in the hindbrain and instead turn in either
ascending or descending direction [43]. CSG belong to the peripheral nervous system and transfer
sensory information to neurons within the hindbrain. As soon as axons from CSG enter the hindbrain,
they generate an ascending and descending branch from which collaterals are generated. In contrast to
the DRG neurons of the trunk, a substantial portion of the CSG neurons largely arise from a specialized
ectoderm (the sensory placodes) and from neural crest cells [55]. For example, the neurons of the inner
ear arise from the otic placode, the nodose placode contributes to the tenth cranial nerve, the vagus
nerve, and the large trigeminal ganglion is derived from both ectodermal placodes and neural crest
cells [56,57].

MTNs are the only primary sensory neurons whose cell somata are located in the central nervous
system (CNS) and are, like DRG neurons, pseudo-unipolar. MTN axons initially project from dorsal
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layers of the mesencephalon ventrally before they pioneer the lateral longitudinal fasciculus to extend
further caudally [58–61]. In the hindbrain, MTN axons form Y-shaped branches [62,63]: one resulting
arm leaves the hindbrain and passes through the dorsal root of the trigeminal ganglion (gV) to grow to
the jaw, while the other arm of the bifurcation projects to the trigeminal motor nucleus (abbreviated
Vmo or Mo5) and to the supratrigeminal nucleus (Vsup) of the hindbrain [64,65]. MTNs innervate
spindles of jaw closing muscles (masseter, temporalis) or form mechanoreceptors in the periodontal
ligaments [66]. They process proprioceptive information from these mandibular structures and thus
are essential in coordinating biting, ingestion, and mastication [67–69]. In global Npr2 knockout mice
MTN axons do not split in the hindbrain and either grow to the jaw or to the trigeminal motor nucleus
(our unpublished research [70]).

In summary, it appears that axon splitting regulated by CNP/Npr2 signaling via cGKIα is a unique
feature of certain primary sensory neurons in vertebrates.

6. The Role of Phosphodiesterase 2A and the Scavenger Receptor Npr3 in Sensory
Axon Bifurcation

Intracellular cGMP levels are controlled by the rate of its synthesis via guanylyl cyclases and
degradation via phosphodiesterases (PDEs) [71,72]. The presence and activity of PDEs might be crucial
to control the time of onset of cGMP elevation and to limit the spatial and temporal expansion of
the signal. The hydrolysis of cGMP might therefore contribute to the fine-tuning of cGMP signals
in sensory axons. mRNAs of a number of the known PDEs which are either activated or inhibited
by cGMP, or specifically hydrolyze cGMP, or which are dual substrate enzymes and degrade both
cAMP and cGMP are expressed in E12.5 DRGs. Application of selective PDE blockers indicated that
only PDE2 specific inhibitors Bay 60-7550 and EHNA (erythro-9-(2-hydroxy-3-nonyl) adenine) caused
an increase of the intracellular cGMP levels upon stimulation of cultured embryonic DRG neurons
with CNP. Other pharmacological blockers such as vinpocetine (specific for PDE1), milrinone (PDE3),
sildenafil (PDE5), or zaprinast (PDE5, 6, 9, 10, and 11) were found not to increase cGMP levels upon
CNP stimulation. Therefore, PDE2A is the functionally relevant PDE to hydrolyze CNP-induced
cGMP in embryonic DRG neurons. For example, in PDE2A-deficient embryonic DRG, the level of
CNP-induced cGMP increased significantly; however, this increase did not perturb the bifurcation,
as DRG axons showed normal T-like bifurcations and did not form multiple or ectopic branches [53].

The mRNA of the scavenger receptor Npr3 (also termed Npr-C) is not expressed by DRG neurons
but localized in cells—most likely Schwann cells or their precursors—associated with the dorsal roots
of the spinal cord [48,53]. While loss-of-function mutations of Npr3 caused skeletal overgrowth in
rodents due to increased levels of CNP in the extracellular space [73,74], on DRG axons Npr3 does
not have an important scavenging function since the overall bifurcation process is not disturbed [53].
Taken together, the absence of PDE2A does not interfere with axon bifurcation and the influence of
the scavenger receptor Npr3 on sensory axon bifurcation is limited to a minor degree. Therefore axon
bifurcation is resilient to high cGMP levels.

7. Behavioral Consequences of the Absence of Sensory Axon Bifurcation: Nociception Is
Impaired, Whereas Motor Balance and Coordination Is Normal

The primary sensory representation of the body within the spinal cord is based on the intricate
innervation and branching pattern of axons from DRG neurons. This topographic representation of
the soma is of fundamental importance for sensory information processing [75,76]. In the absence
of bifurcation, sensory topographic representation is incomplete (Figure 5). To study the functional
consequences of the lack of axon bifurcation in the spinal cord in the absence of other phenotypes that
may complicate the interpretation of results, Npr2 and cGKI were conditionally inactivated in DRG
neurons at early stages using the Cre-driver line Wnt1-Cre. In these mice, sensory axon bifurcation is
completely lacking as in global knockouts. Surprisingly, in a number of behavioral tests that examine
balance and motor coordination (balance beam test, rotarod, staircase assay, food grasping and reaching
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assay, and walking track analysis) no deficits were observed indicating that despite the absence of
sensory axon bifurcation considerable coordination capabilities are maintained in these mice [77].Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  8 of 13 
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Figure 5. Scheme of neuronal circuits with sensory axon bifurcation in the wild type (A) or in the
absence of bifurcation in CNP, Npr2 or cGKI null mutants (B). The lack of bifurcation affects the
sensory representation of the body in the central nervous system (CNS). CSG, cranial sensory ganglia;
DRG, dorsal root ganglia; Fb, forebrain; Hb, hindbrain; Mb, midbrain; MTN, mesencephalic trigeminal
neuron; SC, spinal cord; Vmo, trigeminal motor nucleus.

In contrast, loss of axonal bifurcation impairs the rapid response to avoid noxious heat
(hot plate test and Hargreaves test), whereas behavioural thresholds and response latencies to cold
(acetone-evoked evaporative cooling) or mechanical stimuli (dynamic plantar aesthesiometer) were
not affected. Nociception induced by the chemical irritants capsaicin or formalin are impaired by
the loss of axonal bifurcation [77]. Consistently, spinal dorsal horn neuron responses to capsaicin
were reduced in global Npr2 and CNP knockout mice [45,46]. In addition, a recent study using a
constitutive Npr2 mutant—in which bone growth is reduced—demonstrated deficits in the auditory
system [78]. In summary, these data point to a critical role of axonal bifurcation for the processing of
pain evoked by heat or chemical stimuli whereas proprioception is more or less normal in the absence
of axon bifurcation.

8. Compensatory Mechanisms Alter the Spatial Extension of Receptive Fields in the Spinal Cord
in the Absence of Sensory Axon Bifurcation

Sensory information from a large number of afferent axons converges in the spinal cord in
nociceptive, mechanoreceptive, or proprioceptive fields. Generation of these distinct and overlapping
sensory fields in the spinal cord relies on axon collaterals and terminal branches in specific layers.
The influence of a loss of bifurcation on the size or shape of termination fields of afferents was
recently visualized by transganglionic transport of fluorescently labelled cholera toxin B (CTB). This
work showed not only a quantitative reduction of incoming fibers, but also a change in the pattern
in the termination fields—most likely caused by an altered terminal branching [77]. For example,
Npr2-deficiency caused an increase of the dorsoventral span of the termination field of digit two of
the hind paw whereas the mediolateral extension was narrowed. In principle pre- and postsynaptic
mechanisms contribute to the formation of terminal fields. It is likely that the balance between these
interacting structures is disordered in the spinal cord of Npr2 mutants.

The changes in the termination fields detected by CTB labeling indicate that elaborate
compensatory mechanisms are implemented to reorganize neuronal circuits in the absence of
bifurcation. The behavioral studies suggest that these compensatory mechanisms might be more
active in the proprioceptive than in the nociceptive system.
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9. CNP/Npr2 Signaling in Human Diseases

CNP and Npr2 are also implicated in the process of endochondral ossification which affects
long bone growth. Therefore, biallelic loss-of-function mutations including missense, nonsense,
frame-shift mutations, insertions and deletions, and splice site mutations in the human NPR2 gene
result in acromesomelic dysplasia type Maroteaux (AMDM; OMIM602875), a skeletal dysplasia with
an extremely short and disproportionate stature [79–81]. Moreover, gain-of-function mutations in
the human gene resulted in overgrowth [82,83]. Similarly to human patients, constitutive Npr2- or
CNP-deficient mice show dwarfism [84–88]. Whether the absence of CNP/Npr2-mediated cGMP
signaling in DRG neurons causes branching errors of sensory axons within the spinal cord in these
patients is currently not known. Unfortunately, detailed neurological tests to investigate the occurrence
of neurological deficits in AMDM patients are currently lacking. The recent behavioral testing
of Npr2-deficient mouse mutants might provide a framework for future studies to characterize
neurological qualities of human patients with mutations in the Npr2 gene.
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