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Abstract: Three new and uncommon chromone analogs, epiremisporine F (1), epiremisporine G (2),
and epiremisporine H (3), were isolated from marine-origin Penicillium citrinum. Among the isolated
compounds, compounds 2–3 remarkably suppressed fMLP-induced superoxide anion generation by
human neutrophils, with IC50 values of 31.68 ± 2.53, and 33.52 ± 0.42 µM, respectively. Compound
3 exhibited cytotoxic activities against human colon carcinoma (HT-29) and non-small lung cancer
cell (A549) with IC50 values of 21.17 ± 4.89 and 31.43 ± 3.01 µM, respectively, and Western blot assay
confirmed that compound 3 obviously induced apoptosis of HT-29 cells, via Bcl-2, Bax, and caspase
3 signaling cascades.
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1. Introduction

Marine fungi have been a major source of special structures and bioactive secondary
metabolites for lead compounds. In particular, a large number of natural products with bi-
ological activities are found in the genus Penicillium [1–7]. For example, the marine fungus
Penicillium citrinum was found to produce many new bioactive compounds, such as antibac-
terial dihydroisocoumarins [2], benzopyrans [6], benzophenones [7], antifungal citrinin [4],
anticancer benzophenones [7,8], and anti-inflammatory chromone derivatives [8].

Human neutrophils play a significant role in host defenses against pathogen invasion
and are the main acute inflammatory mediators [9,10]. After different stimuli, activated
neutrophils produce a series of cytotoxins, such as superoxide anion (O2

•–), granule
proteases, and bioactive lipids [9,11,12]. Neutrophilic superoxide generation has been
linked to many types of inflammation. An inadequately triggered oxidative burst may
cause lipid peroxidation, tissue injury, and inflammatory diseases [13].

The main treatment strategies for cancer patients include chemotherapy, operations,
and radiotherapy. However, in patients with metastatic cancer, many anti-cancer drugs
show limited effects; thus, the development of more effective therapeutic drugs is urgently
needed [14].

Undoubtedly, natural products are favorable drug candidates because they are easy to
obtain and comparatively safe. Furthermore, natural compounds have been found to be
useful to ameliorate the adverse effects of chemotherapeutic agents. Recently, the notion
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that natural products are an ideal resource for identifying anti-cancer therapeutics has
grown globally [15–17].

Previously, we reported three new rare chromone analogues, epiremisporine C,
epiremisporine D, and epiremisporine E [8]. In this study, we carried out the isolation and
structure elucidation of three new compounds, epiremisporine F (1), epiremisporine G (2),
and epiremisporine H (3), from the ethanol extract of Penicillium citrinum. In addition, we
investigated the inhibitory effects of these compounds on superoxide anion generation by
fMLP-activated human neutrophils. Moreover, the cytotoxicities of the isolated compounds
against two cancer cell lines, colon cancer HT-29 and lung cancer A549, were also examined.

2. Results and Discussion
2.1. Fermentation, Extraction, and Isolation

In this study, the marine-derived fungal strain Penicillium citrinum (BCRC 09F0458)
was cultured in solid-state culturing conditions, so as to abound the variability of the fungal
secondary metabolites. Chromatographic isolation and purification of the n-BuOH-soluble
fraction of an EtOH extract of Penicillium citrinum on a silica gel column and preparative
thin-layer chromatography (TLC) obtained three new compounds (1–3) (Figure 1).
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between OMe-2′ (δH 3.11) and C-2′ (δC 107.9), and the ROESY correlations between OMe-
2′ (δH 3.11) and Hβ-4′ (δH 2.87). The relative configuration of 1 was confirmed by the basis 
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Figure 1. The chemical structures of compounds 1–3 isolated from Penicillium citrinum.

2.2. Structural Elucidation

Compound 1 was isolated as a yellowish amorphous powder. Its molecular formula,
C31H26O12, was determined on the basis of the positive HR–ESI–MS ion at m/z 613.13294
[M + Na]+ (calcd. 613.13219) and supported by the 1H and 13C NMR data. The IR spectrum
showed the presence of hydroxyl (3410 cm−1), ester carbonyl (1741 cm−1), and conjugated
carbonyl (1657 cm−1) groups. The 1H and 13C NMR data of 1 showed the presence of two
hydroxy groups, two methyl groups, three methoxy groups, two pairs of meta-coupling
aromatic protons, two methylene protons, and three methine protons. The signals at δ 12.19
and 12.42 exhibited two chelated hydroxyl groups with the carbonyl group. Comparison
of the 1H and 13C NMR data of 1 with those of epiremisporine C [8] suggested that their
structures were closely related, except that the 2′β-methoxy group of 1 replaced the 2′α-
methoxy group of epiremisporine C. This was supported by both HMBC correlations
between OMe-2′ (δH 3.11) and C-2′ (δC 107.9), and the ROESY correlations between OMe-2′

(δH 3.11) and Hβ-4′ (δH 2.87). The relative configuration of 1 was confirmed by the basis of
ROESY experiments. The ROESY cross-peaks between H-3/H-4, H-3/H-3′, H-3/Hα-4′,
OMe-2′/Hβ-4′, and H-3/COOMe-2 suggested that H-3, H-4, H-3′, and COOMe-2 are
α-oriented, and OMe-2′ is β-oriented. To further confirm the relative configuration of 1, a
computer-assisted 3D structure was obtained by using the molecular-modeling program
CS CHEM 3D Ultra 16.0, with MM2 force-field calculations for energy minimization.
The calculated distances between H-3/H-4 (2.185 Å), H-3/H-3′ (2.482 Å), OMe-2′/Hβ-4′

(3.412 Å), and H-3/H-16 (2.323 Å) were all less than 4 Å (Figure 2). This was consistent



Mar. Drugs 2021, 19, 408 3 of 18

with the well-defined ROESY observed for each of these H-atom pairs (Figure 2). The
absolute configuration of 1 was evidenced by the CD Cotton effects at 208.0 (∆ε +13.40),
230.0 (∆ε –5.94), 258.5 (∆ε +19.29), 288.5 (∆ε –7.49), and 330.0 (∆ε +5.40), in analogy with
those of epiremisporine E [8]. The 1H and 13C NMR resonances were fully assigned by the
1H–1H COSY, HSQC, ROESY, and HMBC experiments (Figure 3). Based on the above data,
the structure of 1 was elucidated, as reflected in Figure 1, and named epiremisporine F.
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Compound 2 was obtained as an amorphous powder. The ESI–MS showed the quasi-
molecular ion [M + Na]+ at m/z 613, suggesting a molecular formula of C31H26O12, which
was elucidated by the HR–ESI–MS (m/z 613.12928 [M + Na]+, calcd. 613.13219) and by the
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1H and 13C NMR data. The IR spectrum showed the presence of hydroxyl (3460 cm−1),
ester carbonyl (1748 cm−1), and conjugated carbonyl (1655 cm−1) groups. Compound 2
exhibited both 1H and 13C NMR signals as pairs in a ratio of 1:0.94 in CDCl3, indicating that
2 exists in a dynamic isomerism between major (2′R) and minor (2′S) isomers in CDCl3. The
signal at δ 12.36 (2′R) and 12.41 (2′S) exhibited a chelated hydroxyl group with the carbonyl
group. Comparison of the 1H and 13C NMR data of 2 with those of epiremisporine B [5],
suggested that their structures were closely related, except that the 11-methoxy group of 2
replaced the 11-hydroxy group of epiremisporine B [5]. This was supported by both HMBC
correlations between OMe-11 [δH 3.88 (2′R) and 3.91 (2′S)] and C-11 (δC 160.0) and ROESY
correlations between OMe-11 [δH 3.88 (2′R) and 3.91 (2′S)] and H-10 [δH 6.57 (2′R) and 6.59
(2′S)]. The relative configuration of 2 was elucidated on the basis of ROESY experiments.
The ROESY cross-peaks between H-3/H-4, H-3/H-3′, H-3/COOMe-2, COOMe-2′α/H-3′

(2′S), and COOMe-2′β/Hβ-4′ (2′R) suggested that H-3, H-4, H-3′, COOMe-2′ (2′S), and
COOMe-2 were α-oriented, and COOMe-2′ (2′R) was β-oriented. To further confirm the
relative configuration of 2, a computer-assisted 3D structure was obtained by using the
molecular-modeling program CS CHEM 3D Ultra 16.0, with MM2 force-field calculations
for energy minimization. The calculated distances between H-3/H-4 (2′S) (2.117 Å), H-
3/H-4 (2′R) (2.189 Å), H-3/H-3′ (2′S) (2.462 Å), H-3/H-3′ (2′R) (2.496 Å), COOMe-2′/H-3′

(2′S) (2.188 Å), COOMe-2′/Hβ-4′ (2′R) (3.744 Å), H-3/H-16 (2′S) (2.338 Å), and H-3/H-16
(2′R) (2.311 Å) were all less than 4 Å (Figure 4). This was consistent with the well-defined
ROESY observed for each of these H-atom pairs (Figure 4). Compound 2 showed similar
CD Cotton effects [207.5 (∆ε –0.97), 220.0 (∆ε +1.05), 234.0 (∆ε –1.02), 257.5 (∆ε +11.60),
281.5 (∆ε –4.41), and 330.5 (∆ε +4.27) nm] (Figure S1), compared with epiremisporine B [5].
Based on the above data, the structure of 2 was elucidated, as displayed in Figures 1 and
5, and named epiremisporine G, which was further substantiated by the 1H-1H COSY,
ROESY (Figure 5), HSQC, and HMBC (Figure 5) experiments.
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Compound 3 was isolated as an amorphous powder. The ESI–MS displayed the quasi-
molecular ion [M + Na]+ at m/z 627, suggesting a molecular formula of C32H28O12, which
was elucidated by the HR–ESI–MS (m/z 627.14731 [M + Na]+, calcd. 627.14784) and by the
1H and 13C NMR data. The IR spectrum showed the presence of hydroxyl (3420 cm−1),
ester carbonyl (1761 and 1740 cm−1), and the conjugated carbonyl (1657 cm−1) groups.
The signals at δ 12.14 and 12.99 exhibited two chelated hydroxyl groups with the carbonyl
group. Comparison of the 1H and 13C NMR data of 3 with those of epiremisporine F
(1) suggested that their structures were closely related, except that the 4α-methyl group
of 3 replaced the 4α-hydrogen of 1. This was substantiated by both HMBC correlations
between Me-4α (δH 2.12) and C-3 (δC 54.1), C-4 (δC 47.9), C-5 (δC 174.3), and C-14′ (δC
114.8), and ROESY correlations between Me-4α (δH 2.12) and Hα-3 (δH 3.12) and Hα-4′ (δH
3.08). The relative configuration of 3 was confirmed by ROESY experiments. The ROESY
cross-peaks between Me-4α/H-3, Me-4α/Hα-4′, H-3/H-3′, H-3/Hα-4′, OMe-2′/Hβ-4′,
and H-3/COOMe-2 suggested that H-3, Me-4, H-3′, and COOMe-2 were α-oriented, and
OMe-2′ was β-oriented. To further confirm the relative configuration of 3, a computer-
assisted 3D structure was obtained by using the molecular-modeling program CS CHEM
3D Ultra 16.0, with MM2 force-field calculations for energy minimization. The calculated
distances between H-3/Me-4 (2.161 Å), H-3/H-16 (2.320 Å), H-3/H-3′ (2.479 Å), and
OMe-2′/Hβ-4′ (2.212 Å) were all less than 4 Å (Figure 6). This was consistent with the
well-defined ROESY observed for each of these H-atom pairs (Figure 6). Compound 3
showed similar CD Cotton effects [207.5 (∆ε +12.33), 229.5 (∆ε −6.57), 263.0 (∆ε +20.13),
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290.5 (∆ε −7.81), and 332.0 (∆ε +6.57) nm], compared to the literature data [5]. Thus,
3 possessed a 2S,3R,2′S,3′S-configuration. The 1H and 13C NMR resonances were fully
assigned by 1H–1H COSY, ROESY (Figure 7a), HSQC, and HMBC (Figure 7b) experiments.
Based on the above data, the structure of 3 was elucidated, as displayed in Figure 1, and
named epiremisporine H.
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New compounds 1–3 were hypothesized to be biosynthesized from dimerization of
their natural precursors, remisporine A [5], coniochaetone H [18], and (−)-preussochromone
D [19] (Figure 8). The hypothetic biosynthesis schemes of 1–3 were proposed as shown in
Figures 9 and 10, respectively.

Mar. Drugs 2021 7 of 18 
 

 

New compounds 1–3 were hypothesized to be biosynthesized from dimerization of 
their natural precursors, remisporine A [5], coniochaetone H [18], and (−)-preussochro-
mone D [19] (Figure 8). The hypothetic biosynthesis schemes of 1–3 were proposed as 
shown in Figures 9 and 10, respectively. 

 
Figure 8. The chemical structures of remisporine A, coniochaetone H, and (−)-preussochromone D. 

 
Figure 9. The hypothetic biosynthesis scheme of 1 and 2. 

Figure 8. The chemical structures of remisporine A, coniochaetone H, and (−)-preussochromone D.

Mar. Drugs 2021 7 of 18 
 

 

New compounds 1–3 were hypothesized to be biosynthesized from dimerization of 
their natural precursors, remisporine A [5], coniochaetone H [18], and (−)-preussochro-
mone D [19] (Figure 8). The hypothetic biosynthesis schemes of 1–3 were proposed as 
shown in Figures 9 and 10, respectively. 

 
Figure 8. The chemical structures of remisporine A, coniochaetone H, and (−)-preussochromone D. 

 
Figure 9. The hypothetic biosynthesis scheme of 1 and 2. Figure 9. The hypothetic biosynthesis scheme of 1 and 2.



Mar. Drugs 2021, 19, 408 8 of 18
Mar. Drugs 2021 8 of 18 
 

 

 

Figure 10. The hypothetic biosynthesis scheme of 3. 

The correlations between the dihedral angles (H3′-C3′-C4′-H4′α and H3′-C3′-C4′-
H4′β) and the vicinal coupling constants (J3′, 4′α and J3′, 4′β) of compounds 1–3 and related 
analogues [5] are summarized in Table 1. The dihedral angles were calculated by using 
the molecular-modeling program CS CHEM 3D Ultra 16.0, with the MM2 force-field cal-
culations for energy minimization. The correlations between dihedral angles (H3′-C3′-C4′-
H4′α and H3′-C3′-C4′-H4′β) and vicinal coupling constants (J3′, 4′α and J3′, 4′β) of compounds 
1–3 were consistent with the Karplus relationship. The 2′S,3′S-configuration slightly de-
creased the J3′, 4′β value from 11.3~12.7 to 8.4~11.7 compared to the 2′R,3′S configuration. 
These data could also support the structural confirmation of the new compounds 1–3. 

Table 1. The correlations between dihedral angles and vicinal coupling constants of compounds 1–3 and related analogues 
[5]. 

Compounds 
Dihedral Angles J3′, 4′α (Hz) Dihedral Angles 

J3′, 4′β (Hz) 
(H3′-C3′-C4′-H4′α)  (H3′-C3′-C4′-H4′β) 

1 (2′S,3′S) 54.5° 4.7 173.7° 8.4 
2 (2′R,3′S) 54.3° 4.7 173.9° 12.7 
2 (2′S,3′S) 54.3° 5.9 174.0° 11.5 
3 (2′S,3′S) 55.2° 5.9 175.7° 8.4 

Epiremisporine B (2′R,3′S) 53.9° 5.4 173.5° 12.7 
Epiremisporine B (2′S,3′S) 54.7° 5.9 173.8° 11.7 

Epiremisporine B1 (2′R,3′S) 54.2° 6.6 173.8° 11.3 
Epiremisporine B1 (2′S,3′S) 56.0° 6.5 175.2° 10.3 

Remisporine B (2′S,3′R) 178.8° 12.2 61.0° 4.3 

  

Figure 10. The hypothetic biosynthesis scheme of 3.

The correlations between the dihedral angles (H3′-C3′-C4′-H4′α and H3′-C3′-C4′-
H4′β) and the vicinal coupling constants (J3′ , 4′α and J3′ , 4′β) of compounds 1–3 and related
analogues [5] are summarized in Table 1. The dihedral angles were calculated by using
the molecular-modeling program CS CHEM 3D Ultra 16.0, with the MM2 force-field
calculations for energy minimization. The correlations between dihedral angles (H3′-C3′-
C4′-H4′α and H3′-C3′-C4′-H4′β) and vicinal coupling constants (J3′ , 4′α and J3′ , 4′β) of
compounds 1–3 were consistent with the Karplus relationship. The 2′S,3′S-configuration
slightly decreased the J3′ , 4′β value from 11.3~12.7 to 8.4~11.7 compared to the 2′R,3′S
configuration. These data could also support the structural confirmation of the new
compounds 1–3.

Table 1. The correlations between dihedral angles and vicinal coupling constants of compounds 1–3 and related analogues [5].

Compounds Dihedral Angles J3′ , 4′α (Hz) Dihedral Angles J3′ , 4′β (Hz)
(H3′-C3′-C4′-H4′α) (H3′-C3′-C4′-H4′β)

1 (2′S,3′S) 54.5◦ 4.7 173.7◦ 8.4
2 (2′R,3′S) 54.3◦ 4.7 173.9◦ 12.7
2 (2′S,3′S) 54.3◦ 5.9 174.0◦ 11.5
3 (2′S,3′S) 55.2◦ 5.9 175.7◦ 8.4

Epiremisporine B (2′R,3′S) 53.9◦ 5.4 173.5◦ 12.7
Epiremisporine B (2′S,3′S) 54.7◦ 5.9 173.8◦ 11.7

Epiremisporine B1 (2′R,3′S) 54.2◦ 6.6 173.8◦ 11.3
Epiremisporine B1 (2′S,3′S) 56.0◦ 6.5 175.2◦ 10.3

Remisporine B (2′S,3′R) 178.8◦ 12.2 61.0◦ 4.3
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2.3. Biological Studies
2.3.1. Inhibitory Activities on Neutrophil Pro-Inflammatory Responses

The anti-inflammatory activities of the isolates from Penicillium citrinum were eval-
uated by their ability to inhibit formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-
induced O2

•– generation by human neutrophils. The anti-inflammatory activity data are
shown in Table 2. The clinically used anti-inflammatory agent, ibuprofen [20–23], was used
as the positive control. From the results of our anti-inflammatory tests, epiremisporine G (2)
and epiremisporine H (3) exhibited inhibition (IC50 values≤ 33.52 µM) of superoxide anion
release by human neutrophils, in response to fMLP. Among the chromone derivatives,
epiremisporine H (3) (with 4α-methyl and 2′β-methoxy groups) exhibited more effec-
tive anti-inflammatory activity than its analogues, epiremisporine C (with 4α-hydrogen
and 2′α-methoxy group) [8] and epiremisporine F (with 4α-hydrogen and 2′β-methoxy
group). In addition, epiremisporine B (with 11-hydroxyl group) [8] exhibited stronger anti-
inflammatory activity than epiremisporine G (2) (with 11-methoxy group). Therefore, our
study suggests Penicillium citrinum and its isolated compounds (2, 3, and epiremisporine
B) could be further discovered as promising candidates for the therapy or prevention of
various inflammatory diseases.

Table 2. Inhibitory effects of compounds 1–3 from Penicillium citrinum on superoxide anion generation
by human neutrophils, in response to fMLP.

Compounds IC50 (µM) a

Epiremisporine F (1) >50
Epiremisporine G (2) 31.68 ± 2.53 c

Epiremisporine H (3) 33.52 ± 0.42 c

Ibuprofen b 28.56 ± 2.73 c

a Concentration necessary for 50% inhibition (IC50). b Ibuprofen (a fMLP receptor antagonist) was used as a
positive control. Results are presented as average ± SEM (n = 3). Values are expressed as average ± SEM (n = 3).
c p < 0.01 compared with the control.

2.3.2. Cytotoxic Effects and Selectivity of Compounds 1–3

In this study, the cytotoxic activities of three compounds (1–3) against HT-29 (human
colon carcinoma) and A549 (human lung carcinoma) cells were studied, as shown in
Table 3, Tables S1, and S2. 5-Fluorouracil (5-FU) was used as the positive control [24–26].
Among the isolated compounds, compounds 1, 2, and 3 exhibited potent cytotoxic activities
with IC50 values of 44.77 ± 2.70, 35.05 ± 3.76, and 21.17 ± 4.89 µM against HT-29 cells,
respectively. In addition, compounds 1, 2, and 3 exhibited cytotoxic activities with IC50
values of 77.05 ± 2.57, 52.30 ± 2.88, and 31.43 ± 3.01 µM against A549 cells, respectively.
Among the chromone derivatives, epiremisporine H (3) (with 4-methyl and 11-hydroxyl
groups) exhibited a more effective cytotoxic activity than its analogues, epiremisporines
B–E [8], F, and G (without 4-methyl group) against the HT-29 and A549 cells. In other
words, the new compound, epiremisporine H (3) (without 4α-H and with 4-Me & 11-OH
groups), exhibited a stronger anticancer activity than its analogues, epiremisporines F and
G (1 and 2) (with 4α-H and without 4-Me group) against HT-29 and A549 cells.

Table 3. Cytotoxic effects of compounds 1–3 against A549 and HT-29 cells.

Compounds
IC50 (µM) a

HT-29 A549

Epiremisporine F (1) 44.77 ± 2.70 c 77.05 ± 2.57 c

Epiremisporine G (2) 35.05 ± 3.76 d 52.30 ± 2.88 d

Epiremisporine H (3) 21.17 ± 4.89 e 31.43 ± 3.01 d

5-FU b 17.47 ± 1.67 e 10.57 ± 1.89 d

a The IC50 values were calculated from the slope of dose–response curves (SigmaPlot). Values are expressed as
mean ± SEM (n = 3). c p < 0.05; d p < 0.01; e p < 0.001 compared with the control. b 5-Fluorouracil (5-FU) was
used as a positive control.
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2.3.3. New Compound 3 Inhibited Proliferation of HT-29 Cells

Epiremisporine H (3) exhibited the most potent cytotoxicity, with an IC50 value of
21.17 ± 4.89 µM against the HT-29 cell line. Compound 3 was selectively tested for clono-
genic assay as it is a new compound and possesses cytotoxic activity against HT-29. The
effect of compound 3 on colony formation of HT-29 cells was tested by using the clonogenic
assay (Figure 11). The HT-29 cell colonies were visualized as blue discs, through crystal
violet staining. It was clearly observed that compound 3 (12.5 µM) significantly reduced
the colony formation of HT-29 cells. Moreover, compound 3 almost completely inhibited
the colony formation at 25 µM.
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2.3.4. Effects of Epiremisporine F (3) on Protein Expressions of Pro-caspase 3 and Cleaved
Caspase 3 in HT-29 and A549 Cells

Caspase 3 activation is a hallmark of apoptosis. Caspase 3 activation involves the
cleavage of pro-caspase 3 (the inactive precursor form of caspase 3), leading to the formation
of cleaved caspase 3 (which is the active caspase 3). Upon apoptosis, the pro-caspase 3
would decrease and the cleaved caspase 3 would increase accordingly [27–29]. We further
investigated whether epiremisporine F (3) was able to influence these enzymatic activities
of caspase 3. The results show that compound 3 suppressed pro-caspase 3 and increased
the cleaved caspase 3 (Figures 12 and 13). Furthermore, compound 3 markedly induced
apoptosis of HT-29 and A549 cells through caspase-3-dependent pathways.

2.3.5. Effects of Compound 3 on Protein Expressions of Bax and Bcl-2 in HT-29 and
A549 Cells

To determine whether compound 3 could influence the expression of proteins related
to HT-29 and A549 cells apoptosis, compound 3 (6.25, 12.5, 25, and 50 µM) was added to HT-
29 and A549 cells. Figures 12 and 13 show that the expression level of pro-apoptotic protein
bax was obviously higher with 50 µM treatment of compound 3 than with 6.25 or 12.5 µM
treatment. On the contrary, the cells treated with 6.25 or 12.5 µM of compound 3 showed
higher Bcl-2 (anti-apoptotic protein) expression than that treated with 50 µM. The results
show that compound 3 suppressed the expression of Bcl-2 and increased bax expression.
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3. Materials and Methods
3.1. General Procedures

Optical rotations were measured using a Jasco P-2000 polarimeter (Japan Spectroscopic
Corporation, Tokyo, Japan) in CHCl3. Circular dichroism (CD) spectra were obtained on a J-
715 spectropolarimeter (Jasco, Easton, MD, USA). Ultraviolet (UV) spectra were recorded on
a Hitachi U-2800 Double Beam Spectrophotometer (Hitachi High-Technologies Corporation,
Tokyo, Japan). Infrared (IR) spectra (neat or KBr) were obtained on a Shimadzu IRAffinity-
1S FT-IR Spectrophotometer (Shimadzu Corporation, Kyoto, Japan). Nuclear magnetic
resonance (NMR) spectra, including correlation spectroscopy (COSY), rotating frame
nuclear Overhauser effect spectroscopy (ROESY), heteronuclear multiple-bond correlation
(HMBC), and heteronuclear single-quantum coherence (HSQC) experiments, were acquired
using a BRUKER AVIII-500 spectrometer (Bruker, Bremen, Germany), operating at 500 (1H)
and 125 MHz (13C), respectively, with chemical shifts given in ppm (δ), using CDCl3 as
an internal standard (peak at 7.263 ppm in 1H NMR and 77.0 ppm in 13C NMR spectrum).
Electrospray ionization (ESI) and high-resolution electrospray ionization (HRESI) mass
spectra were recorded on a Bruker APEX II Mass Spectrometer (Bruker, Bremen, Germany).
Silica gel (70–230 mesh (63–200 µm) and 230–400 mesh (40–63 µm), Merck) was used for
column chromatography (CC). Silica gel 60 F-254 (Merck, Darmstadt, Germany) was used
for thin-layer chromatography (TLC) and preparative thin-layer chromatography (PTLC).

3.2. Fungal Material

The fungal strain Penicillium citrinum BCRC 09F458 was isolated from wastewater,
which was collected from Hazailiao, Dongshi, Chiayi, Taiwan, in 2009. The fungal strain
was identified as Penicillium citrinum (family Trichocomaceae) by the BCRC center, based
on cultural and anamorphic data. The rDNA-ITS (internal transcribed spacer) region was
used for further identification. After searching the GenBank database through BLAST (nu-
cleotide sequence comparison program), it was found to have 100% similarity to P. citrinum.
P. citrinum BCRC 09F458 was stored in the Biological Resources Collection and Research
Center (BCRC) of the Food Industry Research and Development Institute (FIRDI).

Cultivation and Preparation of the Fungal Strain

P. citrinum BCRC 09F0458 was maintained on potato dextrose agar (PDA) and the
strain was cultured on PDA at 25 ◦C for 7 days. The spores were seeded into 300 ml shake
flasks containing 50 ml RGY (3% rice starch, 7% glycerol, 1.1% polypeptone, 3% soybean
powder, 0.1% MgSO4, and 0.2% NaNO3), and cultivated with shaking (150 rpm) at 25 ◦C for
3 days. After the mycelium enrichment step, an inoculum mixing 100 mL mycelium broth
and 100 mL RGY medium was inoculated into plastic boxes (25 cm × 30 cm) containing
1.5 kg sterile rice and cultivated at 25 ◦C for producing rice, and the above-mentioned RGY
medium was added for maintaining the growth. After 21 days of cultivation, the rice was
harvested, and used as a sample for further extraction.

3.3. Extraction and Isolation

The rice of the P. citrinum BCRC 09F0458 (1.5 kg) was extracted with 95% EtOH
(3 × 10 L, 3 d each) at room temperature. The ethanol extract was concentrated under
reduced pressure, and was partitioned with n-BuOH/H2O (1:1, v/v) to afford n-BuOH
soluble fraction (36.2 g), H2O soluble fraction (13.0 g), and insoluble fraction (500 mg).
The n-BuOH fraction (fraction A, 36.2 g) was purified by column chromatography (CC)
(1.6 kg of silica gel, 70–230 mesh (63–200 µm); n-hexane/EtOAc 25:1–0:1, 1500 mL) to
afford 13 fractions: A1–A13. Fraction A9 (1.44 g) was subjected to MPLC (65 g of silica
gel, 230–400 mesh (40–63 µm); dichloromethane/EtOAc 1:0–2:3, 650 mL fractions) to give
12 subfractions: A9-1–A9-12. Fraction A9-10 (89 mg) was further purified by semiprepara-
tive normal-phase HPLC (silica gel; n-hexane/EtOAc, 2:1) to afford epiremisporine H (3)
(3.2 mg). Fraction A10 (0.98 g) was subjected to MPLC (44 g of silica gel, 230–400 mesh
(40–63 µm); n-hexane/acetone 1:0–0:1, 450 mL fractions) to give 10 subfractions: A10-
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1–A10-10. Fraction A10-2 (96 mg) was further purified by preparative TLC (silica gel;
n-hexane/dichloromethane/acetone, 3:1:1) to afford isoconiochaetone F (1) (4.1 mg). Frac-
tion A11 (2.38 g) was subjected to MPLC (107 g of silica gel, 230–400 mesh (40–63 µm);
n-hexane/acetone 1:0–0:1, 1000 mL-fractions) to give 14 subfractions: A11-1–A11-14. Frac-
tion A11-8 (128 mg) was further purified by semipreparative normal-phase HPLC (silica
gel; n-hexane/dichloromethane/EtOAc, 5:3:2) to afford epiremisporine G (2) (5.2 mg).

Epiremisporine F (1): [α]25
D = +560.4◦ (c 0.13, CHCl3); UV (MeOH) λmax nm (log ε): 241

(4.47), 327 (3.80) nm; 1H NMR data, see Table 4; 13C NMR data, see Table 5; HRESIMS, CD,
1D, and 2D NMR spectra, see Supplementary Materials Figures S2–S9.

Table 4. 1H NMR data (500 MHz, CDCl3) for 1–3.

Position
1 2 (2’S) 2 (2’R) 3

δH (J in Hz)

3 3.57 (dd, 10.5, 9.1) 3.83 (t, 9.0) 3.78 (dd, 9.0, 8.7) 3.12 (d, 10.3)
4 5.02 (d, 9.1) 5.13 (d, 9.0) 5.15 (d, 9.0) -
8 6.71 (br s) 6.78 (br s) 6.77 (br s) 6.80 (br s)

10 6.61 (br s) 6.59 (br s) 6.57 (br s) 6.62 (br s)
15 2.35 (s) 2.37 (s) 2.36 (s) 2.38 (s)
16 3.88 (s) 3.75 (s) 3.79 (s) 3.91 (s)
3′ 3.08 (ddd, 10.5, 8.4, 4.7) 3.01 (ddd, 11.5, 9.0, 5.9) 2.90 (ddd, 12.7, 8.7, 4.7) 3.05 (ddd, 10.3, 8.4, 5.9)

4′α 3.01 (dd, 18.7, 4.7) 2.85 (dd, 16.7, 5.9) 2.81 (dd, 15.8, 4.7) 3.08 (dd, 18.9, 5.9)
4′β 2.87 (dd, 18.7, 8.4) 2.62 (dd, 16.7, 11.5) 2.43 (dd, 15.8,12.7) 2.95 (dd, 18.9, 8.4)
8′ 6.70 (br s) 6.71 (br s) 6.70 (br s) 6.64 (br s)

10′ 6.68 (br s) 6.69 (br s) 6.69 (br s) 6.63 (br s)
15′ 2.42 (s) 2.42 (s) 2.41 (s) 2.40 (s)
16′ 3.85 (s) 3.87 (s) 3.84 (s) 3.85 (s)

11-OH 12.19 (s) - - 12.14 (s)
11-OMe - 3.91 (s) 3.88 (s) -

2-OH - 4.53 (br s) 4.41 (s) -
4-Me - - - 2.12 (s)

2′-OMe 3.11 (s) - 2.87 (s)
11′-OH 12.42 (s) 12.41 (s) 12.36 (s) 12.99 (s)

Epiremisporine G (2): [α]25
D = +522.8◦ (c 0.15, CHCl3); UV (MeOH) λmax nm (log ε):

237 (4.43), 317 (3.83) nm; 1H NMR data, see Table 4; 13C NMR data, see Table 5; HRESIMS,
CD, 1D, and 2D NMR spectra, see Supplementary Materials Figures S10–S18.

Epiremisporine H (3): [α]25
D = +568.7◦ (c 0.11, CHCl3); UV (MeOH) λmax nm (log ε):

240 (4.44), 327 (3.75) nm; 1H NMR data, see Table 4; 13C NMR data, see Table 5; HRESIMS,
CD, 1D, and 2D NMR spectra, see Supplementary Materials Figures S19–S26.

3.4. Biological Assay

The anti-inflammatory effects of the isolated compounds from Penicillium citrinum
were evaluated by suppressing fMLP-induced O2

•– generation by human neutrophils. In
addition, anti-cancer activity was evaluated by cytotoxicity assay and Western blot analysis.

3.4.1. Preparation of Human Neutrophils

These studies were performed according with the code of ethics of the world medical
association for (declaration of Helsinki) experiments involving humans, and all protocols
were in compliance with the Institutional Review Board (IRB) of National Yang Ming
University (protocol code YM106033E-2 and date of approval: 10 April 2019). Human
neutrophils from the venous blood [11] of healthy, adult volunteers (20–35 years old) were
isolated using a standard method of dextran sedimentation, prior to centrifugation in a
Ficoll Hypaque gradient and hypotonic lysis of erythrocytes, as previously described [30].
Purified neutrophils containing >98% viable cells, as determined by the trypan blue exclu-
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sion method, were resuspended in HBSS buffer at pH 7.4 and were maintained at 4 ◦C,
prior to use [31].

Table 5. 13C NMR data (125 MHz, CDCl3) for 1–3.

Position
1 2 (2’S) 2 (2’R) 3

δC, Type

1 170.2, C 171.3, C 172.8, C 170.6, C
2 91.1, C 89.2, C 91.3, C 90.5, C
3 44.0, CH 48.2, CH 47.0, CH 54.1, CH
4 37.8, CH 36.7, CH 35.9, CH 47.4, CH
5 169.9, C 165.3, C 165.1, C 174.3, C
7 157.2, C 159.2, C 159.2, C 157.4, C
8 108.5, CH 110.7, CH 110.7, CH 108.9, CH
9 147.2, C 145.4, C 145.2, C 147.0, C
10 113.0, CH 108.3, CH 108.4, CH 112.7, CH
11 160.8, C 160.0, C 160.0, C 160.6, C
12 108.7, C 112.7, C 112.8, C 108.7, C
13 179.2, C 173.8, C 173.7, C 179.6, C
14 118.5, C 121.9, C 121.2, C 117.0, C
15 22.2, CH3 22.1, CH3 22.1, CH3 22.2, CH3
16 53.3, CH3 53.0, CH3 53.5, CH3 53.4, CH3
1′ 168.2, C 170.0, C 167.5, C 167.6, C
2′ 107.9, C 104.6, C 105.9, C 107.6, C
3′ 43.3, CH 43.2, CH 48.3, CH 42.3, CH
4′ 25.4, CH2 26.3, CH2 27.5, CH2 25.5, CH2
5′ 165.4, C 166.7, C 166.1, C 165.1, C
7′ 155.9, C 156.1, C 156.1, C 155.1, C
8′ 107.4, CH 107.5, CH 107.6, CH 106.8, CH
9′ 147.4, C 147.4, C 147.5, C 147.3, C
10′ 112.3, CH 112.6, CH 112.6, CH 112.0, CH
11′ 160.3, C 160.5, C 160.5, C 160.8, C
12′ 108.3, C 108.5, C 108.5, C 108.7, C
13′ 180.5, C 179.9, C 179.8, C 181.3, C
14′ 111.3, C 112.7, C 112.4, C 114.8, C
15′ 22.4, CH3 22.4, CH3 22.4, CH3 22.3, CH3
16′ 52.9, CH3 53.2, CH3 52.9, CH3 52.9, CH3

11-OMe - 56.3, CH3 56.3, CH3 -
4-Me - - - 28.4, CH3

2′-OMe 52.3, CH3 - - 51.3, CH3

3.4.2. Measurement of O2
•– Generation

The assay for detection of O2
•– generation was based on the SOD-inhibitable reduction

of ferricytochrome c [32]. In short, neutrophils (1 × 106 cells/mL) pretreated with the
various test agents (50 and 5 µM) at 37 ◦C for 5 min were stimulated with fMLP (1 µmol/L)
in the presence of ferricytochrome c (0.5 mg/mL). Extracellular O2

•– production was
evaluated with a UV spectrophotometer at 550 nm (Hitachi U-3010, Tokyo, Japan). The
percentage of superoxide inhibition of the test compound was calculated as the percentage
of inhibition = {(control − resting) − (compound − resting)}/(control − resting) × 100.
The software SigmaPlot was used for determining the IC50 values [31].

3.4.3. Chemicals and Antibodies

Fluorouracil (5-FU) and bovine serum albumin (BSA) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). The antibodies against Bcl-2, Bax, and β-actin were pur-
chased from Cell Signaling Technology (Danvers, MA, USA). Caspase 3 was obtained from
GeneTex International Corporation (Hsinchu, Taiwan).
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3.4.4. Cells and Culture Medium

HT-29 (human colon carcinoma) and A549 (human lung carcinoma) cells were kindly
provided by Prof. Y. Su and Prof. T. M. Hu, respectively, of National Yang Ming Chiao
Tung University, Taipei, Taiwan.

All cell lines were cultured in Dulbecco’s modified Eagle’s medium supplemented
with 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 µg/mL streptomycin, 2 µM
L-glutamine, and 1 mM sodium pyruvate. The cells were incubated in an atmosphere of
37 ◦C and 5% CO2 and passaged twice a week. Cells were stored in liquid nitrogen at
−155 ◦C. After the cells were thawed, the experiment was completed before 30 generations.
The purpose was to minimize experimental errors. The compound stock solution was
stored in DMSO at a concentration of 10 mM and stored at −20 ◦C, and finally melted
immediately before use.

3.4.5. Cytotoxicity Assay

The cell viability was conducted by the MTT assay method, as previously described [33].
Briefly, 5 × 103 cells in 200 µl per well were plated in 96-well culture plates and cultured in
complete medium overnight. After 24 h, cells were treated with different concentrations
(3.125, 6.25, 12.5, 25, 50, and 100 µM) of compounds 1–3. Fluorouracil (5-FU) (Sigma-
Aldrich, St. Louis, MO, USA) was used as a positive control against HT-29 and A549 cells.
The optical density at 570 nm was measured by ELISA plate reader (µ Quant) and the IC50
value was calculated. The optical density of formazan formed in control (untreated) cells
was taken as 100% viability.

3.4.6. Clonogenic Assay

The clonogenic assay was determined by the reference method with a slight modifica-
tion [34]. In this assay, HT-29 cells were seeded in 6-well plates with 3 × 103 cells per well
and incubated for 24 hours. The cells were then treated with the indicated concentrations
of compound 3, and cultured for 14 days. The cells were washed three times using PBS and
fixed using 99% methanol for 30 min. After washing three times with distilled water, the
cells were stained using 0.2% crystal violet dye for 15 min and rinsed with distilled water
to wash away the excess dye. The visible colonies were compared with the control samples
and photographed using a standard camera under natural light.

3.4.7. Western Blotting Analysis

Western blot analysis was performed according to the method previously reported [8].
In brief, HT-29 (1.5 × 105 cells) and A549 (1 × 105 cells) were seeded into 6-well plates and
grown until 85–90% confluent. Then, different concentrations (6.25, 12.5, 25, and 50 µM)
of compound 3 was added. Cells were collected and lysed by radioimmunoprecipitation
assay (RIPA) buffer. Lysates of total protein were separated by 12.5% sodium dodecyl
sulfate-polyacrylamide gels and transferred to polyvinylidene difluoride (PVDF) mem-
branes. After blocking, the membranes were incubated with anti-Bax, anti-Bcl-2 (Cell
Signaling Inc., Danvers, MA, USA), anti-caspase-3, and anti-β-actin (GeneTex Inc., Irvine,
CA, USA) primary antibodies at 4 ◦C overnight. Then, each membrane was incubated with
horseradish peroxidase (HRP)-conjugated secondary antibodies at room temperature, for
1 h, while shaking. At last, each membrane was excited using an enhanced chemilumi-
nescence (ECL) detection kit, and the images were visualized by ImageQuant LAS 4000
Mini biomolecular imager (GE Healthcare, Woburn, MA, USA). The band densities were
quantified using the ImageJ software (NIH, Bethesda, MD, USA).

3.4.8. Statistical Analysis

All results are presented as mean ± SEM. Statistical analysis was executed by using
Student’s t-test. A probability of 0.05 or less was considered to be statistically significant.
Microsoft Excel 2019 was used for the statistical and graphical assessment. All experiments
were executed at least 3 times.
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4. Conclusions

Three novel compounds (1–3) were isolated and identified from Penicillium citrinum.
The structures of these compounds were established on the basis of spectroscopic data.
Reactive oxygen species (ROS) (e.g., superoxide anion (O2

•−), hydrogen peroxide) pro-
duced by human neutrophils contribute to the pathogenesis of inflammatory diseases.
Among the isolated compounds, compounds 2 and 3 could inhibit fMLP-induced O2

•−

generation, with IC50 values ≤ 33.52 µM. These isolated compounds are worth further
research, as promising new leads for developing anti-inflammatory agents. Furthermore,
compound 3 markedly induced apoptosis of HT-29 cells through the mitochondrial- and
caspase-3-dependent pathways (Figure 14). This suggests that compound 3 is worth further
investigation and might be developed as a candidate for the treatment or prevention of
colon cancer.
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role of individual caspases in cell death induction by taxanes in breast cancer cells. Cancer Cell Int. 2015, 15, 1–16. [CrossRef]
[PubMed]

30. English, D.; Andersen, B.R. Single-step separation of red blood cells. Granulocytes and mononuclear leukocytes on discontinuous
density gradients of Ficoll-Hypaque. J. Immunol. Methods 1974, 5, 249–252. [CrossRef]

31. Chen, L.C.; Liao, H.R.; Chen, P.Y.; Kuo, W.L.; Chang, T.H.; Sung, P.J.; Wen, Z.H.; Chen, J.J. Limonoids from the seeds of Swietenia
macrophylla and their anti-inflammatory activities. Molecules 2015, 20, 18551–18564. [CrossRef]

32. Babior, B.M.; Kipnes, R.S.; Curnutte, J.T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential
bactericidal agent. J. Clin. Investig. 1973, 52, 741–744. [CrossRef] [PubMed]

33. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J.
Immunol. Methods 1983, 65, 55–63. [CrossRef]

34. Su, M.; Zhao, C.; Li, D.; Cao, J.; Ju, Z.; Kim, E.L.; Young-Suk, J.; Jung, J.H. Viriditoxin stabilizes microtubule polymers in SK-OV-3
cells and exhibits antimitotic and antimetastatic potential. Mar. Drugs 2020, 18, 445. [CrossRef] [PubMed]

http://doi.org/10.1056/NEJMoa1713709
http://doi.org/10.18632/oncotarget.5991
http://doi.org/10.1038/cddis.2013.509
http://www.ncbi.nlm.nih.gov/pubmed/24407236
http://doi.org/10.1155/2015/171356
http://www.ncbi.nlm.nih.gov/pubmed/26229542
http://doi.org/10.1371/annotation/1165f27b-aec3-4bbc-b846-56a3dbe31f7b
http://doi.org/10.1186/s12935-015-0155-7
http://www.ncbi.nlm.nih.gov/pubmed/25685064
http://doi.org/10.1016/0022-1759(74)90109-4
http://doi.org/10.3390/molecules201018551
http://doi.org/10.1172/JCI107236
http://www.ncbi.nlm.nih.gov/pubmed/4346473
http://doi.org/10.1016/0022-1759(83)90303-4
http://doi.org/10.3390/md18090445
http://www.ncbi.nlm.nih.gov/pubmed/32867174

	Introduction 
	Results and Discussion 
	Fermentation, Extraction, and Isolation 
	Structural Elucidation 
	Biological Studies 
	Inhibitory Activities on Neutrophil Pro-Inflammatory Responses 
	Cytotoxic Effects and Selectivity of Compounds 1–3 
	New Compound 3 Inhibited Proliferation of HT-29 Cells 
	Effects of Epiremisporine F (3) on Protein Expressions of Pro-caspase 3 and Cleaved Caspase 3 in HT-29 and A549 Cells 
	Effects of Compound 3 on Protein Expressions of Bax and Bcl-2 in HT-29 and A549 Cells 


	Materials and Methods 
	General Procedures 
	Fungal Material 
	Extraction and Isolation 
	Biological Assay 
	Preparation of Human Neutrophils 
	Measurement of O2– Generation 
	Chemicals and Antibodies 
	Cells and Culture Medium 
	Cytotoxicity Assay 
	Clonogenic Assay 
	Western Blotting Analysis 
	Statistical Analysis 


	Conclusions 
	References

